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XIX

Physical image formation – no other subject is quite as closely connected with the
name of Ernst Abbe. Ernst Abbe derived the first comprehensive theoretical descrip-
tion of optical image formation, he never published his work apart from a few
remarks, which he made in 1873. Ernst Abbe died in 1905. It is therefore a privilege
to dedicate this second volume of the Handbook of Optical Systems to the 100th

anniversary of his death.
Abbe discovered the optical image as an interference phenomenon. The image

intensity is interpreted by the interference of the coherent waves, which are formed
by emission or diffraction at the object, and transmitted and transformed by the
optical imaging system. In order to achieve an image that is similar to the object,
the properties of the transformation need to follow certain rules, the first of which is
the Abbe sine condition. In the case of non-self-luminous objects, the physical opti-
cal description of imaging also includes consideration of the illumination and coher-
ence properties of the light source. In order to consider polarization and vector dif-
fraction effects at the object, a complete vector theory is required. These theoretical
descriptions have been developed or adapted from other disciplines of optics, some-
times triggered by the question of image formation. In this volume, we cover the
most important topics within optical image formation.

Since the time of Abbe, the complexity of optical systems has increased consider-
ably and the level of knowledge about them has improved a great deal. In modern
systems, the use of laser light sources makes it necessary to consider the questions
of coherence. Imaging at high numerical apertures, or the use of crystal materials,
generates polarization effects. Digital image detection with pixellated solid-state sen-
sors involves the consideration of sampled images. Modern image formation meth-
ods are frequently scanning methods, such as confocal imaging, where each object
point is individually illuminated and imaged. The resulting image is obtained elec-
tronically, and further non-linear processes, such as digital filtering, are frequently
applied. Here in Volume 2 we will concentrate on the physical effects involved in
image formation, but computerized methods of imaging will be discussed in later
volumes.

The general physical imaging problem is electromagnetic in its nature. The image
is formed as an interference pattern of waves or a wave front, transmitted by an
optical imaging system. For non-self-luminous objects, the waves that finally form

Introduction



Introduction

the image originate from diffraction at the object. Diffraction and interference can
be conveniently described by wave optics. In a rather abstract way, the task of devel-
oping an optical system is to find a distribution of refractive indices and boundaries
of the imaging system between the source and the detector that produce in the
detector plane a wave field that is, as far as possible, like the object field. A purely
geometrical formulation of the system description is not able to cover all the effects
that take place. However, a full wave optical treatment of physical image formation
is rarely possible. The dimensions and the complexity of optical systems typically do
not allow for a rigorous solution of Maxwell¢s equations. Therefore, the solution is
typically separated into different steps. The nature of the physical effects involved in
image formation can be split into two different groups, and the steps are selected in
accordance with the dominating physical effect, which might be either:

. the propagation of a wave field, i.e., through free space or optical systems, or

. an interaction, either with diffracting objects, detectors or the superposition
of wave-fields to form interference patterns.

For each step, there are certain levels of approximate solutions, each of which can
be solved by an appropriate solution for propagation or interaction, depending on
the required accuracy. For example, there are several powerful methods, which are
used in the calculation of field transport and propagation problems as numerical so-
lutions to the wave equation. The remaining difficulties are mostly given by the
interfaces between the different sections of the description. In the simplest case, dif-
ferent sampling grids have to be adapted by interpolation or re-sampling. In general,
however, the transition is more complicated. While a transfer from ray optics to
wave optics is straightforward, for example, transfer from wave to ray optics, gener-
ally requires further restrictions and is usually limited to coherent wave fronts. Here
in Volume 2 of the Handbook series we will concentrate our description on the most
relevant steps for optical imaging, such as diffraction at the object, consideration of
partial coherence and vector effects. The standard description of optical imaging sys-
tems is shown in figure I-1.

Figure I-1: Physical model for the description of optical imaging.

The physical model of optical imaging aims, whenever possible, to provide a line-
ar system description. In the most convenient description, the effective light source
is described by incoherent source points and the object is illuminated by an assem-
bly of incoherent plane waves. Diffraction is often taken into account by the Thin
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Element Approximation (TEA), which is equivalent to Fourier-transforming the
object transmission function. Imaging is considered, in general, by a complex trans-
fer function and the image intensity is formed by squaring the linearly transmitted
amplitudes. The standard procedure is shown in table I-1.

Table I-1: Standard physical model of optical image formation

Step Physical Principle Preferred Methods of

Solution

Simplification

Source Linear decomposition . Source points
. Laser modes

. Coherence properties

Condenser Propagation . Linear system theory . Fourier transformation

of effective light source

Object Interaction

– Diffraction theory

. Thin element

approximation
. Scalar diffraction

theory
. Vector Diffraction

theory

. Decomposition of

illumination into plane

waves

Imaging lens Propagation and

filtering

. Linear System theory . Complex transfer

function by ray-tracing

Image formation Interference . Intensity–square
. Incoherent super-

position

. Time average

In the following the contents and also the limits of Volume 2 are outlined.

i) Coherence and Illumination

The amplitude spectrum in image space and the image intensity for coherent image
formation, together with the diffraction spectrum of the object, are all obtained by a
linear system approach. The only remaining question is how to consider the coher-
ence properties of the light source. With coherent illumination of, e.g., a grating,
the light propagation cancels out in certain directions, while it is constructively
superposed in others. The image is formed as an interference phenomenon of the
coherent diffracted waves. Illumination conditions, however, are typically not coher-
ent, and in fact, coherent conditions usually have an adverse effect on image forma-
tion. The role of coherence is introduced in section 19.

The coherence properties of optical imaging are generally given by the properties
of the light source and the illumination system. As will be shown in sections 21–24,
the optical image is predominantly influenced by the physical properties of the illu-
mination conditions. The description of the illumination in optical image formation
is conveniently reduced to an effective light source. The illumination system will be
considered as an optical system, with the effective light source being provided by a
physical light source such as a laser beam. Inside the illumination system, the use
of components with micro-structured surfaces eventually makes it necessary to cal-
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culate the interaction of the light propagation and the light transfer using non-geo-
metrical models, and then the transition between wave and ray optics is more com-
plicated. The illumination systems and the physical effects involved will be dis-
cussed in Volume 4. The discussion of physical image formation in Volume 2 is – as
usual – limited to the effective light source model.

ii) Diffraction – Coherent Interaction of Light and Matter

One of the consequences of Abbe’s theory is that the information contained in the
image is restricted to the information which is contained in the light scattered by
the object. For most applications, a scalar description of scattering is sufficient, but
further approximations may be applied for convenience. Diffraction, however, can
be considered in physical optical imaging in two ways. On the one hand, as far as
non self-luminous objects are concerned, diffraction theory is required for the treat-
ment of the interaction of light with the object to be imaged. On the other hand,
diffraction at the aperture stop of an imaging lens causes a diffraction-limited spot
size. In general the task is to compute the diffraction field of either object or aper-
ture stop, depending on the incident light amplitude distribution. There are several
methods used for physically modelling the interaction of light with objects and the
method of choice has to be decided upon depending on the appropriate conditions
for numerical solution. Possible algorithms are, for example, the Kirchhoff integral,
the Fresnel paraxial approximation or the Fraunhofer far-field approximation.

Light is a transverse electromagnetic wave – in the classical limit – and obeys
Maxwell’s equations. For this reason it can be polarized. Polarization has an impact
on optical imaging because the contrast of the interference depends on the mutual
polarization of the contributing waves. Furthermore, polarization effects can be
used to generate an image contrast as in polarization microscopy and some projec-
tion devices. The mathematical description of polarization states and their change
due to various optical components is the subject of section 26, while polarization
optical imaging is discussed in chapter 28.

If either the level of accuracy required to describe the diffraction at the object
becomes extraordinarily high or if the structure sizes become comparable to the
wavelength, then scalar approximation theories are no longer sufficient. Some fre-
quently-used rigorous methods that solve Maxwell’s equations in object space are
treated in chapter 27. However, apart from some examples, it is beyond the scope of
this volume to consider near-field effects of the interaction of light with small struc-
tures in detail, as is required, for instance, in the interpretation of the images in
near-field optical microscopy. Some common near-field optical measurement meth-
ods will be discussed in Volume 6.

iii) Propagation of Coherent Light in Optical Systems

If the propagators are chosen in an appropriate way and the sampling conditions
are considered properly, the field propagation through nearly every real system can
be calculated to an acceptable accuracy. To illustrate the complexity of the propaga-
tion problem, a simple example of an optical system is considered. Propagation
through optical systems, including interfaces, is frequently simplified by a geomet-
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rical optical description, without the need to sacrifice accuracy. Refraction or reflec-
tion follows well-known laws, but dielectric coatings might influence the amplitude
and the phase, for example. The complex transmission and reflection coefficients
generally require a wave optical treatment. These wave optical effects have to be
included in the geometrical optical description by, e.g., reference tables or functional
descriptions of the coefficients. The consideration of coefficients alone might not be
sufficient since, e.g., for multi-layer coatings with a thickness of several wavelengths
the position of the reflection of refraction of a ray is not clear. This simple example
shows that the level of detail involved in the steps might be quite complex. A full
description of all details is beyond the scope of Volume 2. In section 20, however,
the formal transition from geometrical optics to wave optics is discussed for the
example of imaging systems.

For a wave optical treatment, the effect of the phase elements such as thin lenses
or phase filters of an optical system can be considered as for complex filters. The
thin phase element is considered by a simple projection of the phase shift of the ele-
ment. The role of the z-dimension is neglected and the output wave is obtained
from the incident wave by multiplication with a complex transfer function, given by
the amplitude transmission A of the element and the phase shift U, which is added
to the phase of the incident wave. In general, however, the complex transmission
function depends on the angle of incidence. It should be noted that this TEA, al-
though called a thin-element approximation, is really a small-angle approximation.
The TEA is frequently applied in so-called Fourier Optics, which is a simplified wave
optical treatment of image formation and optical filter techniques. Within the scope
of this approximation, compound optical systems may be treated using the paraxial
Collins integral, based on the Fresnel approximation and then by applying the
matrix approach of first-order optics. Separated parts of an optical system with
nearly-perfect correction can be described as paraxial lens groups. The characteriza-
tion of the subsystem is possible by a simple paraxial ABCD matrix. An extension of
the approximation is possible for small residual aberrations of the optical system.
This approach, based on Fresnel’s integral, is outlined in section 18. The paraxial
formulation of Fourier Optics, however, frequently leads to the incorrect assumption
that the application of optical imaging theory – and Fourier Optics in general – is
restricted to the paraxial regime. In this volume we will concentrate on general opti-
cal imaging theory with no lack of approximations. Fortunately, wave-optical propa-
gators by optical imaging systems are not necessary, since the treatment using geo-
metrical optical approximation produces results with a very high accuracy. The ap-
plication of wave optical propagators is restricted to special applications and will not
be considered further in Volume 2.

In addition, the design and analysis of optical imaging systems is frequently also
based on ray tracing and the geometrical optical description. The advantages of ray
tracing are many: it is powerful, fast, flexible and applicable over large scales, and
there are a variety of commercially available software packages in existence. With
certain approximations and, e.g., statistical methods, it is possible to consider even
scattering or diffractive optical elements. However, for a comprehensive treatment
of optical design, simulated by ray tracing, the reader is referred to Volume 3.
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iv) Conversion between Rays and Waves

For a description of physical image formation it is necessary to achieve the transfer
between geometrical ray optics and wave optics. As will be shown in section 20, con-
version from rays to waves and vice versa is generally only possible for coherent
wave fields obeying the law of Malus – a property called orthotomy. Both forms of
description are then equivalent and can be converted into each other. The conditions
can be summarized as:

1. A wave front must exist. This wave front must be continuous, and there
should be no phase singularities.

2. The conversion is generally not possible in the region of a caustic, where
wave fronts cannot be defined.

Having defined a coherent wave field U(x,y,z) by a complex amplitude distribu-
tion with the phase U(x,y,z) and amplitude distribution A(x,y,z), the local direction
of light rays is directly given by the Eikonal equation (see sections 17 and 20). As a
second condition, the transfer between the two forms of description has to satisfy
the conservation of energy. For this purpose, a ray is either characterized by a
weighting coefficient g or – in a statistical approach – the ray density is selected in
accordance with the amplitude A. For a more general treatment of the transfer from
ray optics to wave optics and vice versa we refer you to a later volume of this Hand-
book of Optical Systems.

Ultimately the wave optical treatment of propagation through imaging systems is
preferred or sometimes even necessary. For micro-optical systems, numerical meth-
ods may be applied, such as finite differences for small distances and gradient index
media, or mode-expansion methods inside light-guiding structures, such as wave-
guides. In Volume 6, we address beam-propagation methods in order to model the
propagation of light in guiding structures and more complex environments, and
also the description of laser light.

The image formed as an interference phenomenon is considered by a wave opti-
cal description, either in the space domain by a superposition of, e.g., plane waves;
or in the spatial frequency domain by the spatial frequency spectrum representation
of the wave field in the image plane. For an introduction, see the wave optical
description which is outlined in section 17.
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17 The Wave Equation

17.1

Introduction

In the classical limit, light is an electromagnetic wave. Consequently, classical optics
can be derived from Maxwell’s equations together with the material equations.
Excluded from this are quantum effects in the interaction with media (namely quan-
tum mechanics) and in the electromagnetic field itself (namely quantum electrody-
namics). The intention of this section is to state clearly the assumptions and approx-
imations at the transition from Maxwell’s equations to the monochromatic homoge-
neous Helmholtz equation.

One central point of the present chapter is the wave equation that describes in
differential form the development of waves in space and time. Only in homoge-
neous and isotropic media can the coupled vector wave equation be separated into
scalar wave equations with plane or spherical waves as solutions. The phenomenon
of evanescent waves as non-propagating solutions of the wave equation can be ob-
served especially at interfaces. In inhomogeneous media and in anisotropic media a
solution of the (in general coupled) vector wave equation is more complicated. In
inhomogeneous media we end up with diffraction theories for the scalar domain
(discussed in chapter 18) and the electromagnetic domain (discussed in chapter 27).
Furthermore, the optical properties of optical media show a nonlinear behavior with
the electromagnetic field amplitude or its intensity. However, such nonlinear optical
effects will not be considered in this volume.

The wave propagation in homogeneous media is the most simple one, but it is
extremely useful for the solution of practical problems. These can be frequently
divided into an interaction section and a propagation section, linked by a surface. In
a first step the field at the surface is obtained from the solution of a diffraction prob-
lem, and in a second step the wave propagation is used to compute the resulting
field in an arbitrary region behind the interface. The wave propagation is itself par-
ticularly simple for fields that do not change their functional form during propaga-
tion. These elementary solutions of the wave equation will be discussed here, too.
The most prominent one is the plane wave expansion. Finally, we will establish the
link to geometrical optics and the eikonal equation.

17.2

From Maxwell to Helmholtz

17.2.1

Maxwell’s Equations and the Inhomogeneous Wave Equation

Maxwell’s equations describe the classical properties of electromagnetic waves
[17-1]. In their differential form, they are given by Biot–Savart’s law for the magnetic
field strength ~HH and Faraday’s induction law for the electric field strength~EE:
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17.2 From Maxwell to Helmholtz

� · ~HH ¼ ¶

¶t
~DDþ~jj ; ð17-1aÞ

� ·~EE ¼ � ¶

¶t
~BB ; ð17-1bÞ

with the displacement current ~DD and the magnetic induction ~BB given by

� � ~DD ¼ r ; ð17-1cÞ

� �~BB ¼ 0 : ð17-1dÞ

The sources for the displacement current ~DD are given by electric charges
described by the charge density r, while there are no �charges’ for the magnetic
induction ~BB. With eq. (17-1a), the sources for a magnetic field are charged currents
given by the current density~jj and the displacement current ~DD. The current density
obeys the equation of continuity

� �~jj ¼ � ¶r

¶t
ð17-2Þ

and, in lowest order, Ohm’s law

~jj ¼ r~EE ð17-3Þ

with the specific conductivity r that is, in general, a tensor.
In linear, isotropic and homogeneous media, the properties of the supporting me-

dia are described by the following constitutive relations

~DD ¼ ereo~EE; ð17-4aÞ

~BB ¼ lrlo
~HH ð17-4bÞ

with the relative dielectric constant er and the relative magnetic permeability lr. The
dielectric constant of vacuum e0 (measurement), and the magnetic permeability of
vacuum l0 (an SI definition) are given by

e0 ¼ 8:85::: � 10�10 As

Vm
;

l0 ¼ 4p � 10�7 Vs

Am
:

ð17-5Þ

With space-variant er and lr, also ~DD, ~EE, ~BB and ~HH are usually functions of space and
time.

Since after insertion of the constitutive relations (17-4) into Maxwell’s equations
(17-1) the magnetic field strength is connected to the electric field strength by (17-1),
further discussion is restricted to the electric field strength. Combining the time de-
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17 The Wave Equation

rivative of Biot–Savart’s law (17-1a) with the rotation of Faraday’s induction law
(17-1b) the following time-dependent wave equations for inhomogeneous, isotropic,
charge-free (r =0) and non-dispersive media is obtained:

D~EE ¼ ere0lrl0

¶
2

¶t2
~EE þ rlrl0

¶

¶t
~EE � ~��

~��er
erj j �

~EE

 !

: ð17-6Þ

Solutions of eq. (17-6) are in general damped electromagnetic waves. In non-mag-
netic isolators with r = 0 and lr= 1, eq. (17-6) can be written as

D~EE � n2

c2
¶
2

¶t2
~EE ¼ �~��

~��er
erj j �

~EE

 !

¼ �2~��
1

n
~EE � ~��n

� �

ð17-7Þ

with the velocity c of light in vacuum (SI constant)

c ¼ 1
ffiffiffiffiffiffiffiffiffi
e0l0

p ¼ 2:99792458 � 108 m
s

ð17-8Þ

and the refractive index n(r) given by

n ~rrð Þ ¼ ffiffiffiffiffiffiffiffi
erlr

p
: ð17-9Þ

In media of inhomogeneous refractive index, i.e., in gradient index media and at
boundaries, the wave equation (17-7) is given by three coupled differential equations
of second order. Generally, the inhomogeneous coupled wave equation (17-7) cannot
be solved analytically. Analytical solutions exist only in homogeneous media (see
section 17.3). At interfaces, boundary conditions can be formulated and the solu-
tions in homogeneous regions separated by the interfaces can be determined analy-
tically (see chapter 18).

In weak inhomogeneous media, the right-hand side of eq. (17-7) can be further
simplified using [17-2]

¶

¶x

1

n
~EE � ~��n

� �

¼
~��n

n
� ¶

¶x
~EE þ~EE � ~��

¶

¶x
n

n
»
~��n

n
� ¶

¶x
~EE : ð17-10Þ

After insertion of a harmonic wave for the electric field, one obtains from (17-7)

D~EE þ n2k20
~EE ¼ �2i

~kk

n
~��n �~EE
� �

: ð17-11Þ

17.2.2

Wave Equation in Homogeneous Media and the Scalar Wave Equation

For the special case of homogeneous (�er= 0) and non-conducting (r= 0) media, the
conventional form of the wave equation for the electrical field is obtained from eq.
(17-6)
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D~EE ¼ n2

c2
¶
2

¶t2
~EE : ð17-12Þ

The wave equation in homogeneous media is still a vector equation, but the vector
components of eq. (17-12) are no longer coupled and eq. (17-12) can be solved for
each vector component separately. In homogeneous and isotropic media, the wave
equations (17-12) for the electric and magnetic field are six independent differential
equations and for each field vector component of ~EE or ~HH, respectively, the same
equation holds. If polarization effects can be neglected, frequently only one vector
component is considered, the discussion below is therefore restricted to a single vec-
tor field component Ex. Temporal and spatial dependency of eq. (17-12) are separat-
ed into different terms, consequently time and space dependence of the electrical
field can be separated into

Ex ~rr; tð Þ ¼ U ~rrð Þ � F tð Þ : ð17-13Þ

Fundamental solutions of the space and time-dependent parts are given by the
harmonial dependencies of the electrical field. For the moment the discussion will
be restricted to electrical fields which are constant in x and y (i.e., DxE ¼ DyE ¼ 0)
in vacuum (i.e., n = 1), and the solutions of (17-13) can be written as

F tð Þ ¼ Re eix�t
� �

¼ cos x � tð Þ ; ð17-14aÞ

U zð Þ ¼ Re eik0 �z
� �

¼ cos k0 � zð Þ ð17-14bÞ

with the temporal frequency x=2p ¼ 1=T given by the inverse of the time period T
and the spatial frequency k0=2p ¼ 1=k given by the inverse of the spatial period k.
Figure 17-1 illustrates both solutions for two times t = 0 and t = t¢. The wave defined
according (17-14) is propagating in the negative z-direction. Therefore different
signs are usually applied for both arguments of the cosine functions in eq. (17-14).

Figure 17-1: Harmonic time dependence of a harmonic wave.

The relation between temporal and spatial dependence can easily be obtained
after insertion of eq. (17-14a) into both sides of the wave equation (17-12):
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17 The Wave Equation

n2

c2
¶
2

¶t2
U ¼ �x2

c2
U; ð17-15aÞ

DU ¼ �k20U: ð17-15bÞ

Since both equations (17-15a) and (17-15b) have to be identical, the spatial frequency
k0=2p ¼ 1=k or the propagation constant k0 can be identified by the ratio of fre-
quency x and phase velocity c:

k0 ¼
x

c
¼ 2p

k
: ð17-16Þ

After separation of the time-dependent part and consideration of a refractive index
n, the usual form of the Helmholtz equation is obtained after insertion of the prop-
agation constant k0:

DU þ n2k20U ¼ DU þ k2U ¼ 0 : ð17-17Þ

Equations (17-17) are still three independent equations for the vector components of
the electrical field. Only in the paraxial region may the discussion be reduced to a
single vector component of the electrical field and the vector Helmholtz equations
then reduce to a single scalar Helmholtz equation for the scalar field amplitude U.
The scalar approximation is valid:

. for each of the vector components in homogeneous media or waves that are
linearly polarized along the symmetry axis (separable problems);

. approximately, for small propagation angles (paraxial approximation);

. and scalar waves, for instance sound waves in gases.

17.2.3

The Dispersion Relation of the Harmonic Wave Solution

The property of the elementary solution to the Helmholtz equation can easily be
discussed after insertion of the elementary solution into Maxwell’s equations.
According to eq. (17-14), the elementary solution may be given by a monochromatic
plane wave:

Uð~rr; tÞ ¼ eið
~kk�~rr�x�tÞ ð17-18Þ

with the propagation vector~kk ¼ kx; ky; kz
	 


. After insertion of the harmonic wave for all
field components for~EE, ~HH,~DD and~BB, fromMaxwell’s equations it follows that

rot~EE ¼ i ~kk ·~EE
� �

¼ ixl0
~HH ; ð17-19aÞ

rot~HH ¼ i ~kk · ~HH
� �

¼ �ix~DD ; ð17-19bÞ
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or

~kk ·~EE ¼ xl0
~HH; ð17-20aÞ

~kk · ~HH ¼ �x~DD : ð17-20bÞ

In charge-free media it can be derived that

div ~DD ¼ i~kk � ~DD ¼ 0; ð17-21Þ

div ~BB ¼ il0
~kk � ~HH ¼ 0 : ð17-22Þ

As will be shown in section 17.4, the energy propagation is along the Poynting vec-
tor~SS, defined by the vector product of~EE and ~HH:

~SS ¼ ~EE · ~HH : ð17-23Þ

From eqs (17-20) to (17-23) it follows that:

. ~DD, ~HH and k are perpendicular to each other;

. ~SS,~EE and ~HH are perpendicular to each other;

. since ~DD and ~EE are in general not parallel, ~kk and ~SS are generally not parallel
either, i.e., the energy propagation in general does not follow the wave vector;

. in isotropic media~EE and ~DD are parallel and~SS points along the direction of~kk.

The vector relations are illustrated in figure 17-2.

Figure 17-2: Relations between the wave vector~kk,
the Poynting vector~SS and the field vectors ~HH, ~DD and~EE.

Inserting (17-20a) into (17-20b), the displacement current is then given by the dis-
persion relation [17-3]

~DD ¼ � 1

x
~kk ·

1

xl0

~kk ·~EE

� �� �

¼ � 1

x2l0

~kk �~EE
� �

�~kk� k2~EE
h i

: ð17-24Þ

In the most frequent case of isotropic media, the displacement current is parallel to
the electric field, given by the lowest order of eq. (17-24), ~DD ¼ ere0~EE. This linear
dependence of eq. (17-4) is a convenient simplification of the more complex influ-
ence of optical media on electromagnetic fields. It can be used in most applications,
e.g., in isotropic media, where er and lr are scalar quantities. Within the scope of
the linear approximation (17-4) the displacement current is parallel to the electric
field and energy propagation is along the wave propagation direction.
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17 The Wave Equation

In general, however, the dielectric �constant’ may be a function of many parame-
ters. In anisotropic media, dielectric permittivity er and magnetic permeability lr are
tensors and er in general depends on the propagation direction ~kk (see chapter 26).
Furthermore, any medium will be influenced by the incident electromagnetic field.
Higher order dependencies of, e.g., the displacement current on the electrical field,
are even not considered in eq. (17-24), i.e., er and lr do not depend on the values of
~EE and ~HH at the point and time considered. Equations (17-4) or (17-24) may also
include a differential time interval. For the time dependence this results in fre-
quency dispersion and, for the spatial dependence, in spatial dispersion. In sum-
mary, the dielectric �constant’ is not constant at all and thus for the displacement
current we may write

~DD ¼ e0er k;~kk;~EE; I;T ;~FF:::
� �

�~EE : ð17-25Þ

The refractive index of a medium may thus depend on:

. thewavelength (dispersion, important to be considered, e.g. in optical design);

. the direction of propagation or the field vector component (relevant in aniso-
tropic media such as in the case of birefringence);

. the electric field amplitude (Pockels effect);

. the (electric) intensity (Kerr effect, thermal effects);

. many other effects, such as in the acousto-optical effect, the Faraday-effect…

The effects are present in almost any material, the question is only the magnitude
of the effect. For the optical design of imaging systems it is, however, undesirable to
have imaging properties depending on the intensity or similar effects. Therefore
optical material with linear properties, such as conventional glasses and isotropic
crystals, are preferred. Unfortunately not all effects can be avoided all the time, and
therefore thermal effects, or, particularly at short wavelengths, anisotropic crystals,
have to be applied. Beside the latter all nonlinear effects will not be considered in
this volume.

In isotropic, linear media the displacement current is proportional to the electric
field according eq. (17-4). After insertion of (17-4) and (17-21) on the left and right-
hand sides of eq. (17-24), the dispersion relation for homogeneous electromagnetic
waves follows, in analogy with eq. (17-16):

ere0 ¼
1

x2l0

k2: ð17-26Þ

The dispersion relation of electromagnetic waves corresponds to the Ewald equa-
tion, stating that the magnitude of the wave vector in isotropic homogeneous media
is given by n �2p /k:

kj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2x þ k2y þ k2z

q

¼ n � ffiffiffiffiffiffiffiffiffi
e0l0

p � x ¼ n � x
c
¼ nk0 ¼ n

2p

k
: ð17-27Þ
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17.3 Elementary Waves in Free Space

For monochromatic light, any wavevector~kk pointing from the origin along any arbi-
trary direction therefore has the same length and ends on a spherical surface, the
so-called Ewald sphere (see sections 17-5 and 23-1).

17.3

Elementary Waves in Free Space

17.3.1

The Electromagnetic Plane Wave

Elementary solutions of eq. (17-17) in homogeneous, non-conducting, isotropic
media of refractive index n are harmonic plane waves, described by a wave vector
~kk = (kx, ky, kz). Each vector component of the electric and magnetic field satisfy

~EEð~rr; tÞ ¼ ~EE ei
~kk�~rr�xtð Þ; ð17-28aÞ

~HHð~rr; tÞ ¼ ~HH ei
~kk�~rr�xtð Þ : ð17-28bÞ

As discussed above in the example given in figure 17-1, the sign of the time depen-
dence, in combination with the sign of the exponent in eq. (17-28), determines the
propagation direction. Because of this one has to be careful when implementing dif-
fraction equations obtained from diffraction papers or textbooks: always check the
sign of the time dependence and take the complex conjugate of the equations if the
sign is different.

The reason why a plane wave has the mathematical form of eq. (17-28) becomes
clear when we look at figure 17-3: For a plane wave the surfaces of constant phase
are planes oriented perpendicular to the propagation direction determined by the
wave vector ~kk. Therefore, the projection of the space vector~rr (pointing to the equi-
phase surfaces) onto the propagation vector~kkmust be constant and the phase planes
are given by

~kk �~rr ¼ const: ð17-29Þ

which are just the Hessian normal form of a plane with normal vector~kk.

Figure 17-3: The plane wave.

As was shown in chapter 17.2.3, both the electric and the magnetic field vector are
situated perpendicular to the propagationdirection and perpendicular to each other (fig-

9



17 The Wave Equation

ure 17-4). Following eq. (17-20), themagnetic field vector is further perpendicular to the
electrical field vector in isotropic media. The wave is transversal and~EE, ~HH and~kk form a
right-handed coordinate system. For the considered homogeneous, isotropical, non-
conducting medium, the electric and magnetic fields are in phase and their ampli-
tudes are related by

Hj j ¼
ffiffiffiffiffiffiffiffiffi
ere0
lrl0

r

Ej j ¼ nZ0 Ej j : ð17-30Þ

Z0 is the free-space impedance

Z0 ¼
ffiffiffiffiffi
e0
l0

r

¼ 377X : ð17-31Þ

Figure 17-4: ~EE, ~HH and ~kk of a linearly polarized, plane electromag-

netic wave in an isotropic, non-conducting medium.

It should be noted that the complex notation is preferable for the linear system theory
description, e.g., in Fourier optics. Linear system theory becomes simplified by the ap-
plication of multiplicative operators. Multiplicative operators are considerably less com-
plicated in complex notation. In particular, a phase effect can simply be considered by a
multiplication in complex notation. However, it should not be forgotten that only the
real part is physically real. After separation of the time-dependent part, one obtains
for the stationary solution of the Helmholtz equation for each vector component:

U x; y; zð Þ ¼ A � cos kxx þ kyyþ kzz
	 


¼ A � cos ~kk �~rr
� �

: ð17-32Þ

Figure 17-5 illustrates two examples of plane waves in the x-z-plane (with ky= 0).

U x; zð Þ~ cos n
2p

k
z

� �

U x; zð Þ~ cos n
2p

k
x sinaþ z cosað Þ

� �

Figure 17-5: Plane waves and wave vectors in the x-z plane as stationary

solutions of the Helmholtz equation.
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17.3.2

Spherical Wave

In polar coordinates, the scalar wave equation can be written with the Laplace opera-
tor as

DU ¼ 1

r

d2

dr2
rUð Þ ð17-33Þ

and the wave equation in polar coordinates is then obtained as

d2 rUð Þ
dr2

þ k2rU ¼ 0 : ð17-34Þ

The elementary solutions of eq. (17-34) are given by spherical waves. The spherical
wave has spherical equi-phase surfaces. It is scalar, obeying the formula

Uðr; tÞ ¼ eiðkr�xtÞ

r
: ð17-35Þ

With the radius r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
and the propagation constant k = |~kk| . Figure 17-6

illustrates a spherical wave.

Figure 17-6: Illustration of a spherical wave.

17.3.3

Dipole Wave

A dipole wave is emitted by a dipole with an oscillating dipole moment ~pp. The
radiated electric field is

~EE ¼ k2
~rr ·~ppð Þ ·~rr

r2
þ 3~rr ~rr �~ppð Þ

r2
�~pp

� �
1

r2
� ik

r

� �� �
eikr

r
: ð17-36Þ

11



17 The Wave Equation

The vector potential ~AA of a single radiating dipole in the origin, oscillating harmoni-
cally with frequency x is given by

~AAðrÞ ¼ l0

4p
~jjx

eikr

r
¼ � ixl0

4p

eikr

r
~pp : ð17-37Þ

Resulting in an electromagnetic field of

~HHð~rrÞ ¼ 1

l0

� ·~AAðrÞ ¼ � ix

4p
� ·

eikr

r
~pp ;

~EEðrÞ ¼ i

xe0
� · ~HHðrÞ ¼ 1

4pe0
� · � ·

eikr

r
~pp

� �

:

ð17-38Þ

A lengthy but straightforward calculation yields the dipole field in spherical coordi-
nates (see figure 17-7 for coordinates).

Figure 17-7 Spherical coordinates for dipole field.

Er ¼
2p

4pe0
k30e

ik0r
1

k0rð Þ3
� i

k0rð Þ2

 !

cos W ;

EW ¼
p

4pe0
k30e

ik0r
1

k0rð Þ3
� i

k0rð Þ2
� 1

k0r

 !

sin W ;

Hj ¼ � icp

4p
k30e

ik0r
1

k0rð Þ2
� i

k0r

 !

sin W ;

Ej ¼ Hr ¼ HW ¼ 0 :

ð17-39Þ

The radiation field separates into three zones:

. A near field, with an amplitude proportional to 1/r3.

. An intermediate field, with an amplitude proportional to 1/r2.

. A radiation field, with an amplitude proportional to 1/r1.

The far field intensity becomes

I ~ Efar
W









2

¼ p2k40
16p2e20

sin 2W

r2
: ð17-40Þ

yielding doughnut-shaped radiation characteristics as depicted in figure 17-8.

12
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Figure 17-8: Far field radiation characteristic of a dipole.

17.3.4

Radiated Field of a Harmonic Current Distribution

Solutions of the Maxwell equations for time-dependent charge and current distribu-
tions are the retarded potentials [17-4]. For a harmonic current distribution and van-
ishing charge distribution

~jjð~rr; tÞ ¼~jjð~rrÞe�ixt;

rð~rr; tÞ ¼ 0 :
ð17-41Þ

The electromagnetic potentials become

Uð~rr; tÞ ¼ 0;

~AAð~rr; tÞ ¼ lo

4p

RRR

V

~jjð~rr ¢Þ eik~rr�~rr ¢j j

~rr �~rr ¢j jd
3~rr ¢e�ixt :

ð17-42Þ

Computing the electric field from the electromagnetic potentials from

~EE ¼ � ¶~AA

¶t
� �U ð17-43Þ

gives the result, for U = 0 and harmonic currents, as

~EEð~rrÞ ¼ ixlo

4p

RRR

V

~jjð~rr ¢Þ eik~rr�~rr ¢j j

~rr �~rr ¢j jd
3~rr ¢: ð17-44Þ

17.3.5

A Note on Plane and Spherical Waves

As will be discussed in more detail in chapter 18, non-vanishing solutions of the
wave equation need real light sources, which are not at infinity. Real light sources
may further only emit a limited amount of energy. These necessary conditions for
real solutions of the wave equation are summarized in the Sommerfeld conditions:

13
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lim
rfi¥

r
¶U

¶r
þ ikU

� �

¼ 0;

lim
rfi¥

U ¼ 0 :
ð17-45Þ

A consequence of the Sommerfeld condition is the uniqueness law: two solutions
of the wave equation, which obey the Sommerfeld condition and have identical sin-
gularities, such as sources and sinks, are necessarily identical. According to the
Sommerfeld condition, an everywhere regular solution of the wave equation is only
given by U = 0.

Elementary solutions of the wave equation are thus only emitting spherical waves
exp ikrð Þ=r, but, for example, not sin krð Þ=r. In particular, plane waves do not obey
the Sommerfeld condition. Nevertheless, it is allowed and often advantageous to
expand the solution in a series expansion of plane waves with different propagation
angles (see section 17.5).

17.4

Energy, Irradiance and Intensity

Adding Maxwell’s equations (17-1) after scalar multiplication with~EE or ~HH, and using
the vector identity

~HH � ~�� ·~EE
� �

�~EE � ~�� · ~HH
� �

¼ ~�� � ~EE · ~HH
� �

ð17-46Þ

we obtain

~�� � ~EE · ~HH
� �

¼ �~jj �~EE � ~EE � ¶
¶t
~DDþ ~HH � ¶

¶t
~BB

� �

: ð17-47Þ

The last term on the right-hand side can be interpreted as the time derivative of the
energy density r, to which the electric and magnetic fields contribute:

r ¼ rE þ rH; ð17-48Þ

The energy densities of the electric and magnetic field are consequently given by

rE ¼ 1

2
~EE � ~DD ¼ 1

2
e0er~EE

2; ½rH ¼ 1

2
~HH �~BB ¼ 1

2
l0lr

~HH2; ð17-49Þ

in units of J/m3 = Ws/m3. After introduction of the Poynting vector~SS with

~SS ¼ ~EE · ~HH ; ð17-50Þ

the continuity equation for electromagnetic fields is finally obtained:
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~�� �~SS ¼ �~jj �~EE � ¶

¶t
r : ð17-51Þ

Integration over an arbitrary volume V with surface R and the application of the
Gauss theorem yields

H

R

~SS � d~aa ¼ � R
V

~jj �~EEdV � d

dt

R

V

rdV ¼ � R
V

~jj �~EEdV � d

dt
W: ð17-52Þ

The first term on the right-hand side represents the total dissipated power within
the volume V, with electric currents as sources. The second term represents the
change over time of the complete electromagnetic energy W inside a volume V. The
left-hand side of eq. (17-52) thus represents the total power flow through the bound-
ary R of volume V. Since the time frequency of electromagnetic light waves is usually
too high to be resolved by detectors, the power of the electromagnetic wave propagat-
ing through a surface R is given by the average rate of the energy flow [17-5]

U ¼ R

R

~SS � d~aa
* +

: ð17-53Þ

The power U is also called radiant flux. The radiant flux in physical units of Watts
[W] is frequently given in physiological units – as luminous flux – in lumen [lm]. In
source-free media (~jj ¼ 0), the right-hand side of eq. (17-52) vanishes. Thus the radi-
ant flux through a closed surface and any closed surface integral over the time-aver-
aged Poynting vector must vanish. The Poynting vector ~SS introduced above, thus
represents the flux density of energy per second and unit area. According to the
definitions of radiometry, the time average of the Poynting vector therefore corre-
sponds to the irradiance or flux density I of a surface element perpendicular to the
Poynting vector:

I ¼ dU

d~aa









 ¼ ~SSðr; tÞ









D E

: ð17-54Þ

The irradiance I is given in physical units W/cm2 or, in physiological units as illumi-
nance in lux [lx] or footcandle [ ft-c]. After insertion the continuity equation for
source-free media is obtained:

R

R

~SS
D E

� d~aa ¼ R
R

I~ss � d~aa ¼ 1

n

R

R

I~pp � d~aa ¼ 0 : ð17-55Þ

The right-hand side term in eq. (17-55) has a formal analogy to the continuity equa-
tion of mechanics with the direction cosine vector ~pp interpreted as velocity and the
irradiance I as flux density.

For a plane wave in an isotropic medium the propagation direction of the wave~kk
and the direction of the energy flow~SS are parallel to each other and perpendicular to

15



17 The Wave Equation

the fields ~EE and ~HH (figure 17-2 and 17-9). The Poynting vector, after insertion of eq.
(17-20) into eq. (17-50), becomes

~SS ¼ ~EE · ~HH ¼ 1

xlrl0

~EE








2
~kk ¼

ffiffiffiffiffiffiffiffiffi
e0er
l0lr

r

~EE








2

~ss ¼ c

n
� r �~ss : ð17-56Þ

Figure 17-9: The energy in the sketched pile flows per second through 1 m2.

In Figure 17-9 the energy flow of a plane wave through a unit surface of 1m2 per-
pendicular to its propagation vector~kk is illustrated. For a plane wave the energy flow
per second through the surface is given by the total electromagnetic power W in a
volume of 1m2 cross-section and length L ¼ c � 1s. In general, the volume can be
considered as a light tube. Through the sidewalls, parallel to the wavefront normal~ss,
the power flow vanishes.

Considering that the mean value of the cos2 function is 0.5, we obtain the irradi-
ance on a surface perpendicular to the wave vector for non-magnetic media:

I ¼ U

1m2
¼ ~SSðr; tÞ









D E

¼ 1

2

ffiffiffiffiffiffiffiffiffi
e0er
l0lr

r

~EE0









2

¼ 1

2
nZ0E

2
0 ð17-57Þ

with the free space impedance Z0 (eq. (17-31)). As a consequence of (17-57), the irra-
diance of an electromagnetic wave is not proportional to the squared electric field
alone. It is proportional to the refractive index multiplied by this value. Accordingly
we get the irradiance of a scalar wave as

IðrÞ ¼ 1

2
n UðrÞj j2: ð17-58Þ

A note of caution: the irradiance, proportional to the time average of the squared
amplitude of the electrical field, has traditionally been called the intensity – as it will
also be called in this volume. Care has to be taken not to confuse it with the radiant
intensity, which is given by the power flux per solid angle dU/dX (see volume 1,
chapter 6). Furthermore, it should be noted that the energy flow density is not
usually perpendicular to the surface under consideration. Obliquity factors, accord-
ing to the projection of the direction cosine on the surface normal (eq. 17-55), have
to be considered in order to compute the flow of energy through the surface.
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17.5 The Angular Spectrum

17.5

The Angular Spectrum

17.5.1

Spatial Frequency Representation

Plane waves are the elementary solutions of the wave equation:

Uðx; y; zÞ ¼ Aðx; y; zÞ � e–i kxxþkyyþ kzzð Þ: ð17-59Þ

For propagating solutions, the length of the wave vectors is given by the Ewald equa-
tion:

kj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2x þ k2y þ k2z

q

¼ n � 2p
k
: ð17-60Þ

Since both the Maxwell and the wave equation are linear, every propagating solution
of the wave equation can be represented by a superposition of elementary solutions.
Any monochromatic electromagnetic field component can therefore be represented
as a superposition of plane waves. The complex amplitude of the �angular spectrum’
or �plane wave spectrum’ is obtained from a Fourier transform of the field. For this
representation, however, a representation in spatial frequencies is more convenient.
The spatial frequency vector is proportional to the wave vector. It is defined by

2p~mm ¼~kk : ð17-61Þ

The spatial frequency spectrum representation of a stationary field distribution can
thus be written as a three-dimensional Fourier integral:

U x; y; zð Þ ¼ R¥

�¥

R¥

�¥

R¥

�¥

u mx; my; mz
	 


e2pi xmxþymyþzmzð Þdmxdmydmz : ð17-62Þ

A plane wave can now be described in the spatial domain by its spatial periodical
field distribution with

Uðx; y; zÞ ¼ A � ei2p mxxþmyyþ mzzð Þ: ð17-63Þ

Considering an instantaneous shot of the wave field at the time t= t0, wave peaks
and troughs can be observed (figure 17-10).

After application of the differentiation rule of Fourier theory

F DU xð Þf g ¼ � 2pmð Þ2u mð Þ ð17-64Þ
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Figure 17-10: Plane wave in space and frequency domain.

the Ewald equation (17-60) can now be identified as the Helmholtz equation in the
frequency domain. Since in monochromatic fields the length of the frequency vector
is limited by the Ewald equation (17-60), the frequency spectrum is limited to a
sphere in the frequency domain, the so-called Ewald sphere (figure 17-10, right-
hand side). Due to the fact that the frequency vector is of length 1/k , any frequency-
vector component can be expressed by the two others. In particular, the z compo-
nent of the spatial frequency vector can be represented by

mz ¼ –

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n

k

� �2

�m2x � m2y

r

: ð17-65Þ

It should be noted that as well as propagating plane waves, in general, solutions of
the wave equation are also given by evanescent waves (from the latin evanescare, to
diminish), e.g.,

U x; y; zð Þ ¼ A � ei kxxþkyyð Þ � e�vz : ð17-66Þ

Evanescent waves will be described in more detail in the next paragraph. Here it is
to be noted that evanescent waves are given by frequencies not fulfilling the Ewald
equation, i.e., imaginary solutions of the mz-components according eq. (17-65):

v ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2x þ k2y �
2p � n
k

� �2
s

: ð17-67Þ

Evanescent fields are thus damped in the z direction and the range of evanescent
fields is limited to small distances. Since only the propagating frequencies, accord-
ing to eq. (17-65), will be present in free space far apart from diffracting apertures
and sources, then eq. (17-65) allows for an interpretation of the Ewald sphere as the
transfer function of free space. For those who are used to visual interpretations of
physical phenomena, the Ewald sphere thus offers a powerful tool for the illustra-
tion of optical phenomena. Several examples will be given throughout this volume.

The wave vector~kk and the spatial frequency vector ~mm differ only by a factor of 2p
and are therefore used synonymously. However, the Fourier integral for a represen-
tation with wave vectors~kk will differ from eq. (17-62) therefore by a factor of (1/2p)3.

18



17.5 The Angular Spectrum

The wave vector~kk of wave optics represents the normal vector, perpendicular to the
wavefronts of constant phase j with j ¼~kk �~rr ¼ 2p~mm �~rr. The wave vector is therefore
parallel to the tangent vector~ss at a light ray and is thus parallel to the optical direc-
tion cosine vector ~pp= (p,q,m). The frequency vector is proportional to the direction
cosine, too:

k~mm ¼~pp ¼ n~ss ¼ ~��W ð17-68Þ

with refractive index n, the tangential vector to the light ray~ss and the wavefront W.
Equation (17-68) is equivalent to the well known Eikonal equation. The transition to
geometrical optics is discussed in more detail in section 17.7.1.

17.5.2

Transformation of the Three-dimensional Spectrum into Two Dimensions

According eq. (17-65), the frequency spectrum is restricted to the surface of a sphere
and the volume integration (17-62) can be reduced to a surface integral. To perform
the correct transition to the two-dimensional spectrum representation, eq. (17-62) is
written in spherical coordinates. With

mx ¼ r cosW sina ; ð17-69aÞ

my ¼ r sin W sina ; ð17-69bÞ

mz ¼ r cosa ; ð17-69cÞ

the Jacobi determinant is written as J ¼ r2 sina and is

U x; y; zð Þ ¼ R
2p

0

R2p

0

R¥

0

u3D r; W;að Þ e2pir x cos Wþy sin Wð Þ sinaþz cosa½ �r2 sina drdWda : ð17-70Þ

Applying the Ewald equation r= n/k in spherical coordinates, and after integration
over r we obtain:

U x; y; zð Þ ¼ R
2p

0

R2p

0

R¥

0

u3D r; W;að Þ e2pir x cosWþy sin Wð Þ sinaþz cosa½ �d r� n

k

� �

r2 sina drdWda

¼ n

k

� �2 R2p

0

R2p

0

u3D

n

k
; W;a

� �

e2pi�
n
k
� x cos Wþy sin Wð Þ sinaþz cosa½ � sina dWda : ð17-71Þ

For convenience and ease of computation, a spectrum representation in cartesian
coordinates is preferable. With dmxdmy = cosa sina da dW it follows that

U x; y; z1ð Þ ¼ R¥

�¥

R¥

�¥

u2D mx; my; z0
	 


e
2pi xmxþymy–dz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n
kð Þ2�m2x�m2y

q� �

dmxdmy ð17-72Þ
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with

u3D mx; my;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n

k

� �2

�m2x � m2y

r !

¼ u2D mx; my
	 


� cosa: ð17-73Þ

The 2D-spectrum u2D(mx,my; z0) of a monochromatic field U(x,y; z0) in the plane z1 is
thus given by a phase modulation from the spectrum in the plane z0. The phase
corresponds to the shift phase according to the shift theorem.

For transformation of the transverse spectrum u2D(mx,my) to three dimensions a
cosine factor has to be considered. A homogeneous illumination u2D(mx,my) = con-
stant of the transverse pupil by a Lambertian source leads to a dampened amplitude
u3D(mx,my,mz) ~ cosa, while a homogeneous amplitude on the Ewald sphere, corre-
sponding to, e.g., a spherical wave, leads to an amplitude distribution u2D ~ 1/cosa
increasing with the aperture angle a.

17.5.3

Free-space Propagation of Transverse Fields

Equation (17-72) is obtained by the three-dimensional spectrum representation after
integration over the delta-function according (17-65) with consideration of proper
integration constants [17-1]. With

U x; y; zð Þ ¼
R¥

�¥

R¥

�¥

R¥

�¥

u3D mx; my; mz
	 


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n
k

	 
2�m2x � m2y

q e2pi xmxþymyþzmzð Þd mz–

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n

k

� �2

�m2x � m2y

r !

dmxdmydmz ð17-74Þ

the transverse frequency spectrum u2D(mx,my) is given by projection of the 3D spec-
trum onto the transverse frequency plane perpendicular to the mz-axis. Figure 17-11
illustrates the change from 3D- to 2D spectrum representation.

Figure 17-11: “Free-space propagation” of a plane wave.

In some textbooks eq. (17-72) is described as the free space propagation equation
for electromagnetic fields [17-6], [17-7]. However, the �propagation’ of a plane wave
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is given by the time dependency e–ixt. Nevertheless, it is often advantageous to con-
sider only transverse fields U(x,y) with its spectra u(mx,my). In a stationary description
the phase term in eq. (17-72) then describes the phase relation between different
points spaced apart in an infinitely extended field. As illustrated in figure 17-12, the
phase difference between two points with axial distance dz is given by

eij ¼ ei
2p
k
dz�n� cosa ¼ ei2pdz�mz ¼ e

i2pdz�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n
kð Þ

2
�m2x�m2y

q

¼ h mx; my; dz
	 


: ð17-75Þ

Figure 17-12: “Free-space propagation” of a plane

wave.

The frequency spectrum in a plane z1 = z0 + dz is thus given by the frequency spec-
trum in plane z0 multiplied by the phase function (17-75):

u mx; my; z1
	 


¼ u mx; my; z0
	 


e2pidzmz ¼ h mx; my; dz
	 


� u mx; my; z0
	 


: ð17-76Þ

Multiplication in the frequency domain corresponds to a convolution in the space
domain, thus the Fourier transform of the phase function h(mx,my ; z) can be inter-
preted as the free space transmission function:

U x; y; z1ð Þ ¼ H x; y; dzð Þ �U x; y; z0ð Þ ð17-77Þ

with

H x; y; dzð Þ ¼ R¥

�¥

R¥

�¥

h mx; my; dz
	 


e2pi xmxþymyð Þdmxdmy : ð17-78Þ

For small propagation angles, the free-space transfer function may be expanded by
expansion of the hyperbolic phase into

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� k
2
m2x þ m2y

� �
r

¼ 1� k
2

2
m2x þ m2y

� �

� ::: ð17-79Þ

and the parabolic or Fresnel approximation of the transfer function can be given
analytically as:

HP x; y; zð Þ ¼ ei
2p
k
z R

¥

�¥

R¥

�¥

e�ipkz m2xþm2yð Þe2pi xmxþymyð Þdmxdmy ¼
1

ikz
ei
2p
k
zei

p
kz

x2þy2ð Þ: ð17-80Þ
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After insertion into eq. (17-77), the Fresnel integral is obtained:

UP x; y; zð Þ ¼ 1

ikz
e
2p
k
i zþ 1

2z x2þy2ð Þ½ � R¥

�¥

R¥

�¥

U x0; y0; 0ð Þ e pkzi x2
0
þy2

0ð Þ e�2p
kz

i xx0þyy0ð Þ dx0dy0 : ð17-81Þ

Due to the increasing power of modern computers, the Fresnel approximation is of
less importance. For large distances, when z >> D2/k where D is the lateral exten-
sion of the field under consideration, the first phase term of eq. (17-81) can be
neglected and the far-field or Fraunhofer approximation is obtained:

uF x; y; zð Þ ¼ C
R¥

�¥

R¥

�¥

u x0; y0; 0ð Þ e�2pi x
kz
x0þ

y
kz
y0ð Þ dx0dy0 : ð17-82Þ

According to the Fraunhofer approximation, at large distances the field distribution
is given by the transverse spectrum of the field distribution. Further details on
approximate solutions to the wave equation and to diffraction equations will be
given in section 17.7 and chapter 18.

17.5.4

Periodic Fields with Discrete Spectra

A transversally periodic wave field, as obtained, e.g., behind a periodic diffraction
grating, is also periodic in z. This effect is called the Talbot effect after its discoverer
[17-8]. A periodic field amplitude with period d is described by a discrete spatial fre-
quency spectrum:

uðx; z ¼ 0Þ ¼
X

m

am � ei2p m
d
�x : ð17-83Þ

A discrete spectrum in mx is also discrete in mz. For small frequencies the longitudi-
nal frequency gap Dmz between mx = 0 and the transverse frequency mx=m/d can be
approximated by

Dmz ¼
n

k
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n

k

� �2

� m

d

� �2
r

»
1

2

k

n

m

d

� �2

: ð17-84Þ

With m = 1, the longitudinal or Talbot period zT of the wave amplitude is thus given
by

zT ¼ 2
d2

k
: ð17-85Þ

However, as illustrated in figure 17-13, the longitudinal periodicity of a transver-
sally periodic wave field is superposed by higher orders of the discrete spectrum,
which give rise to different Talbot periods. The spatial frequency spectrum of a wave
field strictly periodic in z, must therefore be discrete and equidistant in mz [17-9].
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17.5 The Angular Spectrum

Figure 17-13: Talbot effect: a transversally periodic field is also longitudinally

periodic due to discrete spectrum in mx and mz.

17.5.5

Boundary Conditions and the Spatial Frequency Spectrum

The spatial frequency representation is frequently applied to the solution of diffrac-
tion problems. The simplest case is given by a planar interface of two media with
different refractive index. Since in general the electric field and its derivative have to
be continuous everywhere in space, the transverse spatial frequencies of the fields
on both sides of an interface must also be identical. The spectrum representations
allow for a visual interpretation of the boundary conditions for electromagnetic
fields at interfaces.

However, the concept is far more general. Frequently the elementary solutions of
the wave equation of inhomogeneous or structured media can be calculated analyti-
cally or numerically, and are given by a series expansion. Those elementary solu-
tions are called the modes. In homogeneous media, the plane waves represent the
modes and there is a continuous spectrum of modes. In wave-guides, for example,
there are discrete modes. In periodic media, like diffraction gratings, solutions of
the wave equation are given by more complex modes. The solution of the diffraction
problem is often reduced to the problem of fitting the mode spectra of the fields in
the different regions. In the following, the simplest case at a planar interface will be
considered. For convenience, the interface normal vector ~NN is chosen parallel to the
z-direction. The transverse frequency spectrum has to be identical on both sides of
the interface:

mx ¼ px=k ¼ n sina=k ¼ const: ð17-86Þ

However, the radius of the Ewald sphere depends on the refractive index and thus
the propagation direction of the plane waves on both sides of the interface differ in
accordance with the difference of the refractive indices (figure 17-14, right-hand
side). The change of the spatial frequency vector is in the direction of the surface
normal and the transition equation for spatial frequencies is obtained [17-10] as:
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~mm1 �~mm0 ¼ c � ~NN ð17-87aÞ

with

c ¼ ~NN �~mm1 � ~NN �~mm0 : ð17-87bÞ

Figure 17-14: Frequency spectrum representation of boundary conditions

at an interface and Huygens construction in space domain.

Equations (17-86) and (17-87) turn out to be equivalent to Snell’s law of refraction,
which is frequently derived from Fermat’s principle for the minimum optical path
length. The derivation is illustrated on the left-hand side of figure 17-14. According
to the Huygens principle, two spherical waves are emitted at two points at the inter-
face separated by a distance L with a phase difference given by j= v0�t = c�t/n0. In
the medium with refractive index n1 the Huygens elementary spherical waves prop-
agate with phase velocity v1 = c/n1 and thus the following condition must be satis-
fied:

L ¼ v0 � t
sina0

¼ v1 � t
sina1

: ð17-88Þ

With t = T = 2p/x Snell’s law follows directly from eq. (17-88).
While the radius of the Ewald sphere is proportional to the refractive index n, the

radius of the Huygens elementary spherical wave is proportional to 1/n (figure 17-
14, left-hand side). The Ewald sphere in the frequency domain and the Huygens
spherical wave in the space domain thus scale inversely with the refractive index.
This corresponds to the principle of reciprocity.

17.5.6

Vector Field Representation by Spatial Frequencies

So far only the spatial frequency spectrum of scalar fields has been considered. Here
the vector effects only are outlined, a detailed treatment of the vector effects is given
in chapter 27.

The spectrum representation in three dimensions illustrates that, for each trans-
verse spatial frequency, the propagation direction is given by the Ewald equation.
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Since the electric field vector is transverse to the propagation vector, vector effects
cannot be neglected when considering the vector characteristic of the electromag-
netic field. In general it has to be considered, that

. the vector components of the spatial frequency spectrum are coupled;

. considering only one vector component, not all frequencies on the Ewald
sphere are allowed solutions.

Figure 17-15: Vector representation of parallel (p) and perpendicular (s) polarization components.

Figure 17-16: Magnitude of free-space transfer function for vector fields.

Note that ex and ey have identical shape but they are rotated by 90�.
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17 The Wave Equation

In general, the free-space transfer function of the vector components of the elec-
tromagnetic field has to be multiplied by an additional damping function. In the x-z
plane, for example, the Ex-component is damped by a factor ~cosa, while the
Ez-component is damped by a factor ~sina (Figure 17-15 left-hand side). Only the
transverse component Ey is independent of the propagation angle. In general it fol-
lows in isotropic media that

ex � sina cosjþ ey � sina sinjþ ez � cosa ¼ 0 ð17-89Þ

with the polar angle j. The free-space vector transfer function is therefore propor-
tional to

ex ¼ cosa sinj ; ð17-90aÞ

ey ¼ cosa cosj ; ð17-90bÞ

ez ¼ sina : ð17-90cÞ

17.6

Evanescent Waves

So far only propagating solutions of the wave equation have been considered. In
general, solutions of the stationary wave equation are written with a complex propa-
gation vector as

Uðx; y; zÞ ¼ A � ei kxxþkyyþ kzzð Þ ð17-91Þ

with propagating solutions given by

kz ¼ –

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2p � n
k

� �2

�k2x � k2y

s

ð17-92Þ

and non-propagating solutions as

kz ¼ –i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2p � n
k

� �2

�k2x � k2y

s

: ð17-93Þ

After introduction of the real damping constant v for the complex propagation vec-
tor component kz with

v ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2x þ k2y �
2p � n
k

� �2
s

; ð17-94Þ

the damped solution of the wave equation can be written as
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17.6 Evanescent Waves

U x; y; zð Þ ¼ A � ei kxxþkyyð Þ � e�vz : ð17-95Þ

As will be shown in chapter 18, evanescent waves play an important role in diffrac-
tion. However, evanescent waves have a very limited range and can therefore be
neglected in most applications of optical imaging. Evanescent waves, however, may
occur also at the refraction at an interface from larger refractive index n1 to lower
refractive index n2 (total reflection, see figure 17-17). Beyond the so-called critical
angle ag given by

sinag ¼
n2

n1

ð17-96Þ

no propagating spatial frequency spectrum components exist in the medium with the
lower refractive index. The boundary conditions require a continuous field in theweaker
medium. Since the spatial frequency is larger than the allowed wavelength, the wave
cannot get away from the boundary and so propagate into themedium.

Figure 17-17: Evanescent fields at total reflection.

The range of the evanescent field is given by the inverse of the damping factor v .
The damping factor according to eq. (17-94) is shown in figure 17-18.

Figure 17-18: Propagating spatial frequency and damping factor for different

angles of incidence for the example of refraction at an interface (n1 = 1.5, n2 = 1.0).
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17.7

Approximative Solutions to the Wave Equation

17.7.1

Geometrical Optics and the Eikonal Equation

If the complex field amplitude U is separated into amplitude A(x,y) and phase func-
tionW(x,y) by

Uðx; yÞ ¼ Aðx; yÞ � eik0Wðx;yÞ ð17-97Þ

one obtains after insertion into the Helmholtz equation (17-17)

DU þ k2U ¼ DA � eik0W þ A � Deik0W þ 2~��A � ~��eik0W þ k2A � eik0W

¼ DAþ ik0A � DW � k20A � ~��W
� �2

þ2ik0~��A � ~��W þ k2A

� �

� eik0W ¼ 0;
ð17-98Þ

having used the equations

~��eikW ¼ ik~��WeikW ; ð17-99aÞ

DeikW ¼ ikDWeikW � k2 ~��W
� �2

eikW : ð17-99bÞ

Both the real and imaginary parts of eq. (17-98) have to vanish separately, thus it
follows that

DA� k20A � ~��W
� �2

þ k2 � A ¼ 0 ; ð17-100Þ

A � DW þ 2~��A � ~��W ¼ 0 : ð17-101Þ

If rapid variations of the amplitude, A, can be neglected, i.e.,

DA << k2 � A ð17-102Þ

the Eikonal equation is obtained from the real part (17-100):

~��W
� �2

¼ n2 : ð17-103Þ

From the imaginary part of the solution of the wave equation (17-101), the continu-
ity equation for the irradiance is derived. After multiplication of eq. (17-101) by
the amplitude A, one obtains for the irradiance (or intensity) I =A2 in analogy with
eq. (17-55)

I � DW þ ~��I � ~��W ¼ ~�� I � ~��W
� �

¼ ~�� I �~ppð Þ ¼ H
R

I~pp � d~aa ¼ 0; ð17-104Þ
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with the optical direction cosine~pp (eq. (17-68)) and the integral over the closed sur-
face R with surface elements d~aa. By the continuity of irradiance, the integral of the
irradiance I times the direction cosine vector over any closed surface R must vanish
and so energy is conserved.

The Eikonal equation is the fundamental equation for a geometrical-optical
description. As a consequence, the surfaces of constant phase can be interpreted as
wavefronts with geometrical-optical light-rays travelling normal to them. Therefore
the Eikonal equation can be written as a vector equation

~��W ¼ n~ss ¼~pp ð17-105Þ

with the wavefront normal~ss as a tangent vector to the light ray and the optical direc-
tion cosine vector~pp. In the slowly-varying amplitude approximation any wave can be
interpreted locally as a plane wave travelling along the normal direction to the local
wavefront, given by ~��W. After series expansion of the phase function in the neigh-
bourhood of a point r0 by

W ¼ W0 þ r0
¶W

¶r





r0

þ::: ð17-106Þ

one obtains, after insertion into (17-97)

U ~rrð Þ ¼ A ~rr0ð Þeik0 W0þ~rr0 �~pp0ð Þ; ð17-107Þ

which is a plane wave of phase W0 with wave vector~kk ¼ k0~pp. By a reverse argument,
single rays are often interpreted as plane waves.

The restriction to slowly-varying amplitude A is in many cases insignificant. Only
due to interference caused by the superposition of several waves may the amplitude
vary significantly over a wavelength and eq. (17-102) is no longer applicable. There-
fore the slowly-varying amplitude approximation breaks down in focal regions. It
has to be noted that this restriction does not apply to the geometrical-optical descrip-
tion. In regions of interference it is only the transition from wave optics to geomet-
rical optics, and vice versa, that is more complicated. For the derivation of the geo-
metrical-optical light rays from the complex amplitude of an interference pattern of
two waves, for example, the complex amplitude is practically described by two phase
functions W1(x,y) and W2(x,y) instead of one and equation (17-103) may be applied
to the phase functions W1 and W2 separately. More details on the transition between
wave optics and geometrical optics will be given in chapter 20.

17.7.2

Paraxial Wave Equation

For small propagation angles a with respect to the z-axis, the fast variation with the
coordinate z is separated by the factorization of the complex amplitude by

U x; y; zð Þ ¼ A � ei kxxþkyyð Þ � eikzz ¼ V x; y; zð Þ � eikzz: ð17-108Þ
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Insertion into the Helmholtz equation (17-17) gives:

DU þ k2U ¼ DV � eikzz þ V � ¶
2

¶z2
eikzz þ 2 � ¶

¶z
V � ¶

¶z
eikzz þ k2 � V � eikzz

¼ DV � k2z � V þ 2ikz �
¶V

¶z
þ k2 � V

� �

� eikzz ¼ 0 :

ð17-109Þ

In the slowly-varying envelope limit, k2x and k2y can be neglected and ~kk » kz. If the
remaining z-dependence of the amplitude distribution V is weak, the second deriva-
tive of V can be neglected:

¶
2
V

¶ z2









 << k � ¶V

¶ z









 : ð17-110Þ

As a result the paraxial wave equation is obtained:

D?V þ 2ik
¶

¶ z
V ¼ 0 ð17-111Þ

with the transverse Laplace operator D? given by

D? ¼ ¶
2

¶x2
þ ¶

2

¶y2
: ð17-112Þ

The paraxial wave equation (17-111) is also called the slowly-varying envelope approxi-
mation (SVE) of thewave equation [17-11]. Since kz = 2p/k cosa , the scope of the SVE is
equivalent to the scope of the approximation of cos a by 1. Allowing for a maximum
error of 10%, the propagation angle should not exceed » 25�.

17.7.3

Transport of Intensity

The variation of the intensity with the z-coordinate is given by

¶I

¶z
¼ ¶VV �

¶z
¼ V

¶V �

¶z
þ V � ¶V

¶z
¼ 1

2ik
VD?V

� � V�D?Vð Þ ð17-113Þ

where the last equality holds from eq. (17-111). After insertion of the separation of
the complex field amplitude V in amplitude A and phase W by

V x; y; zð Þ ¼ A x; y; zð Þ � eikW ; ð17-114Þ

one obtains for the paraxial transport equation of intensity [17-12], [17-13]:
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¶I

¶z
¼ �I � D?W � ~��?I � ~��?W ¼ �~��? I � ~��?W

� �

ð17-115Þ

According to the paraxial transport of the intensity equation (TIE), the development
of the intensity with the propagation coordinate z depends on the transverse gradi-
ents of the intensity and the phase. The shape of the phase surface, especially the
gradient, which determines the normal to the wavefront, influences the form of the
intensity profile at a distance z. Equation (17-115) offers a basis for the recovery of
the phase of the field from pure intensity information. In a discrete solution of the
phase retrieval problem, intensity information at several z-positions is required
[17-14], [17-15], [17-16], [17-17].

17.7.4

Gaussian Beams

The paraxial wave equation (17-107) has a special set of solutions, given by the
Hermite–Gaussian modes:

Un;m x; y; zð Þ ¼ A
w0

w zð Þ �Hn

ffiffiffi

2
p x

w zð Þ

� �

�Hm

ffiffiffi

2
p y

w zð Þ

� �

� e
�

x2þy2ð Þ
w zð Þ2

� e�i kz� mþnþ1ð Þ arctan z
z0ð Þþ p

kR zð Þ x2þy2ð Þ
h i

: ð17-116Þ

Here m is the order of the mode, w(z) is the beam radius, R is the radius of curva-
ture for the spherical phase surface. The propagation distance z0, at which the beam
radius w(z) increases by a factor of

ffiffiffi
2

p
with respect to the minimum beam radius

w0, is the so-called Rayleigh length or confocal parameter:

z0 ¼
pw2

0

k
: ð17-117Þ

Hm is the Hermite polynomial of degree m given by

Hn xð Þ ¼ �1ð Þnex2 dn

dxn
e�x2 : ð17-118Þ

Figure 17-19 illustrates the normalized Hermite–Gauss modes U(x,0,0) of order n,
m = 0 for n = 0...5 with w = 1. The order number n determines the number of nodes
of the mode. The Hermite–Gauss polynomials are usually applied to the description
of coherent laser modes [17-11].

31



17 The Wave Equation

Figure 17-19: Hermite–Gauss polynomial of order n = 0....5 with w= 1.

In the lowest order n = 0, the solutions of the paraxial wave equation are given by
the Gaussian mode. Gaussian beams allow for a simplified treatment of optical sys-
tems and are discussed therefore in more detail. From eq. (17-118) one obtains for
the Gaussian beam at the beam waist position in plane z = 0 (with R=¥):

U x; yð Þ ¼ A � exp � x2 þ y2ð Þ
w2

0

� �

: ð17-119Þ
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After Insertion of eq. (17-119) into the Fresnel diffraction integral (see chapter 18),
for the complex amplitude in the plane z we obtain

U x; y; zð Þ ¼ iAp

k

2w2
0

2zþ ikw2
0

� exp � x2 þ y2ð Þ
w2 zð Þ

� �

� exp �ik zþ x2 þ y2

2R zð Þ

� �� �

: ð17-120Þ

Figure 17-20 illustrates the amplitude of a Gaussian beam of order n = 0. The beam
has no exactly defined boundary.

Figure 17-20: Gaussian beam profile.

The transverse coordinate x =w(z) is defined as the beam radius. At its position
the complex amplitude drops to U0(w) =A/e, and the normalized intensity drops to
1/e2 = 0.135 relative to the centre of the profile for the basic mode (n =m = 0). It has
to be noted, that there is still a remarkable portion of the energy of the beam for
values r > w. The beam radius w is given by hyperbolic dependency on the propaga-
tion distance z

wðzÞ ¼ w0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 þ z

z0

� �2
s

ð17-121Þ

where the beam waist w0 is the smallest value of the beam radius at the beam waist
position (here z = 0). For small z, eq. (17-121) approximates to a parabola, whereas
for large z the asymptotic approximation holds:

wðzÞ~ kz

pw0

¼ w0

z0
� z ¼ tan h � z»NA � z ð17-122Þ

with the beam divergence angle h given by

h ¼ k

pw0

: ð17-123Þ
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In the region of the waist of length 2zo diffraction dominates, while in the asymptot-
ic approximation the geometric-optical approximation can be applied.

With eq. (17-122) the product of the beam waist and the beam divergence is pro-
portional to the wavelength. The phase of the field distribution is always spherical
due to the paraxial approximation, and its dependence on the propagation distance
z is given by

R zð Þ ¼ zþ z20
z

: ð17-124Þ

The content of eq. (17-124) is illustrated in Figure 17-21. At the beam waist position
the phase is constant, while far away from the waist the phase function is concentric
to the waist position. The minimum radius of curvature is attained at the Rayleigh
distance z0 with Rmin = 2z0.

Figure 17-21: Radius of curvature in dependence on the propagation distance z for z0 = 10.

Since a Gaussian beam is a solution of the wave equation, diffraction effects are
incorporated. The minimum beam radius at the beam waist is given by eq. (17-122)
with w0 » k /(p � NA). Furthermore, it is impossible to generate an ideal collimated
beam, since the Gaussian beam always has a finite divergence angle and diverges
under free space propagation. In total there are only two parameters defining the
form of the beam caustic, two of the four parameters w0, z0, k0 or h0 can be selected
arbitrarily. They are related by the equation

zo ¼ pw2
o

k
¼ w0

h0

¼ k0

p h 2
0

: ð17-125Þ

The intensity distribution of a Gaussian beam is given by

I x; y; zð Þ ¼ 2P

pw2
� exp � 2 x2 þ y2ð Þ

w2

� �

ð17-126Þ

with the total power P of the beam

34



17.7 Approximative Solutions to the Wave Equation

P ¼ R¥

0

IðrÞ 2p r dr ¼ p

2
I0 w

2: ð17-127Þ

In each plane z the transverse beam profile is again of Gaussian shape of width
w(z). The intensity profile on the z-axis with x= y = 0 is given by a Lorentz function:

Ið 0; z Þ ¼ 2P

p � w2
0

� 1

1 þ z� zT
z0

� �2 ð17-128Þ

Figure 17-22 illustrates the intensity distribution of a Gaussian beam through the
beam waist position. The transverse and longitudinal profiles of the beam are illus-
trated in figure 17-23.

Figure 17-22: Intensity distribution of a Gaussian beam at its waist position.

Figure 17-23: Transverse intensity profile (a) and longitudinal intensity profile (b) of aGaussian beam.
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The normalized encircled energy function of this beam profile is given by

EncE rð Þ ¼ 1

P

Rr

0

I r ¢ð Þ 2pr ¢ dr ¢ ¼ 1� e�2 r
wð Þ2 : ð17-129Þ

The encircled energy is illustrated in figure 17-24.

Figure 17-24: Encircled energy function of a Gaussian beam.

17.7.5

Ray Equivalent of Gaussian Beams

In a geometrical optical description using rays, Gaussian beams can be character-
ized by two rays, as illustrated in figure 17-25 [17-18], [17-19]. The first ray parallel to
the axis of symmetry of the Gaussian beam is called the waist ray, while the diver-
gence ray follows the asymptotic envelope of the Gaussian beam in the far field
(compare figure 17-20). From the ray data in an arbitrary plane, the beam parame-
ters can be calculated as follows;

wo ¼
xwr � tan h0 � xdr � tana

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan2h0 þ tan2a

p ; ð17-130Þ

z0 ¼
xdr � tanh0 þ xwr � tana

tan2h0 þ tan2a
: ð17-131Þ

The beam radius can be evaluated at a position z, with the help of the two ray inter-
section heights, by

w ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ h2
0

q

: ð17-132Þ
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Figure 17-25: Ray equivalent description of a Gaussian beam by the waist and the divergence ray.

17.7.6

Gaussian Beams in Two Dimensions

The solution of the paraxial wave equation, given by (17-116), is separated into two
orthogonal descriptions independent of each other. The general description of the
two-dimensional Gaussian beams is thus straightforward, however, the beam pa-
rameters in different directions might be different, and astigmatic and anamorpho-
tic Gaussian beams may be obtained. In the simplest case, the two sections are or-
thogonal to each other, without any coupling between them. Figure 17-26 illustrates
a beam of this kind for several different distances z, where the divergences and the
waist positions are different. The transverse cross-section shows a rotating elliptical
area of varying eccentricity. At two z-positions the cross-section of the beam ellipse
becomes circular. In general the phase surface is not plane at any z-position, i.e.,
even at the �waist’ positions the wavefront might be described by a plane wave.
There are two locations, however, where the phase is cylindrical, at all other z-loca-
tions the wavefront is given by a toroidal surface [17-20]. In more general astigmatic
beams the two sections are coupled and there is a twist term in the mode function.
Other types of generalized beams are:

1. decentred Gaussian beams [17-21],
2. non-paraxial Gaussian beams [17-22],
3. Gaussian beamswithmore general profile forms [17-23], [17-24],
4. Gaussian beams with more general phase surfaces [17-25].

These kinds of beams will be discussed in more detail in a later volume of this
book.
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Figure 17-26: Diagram of the Gaussian beam transfer for an elliptical cross section.
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18 Scalar Diffraction

18.1

Introduction

Diffraction denotes the deviation of light from rectilinear propagation that is not
due either to refraction or reflection (figure 18-1).

Figure 18-1: Diffraction of a scalar wave at a grating

(numerical simulation, plane wave incident from the top).

From the viewpoint of an optics designer, diffraction has two aspects. On one
hand it causes a diffraction-limited spot size and a finite resolution limit in optical
far-field imaging, while on the other hand it enables the production of compact “dif-
fractive” optics that permits, for example, the fast and convenient generation of
user-defined, aspherical wavefronts or the reconstruction of 3D lightfields by means
of holography.

There are several powerful methods used in the calculation of field transport and
propagation problems as numerical solutions to the wave equation. The optimal
choice of the algorithms depends on the special parameters of the task and therefore
cannot be decided in a general way. In the following table the most important meth-
ods are listed for comparison.

As will be discussed in section 27, the general diffraction problem is an electro-
magnetic one. The task is to find the resulting electromagnetic field for a given dis-
tribution of the permittivity e(r), the permeability l(r), or the conductivity r(r). The
present chapter presents scalar solutions where the vector character of light is
neglected. Classical scalar diffraction theory (according to Kirchhoff, Rayleigh–Som-
merfeld, Fresnel and Fraunhofer) does not solve a boundary condition problem but a
boundary value problem. Furthermore, the scalar Kirchhoff diffraction integral
solves an over-specified boundary value problem and leads frequently to inconsistent
results. Inconsistent means that the boundary values are not reproduced. The first
and second Rayleigh–Sommerfeld diffraction integrals are consistent but they are
limited to boundary values on a plane. The Fresnel and Fraunhofer diffraction inte-
grals are approximations for large distances and small diffraction angles. All these
methods, their prerequisites and limitations will be discussed in detail in this chap-
ter.

To end this introduction we give a brief outline of the subjects that are discussed
here in addition to classical scalar diffraction theory.
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18.1 Introduction

Basic principle Method Application

Mode expansion Plane wave expansion

(Fourier method)

Gaussian modes Laser beams

Spherical waves Scattering problems

Bessel beams Fibers, waveguides

Integral evaluation Kirchhoff

Fresnel, convolution

Fraunhofer, Fourier integral Far field

Rayleigh–Sommerfeld

Debye integral

Watson transform Cylinder geometry

Asymptotic solution of the

wave equation

Geometrical theory of diffraction

Uniform asymptotic theory

Stationary phase

Analytical methods Cylinder diffraction

Mie-scattering Scattering by spheres

Numerical solution of Maxwell’s

equations

Finite differences

Finite elements

Vector potential

Rigorous coupled waves

Imaging, simulation

Imaging, simulation

Imaging, simulation

Mathematically, scalar diffraction integrals are convolution integrals. They con-
volve the boundary values with an elemental excitation, the Huygens wavelet. In a
more depictive way Huygens principle considers each point of the wavefront as the
source of a Huygens wavelet. The interference of all wavelets produces the observed
diffraction pattern. According to the convolution theorem of Fourier Theory, there
exists a complementary description in terms of spatial frequencies: The convolution
with the Huygens wavelets corresponds to multiplication of the Fourier transform
of the boundary values by the Fourier transform of the wavelets. This leads naturally
to the angular spectrum formulation of diffraction in terms of plane waves. These
methods can be applied to aperture diffraction as well as to diffraction at phase
objects. Numerous examples of computations for scalar diffraction will be given.

The well-known Babinet principle describes the similarity of the Fraunhofer dif-
fraction patterns (apart from the central peak) behind complementary opaque obsta-
cles in which the transparent and opaque parts are reversed. It will be discussed as a
direct consequence of the linearity of the diffraction integrals. Following the far-field
version we will discuss its less well-known extension to near-field diffraction as well
as to diffraction at phase objects.

Based on the inclusion of a source term in the scalar wave equation, scattering
theory can be formulated in scalar terms. The angular spectrum of the scattered
field is given by the convolution of the incident angular spectrum with the three-
dimensional Fourier transform of the inhomogeneity. Multiple scattering can be
considered by the Born series expansion. A particularly nice feature of this theory is
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18 Scalar Diffraction

that the Born approximation is also applicable for the approximate treatment of
refraction, diffraction and scattering at surfaces.

In the theory of boundary diffraction waves, which is given at the end of this
chapter, diffraction fields are divided into two parts: an undisturbed geometrical
optics field and a boundary diffraction wave, originating from the rim of the diffract-
ing object. The boundary diffraction wave is also the central concept of the geomet-
rical diffraction theory of Keller (which becomes discontinuous at the shadow
boundary) and its successors: the uniform asymptotic theory and the uniform theory
of diffraction. The best-known example of a boundary diffraction wave is certainly
Sommerfeld’s exact solution of the diffraction by a perfectly conducting half-plane.

18.2

Kirchhoff Diffraction Integral

The Kirchhoff diffraction integral is a solution of the scalar, time-independent wave
equation (Helmholtz equation, cf. chapter 17) using Green’s relation [18-1]

H

S

U
¶G

¶~ss
�G

¶U

¶~ss

� �

dr ¼ � RRR
V

UDG� GDUð ÞdV ; ð18-1Þ

where V denotes an arbitrary closed volume with surface S,~ss is the inner normal
vector of this surface, U and G are functions that have a second continuous deriva-
tive in V and dr and dV are infinitesimal surface and volume elements, respectively.

If U and G both satisfy the free-space Helmholtz equation

DU þ k2U ¼ 0 ;

DGþ k2G ¼ 0 ;
ð18-2Þ

the volume integral is zero and we obtain

H

S

U
¶G

¶~ss
�G

¶U

¶~ss

� �

dr ¼ 0 : ð18-3Þ

Now consider G as an analogue to the “probe-charge” of electrostatic theory: A spher-
ical wave (the free-space Green’s function) that emanates from a point~rr inside the
volume V

G ¼ eik~rr�~rr ¢j j

~rr �~rr ¢j j : ð18-4Þ

Inserting it into Green’s relation we have to exclude the point of origin of the spher-
ical wave because there it becomes singular. To do this a small sphere is drawn
around~rr and Green’s relation is applied to the volume that remains (figure 18-2):
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18.2 Kirchhoff Diffraction Integral

Figure 18-2: Slice through the volume V in which

Green’s relation is applied. A small sphere around the

point of observation is excluded from the integration.

H

S

U
¶G

¶~ss
�G

¶U

¶~ss

� �

dr þ H
K

U
¶G

¶~ss
� G

¶U

¶~ss

� �

dr ¼ 0 ð18-5Þ

S is the outer surface of the volume and K is the surface of the recessed sphere.
The integral over the surface of the recessed sphere in the limit of vanishing

radius, provides a constant contribution

P ¼ �4pU : ð18-6Þ

To show this we write the limit of the integral as

P ¼ lim
Rfi0

H

K

U
¶G

¶~ss
�G

¶U

¶~ss

� �

dr ð18-7Þ

with

G ¼ eikR

R
: ð18-8Þ

The normal derivative of G on the surface K of the sphere is

¶G

¶~ss
¼ ~��G �~ss ¼ ik� 1

R

� �
eikR

R
: ð18-9Þ

According to (18.8) and (18.9) G and ¶G/¶s are constant on K. U is also constant (U
fi U(R = 0)) because for R fi 0 we have, in particular, R << k. This simplifies (18.7)
to

P ¼ lim
Rfi0

U
¶G

¶~ss
4pR2

� �

� lim
Rfi0

G
H

K

¶U

¶~ss
dr : ð18-10Þ

The second term is zero because with the stereo angle X (dr = R2dX) and U = const.
we obtain
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18 Scalar Diffraction

lim
Rfi0

G
H

K

¶U

¶~ss
dr ¼ lim

Rfi0

eikR

R

H

K

¶U

¶~ss
R2dX ¼ 0 : ð18-11Þ

This leaves the first term only in (18.10), which after inserting (18.9), becomes

P ¼ lim
Rfi0

U ik� 1

R

� �
eikR

R
4pR2

� �

¼ �4pU : ð18-12Þ

Eventually the Kirchhoff diffraction integral becomes

Uð~rrÞ ¼ 1

4p

H

S

Uð~rr ¢Þ ¶
¶~ss

eik~rr�~rr ¢j j

~rr �~rr ¢j j �
eik~rr�~rr ¢j j

~rr �~rr ¢j j
¶

¶~ss
Uð~rr ¢Þ

� �

dr : ð18-13Þ

This describes the complex amplitude of light inside a closed volume V as a func-
tion of the complex amplitude on its surface S.

It should be remembered that Green’s function G serves as a probing function
which originates from the point ~rr under consideration, inside the volume. In the
framework of Huygens principle its meaning can be reinterpreted. It now originates
from the surface point~rr ¢ and propagates to the observed point~rr. In this interpreta-
tion, Kirchhoff’s diffraction integral describes the interference of Huygens wavelets
which originate from the surface of the volume under consideration. Their excita-
tion strength is given by the amplitude U and its normal derivative ¶U/¶~ss. Inside the
volume they provide the field U(~rr). Outside they sum to zero.

Figure 18-3: Application of the Kirchhoff diffraction

integral to the diffraction produced by an aperture in

a black screen. The enclosing surface is divided into

three regions: back of screen, sphere, and aperture.

In the following we use the Kirchhoff integral to describe the diffraction by an aper-
ture A in an infinitesimal thin, perfectly absorbing, screen. The surface of the closed
volume consists of three parts:

1. the aperture;
2. the back of the screen;
3. a sphere of infinite radius around the observation pointP enclosing the volume.

The surface integral over the infinite sphere with center r becomes with R = r–r¢ and
dr = R2dX (in computing the normal derivative of exp{ikR}/R it must be observed
that~ss is the inner normal of the volume under consideration)
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18.2 Kirchhoff Diffraction Integral

Uð~rrÞ ¼ lim
Rfi¥

1

4p

R R

K

Uð~RRÞ 1

R
� ik

� �
eikR

R
� eikR

R

¶

¶~ss
Uð~RRÞ

� �

R2dX ð18-14Þ

i.e.,

Uð~rrÞ ¼ lim
Rfi¥

1

4p

R R

K

Uð~RRÞ � R ikUð~RRÞ þ ¶

¶~ss
Uð~RRÞ

� �� �

eikRdX: ð18-15Þ

The integral vanishes if

lim
Rfi¥

Uð~RRÞ � R ikUð~RRÞ þ ¶

¶~ss
Uð~RRÞ

� �� �

¼ 0: ð18-16Þ

If the source of U(~RR) is a limited aperture, the finiteness condition

lim
Rfi¥

Uð~RRÞ ¼ 0 ð18-17Þ

is fulfilled automatically. The remaining requirement for U(~RR) is “Sommerfeld’s
radiation condition”

lim
Rfi¥

R ikUð~RRÞ þ ¶

¶~ss
Uð~RRÞ

� �� �

¼ 0: ð18-18Þ

This implies that, in the infinite limit, U(~RR) becomes an outgoing spherical wave.
i.e., U(~RR) must vanish for Rfi ¥ at least as fast as 1/R.

In order to evaluate the remaining integrals over the aperture and the back of the
screen, the Kirchhoff approximation is applied.

Uð~RRÞ; ¶
¶~ss
Uð~RRÞ ¼ undisturbed in the aperture;

0 on the back of the screen:

�

ð18-19Þ

The Kirchhoff approximation indicates that the boundary values are obtained from
geometrical optics, i.e., the boundary values are computed as if the light is propagat-
ing within the diffraction obstacle according to the laws of geometrical optics.

Using this approximation, the Kirchhoff diffraction integral consists of an inte-
gral over the aperture alone and becomes

Uð~rrÞ ¼ 1

4p

R R

A

Uð~rr ¢Þ ¶
¶~ss

eik~rr�~rr ¢j j

~rr �~rr ¢j j �
eik~rr�~rr ¢j j

~rr �~rr ¢j j
¶

¶~ss
Uð~rr ¢Þ

� �

dr

¼ 1

4p

R R

A

Uð~rr ¢Þ ik� 1

~rr �~rr ¢j j

� �
eik~rr�~rr ¢j j

~rr �~rr ¢j j �
eik~rr�~rr ¢j j

~rr �~rr ¢j j
¶

¶~ss
Uð~rr ¢Þ

� �

dr :

ð18-20Þ
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18 Scalar Diffraction

Now it describes the scalar field U at a point~rr behind an illuminated aperture A in a
black (Kirchhoff) screen.

Inserting the directional derivative of the spherical wave along the normal~ss to the
aperture

¶

¶~ss

eik~rr�~rr ¢j j

~rr �~rr ¢j j ¼ ik� 1

~rr �~rr ¢j j

� �
eik~rr�~rr ¢j j

~rr �~rr ¢j j cosW ; ð18-21Þ

where J denotes the angle enclosed by~rr –~rr ¢ and~ss, results in

Uð~rrÞ ¼ 1

4p

R R

A

Uð~rr ¢Þ ik� 1

~rr �~rr ¢j j

� �
eik~rr�~rr ¢j j

~rr �~rr ¢j j cosW� eik~rr�~rr ¢j j

~rr �~rr ¢j j
¶

¶~ss
Uð~rr ¢Þ

� �

dr : ð18-22Þ

18.2.1

Inconsistency of the Kirchhoff Diffraction Integral

The simultaneous and independent prescription of the field U and its normal deriv-
ative ¶U/¶~ss over-specifies the boundary value problem. As a consequence, the
appointed boundary values are not reproduced if the point of observation is chosen
to be within the diffracting aperture.

Furthermore, it ismathematically incorrect to zero the field and its normal derivative
simultaneously at the back of the screen. It can be shown that a three-dimensional
potential that vanishes in a finite area, together with its normal derivative, must vanish
everywhere [18-2]. However, despite all restrictions and inconsistencies, the Kirchoff
diffraction integral frequently provides an excellent description of diffraction fields.

18.3

1st and 2nd Rayleigh–Sommerfeld Diffraction Integral

The Rayleigh–Sommerfeld diffraction integrals are obtained when the correct
Green’s function is inserted into the Kirchhoff diffraction integral. “Correct” means
correct for the diffraction problem which is under consideration. This removes the
aforementioned inconsistencies of the Kirchhoff integral and the boundary values
are reproduced.

Have a second look at the Kirchhoff integral

Uð~rrÞ ¼ 1

4p

R R

A

Uð~rr ¢Þ ¶
¶~ss
Gð~rr �~rr ¢Þ �Gð~rr �~rr ¢Þ ¶

¶~ss
Uð~rr ¢Þ

� �

dr : ð18-23Þ

If U is prescribed as a boundary value on the screen, G must be zero there so that
the second term in (18.23) vanishes. If instead ¶U/¶~ss is the boundary value, ¶G/¶~ss
must be zero in order for the first term to vanish. For both conditions, G must also
fulfil the Helmholtz equation and Sommerfeld’s radiation condition.
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18.3 1st and 2nd Rayleigh–Sommerfeld Diffraction Integral

In particular, for a plane screen, Green’s function can be determined according to
the mirror method [18-2], see also [18-3]: Green’s function is formed from the super-
position of two spherical waves (figure 18-4). One emanates from the point of obser-
vation P and one emanates from its mirror image P¢.

Figure 18-4: Construction of Green’s function in a

diffraction plane by means of the mirror method. P is

the actual observation point and P¢ its mirror image.

Inside the plane of the screen the fields are identical (since R = R¢), so

eikR

R
¼ eikR ¢

R¢
: ð18-24Þ

But the corresponding normal derivatives differ in sign because their sources are
situated on opposite sides of the screen

¶

¶~ss

eikR

R

� �

¼ � ¶

¶~ss

eikR ¢

R¢

� �

ð18-25Þ

The principle of the construction of Rayleigh–Sommerfeld diffraction integrals is
simple: The superposition of both spherical waves is chosen in such a way that the
part that is not given as the boundary value, vanishes.

Boundary Value U: First Rayleigh–Sommerfeld Diffraction Integral

G is the difference of the spherical waves emanating from P and P¢

G ¼ eikR

R
� eikR ¢

R¢
: ð18-26Þ

Then the normal derivative is in the plane of the screen

¶G

¶~ss
¼ 2

¶

¶~ss

eikR

R
ð18-27Þ

and the value in the plane of the screen

G ¼ 0 : ð18-28Þ
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Inserting both relations into the Kirchhoff diffraction integral yields the first Ray-
leigh–Sommerfeld diffraction integral (RS1)

UIð~rrÞ ¼ 1

2p

R R

A

Uð~rr ¢Þ ¶
¶~ss

eik~rr�~rr ¢j j

~rr �~rr ¢j j dr

¼ 1

2p

R R

A

Uð~rr ¢Þ ik� 1

~rr �~rr ¢j j

� �
eik~rr�~rr ¢j j

~rr �~rr ¢j j cosWdr :

ð18-29Þ

Boundary Value ¶U/¶s: Second Rayleigh–Sommerfeld Diffraction Integral

G is the sum of the spherical waves emanating from P and P¢

G ¼ eikR

R
þ eikR ¢

R¢
: ð18-30Þ

Then the normal derivative in the plane of the screen is

¶G

¶~ss
¼ 0 ð18-31Þ

and the value in the plane of the screen is

G ¼ 2
eikR

R
: ð18-32Þ

Inserting both equations into the Kirchhoff diffraction integral yields the second
Rayleigh–Sommerfeld diffraction integral (RS2)

UIIð~rrÞ ¼ � 1

2p

R R

A

eik~rr�~rr ¢j j

~rr �~rr ¢j j
¶

¶~ss
Uð~rr ¢Þdr : ð18-33Þ

For a plane screen, the Kirchhoff diffraction integral is just the mean value of both
Rayleigh–Sommerfeld diffraction integrals

UKð~rrÞ ¼
1

2
URS1ð~rrÞ þURS2ð~rrÞð Þ : ð18-34Þ

Comparisons of the presented formulations of scalar diffraction are given, for exam-
ple, in [18-4]–[18-7].

18.4

Two-dimensional Diffraction

The diffraction problem is two-dimensional if the geometry of the diffracting object
and the incident wave do not change along one dimension. The diffraction of a cy-
lindrical wave by a slit in a screen is one example of this.
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Figure 18-5: Diffraction by a slit.

For this problem the Kirchhoff diffraction integral can be integrated along the con-
stant dimension

Uð~rrÞ ¼ 1

4p

R¥

�¥

Rb

�b

Uð~rr ¢Þ ¶
¶~ss

eik~rr�~rr ¢j j

~rr �~rr ¢j j �
eik~rr�~rr ¢j j

~rr �~rr ¢j j
¶

¶~ss
Uð~rr ¢Þ

� �

dx ¢dy¢ : ð18-35Þ

The infinite integral can be computed analytically (again: if the incident wave is con-
stant along this direction) by means of [18-8]

R¥

�¥

eik~rr�~rr ¢j j

~rr �~rr ¢j j dy¢ ¼ ipH0ðk~rr�~rr¢j jÞ : ð18-36Þ

H0 is a Hankel function of the first kind, of zeroth order. r and r¢ are planar coordi-
nates according to ~rr = (x,0,z) and ~rr¢ = (x¢,0,z¢). Inserting eq. (18.36) into the Kirch-
hoff integral yields

Uð~rrÞ ¼ i

4

Rb

�b

Uð~rr¢Þ ¶
¶~ss
H0ðk~rr�~rr¢j jÞ �H0ðk~rr�~rr¢j jÞ ¶

¶~ss
Uð~rr¢Þ

� �

dx ¢dy¢ : ð18-37Þ

Figure 18-6: Two-dimensional diffraction

by a slit.

The spherical wave as the Green’s function of the three-dimensional diffraction
problem is replaced, for the two-dimensional case, by the Hankel function. For two-
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dimensional diffraction, Sommerfeld’s radiation condition must also be replaced by
its two-dimensional analogue

lim
Rfi¥

ffiffiffiffi

R
p

ikUð~RRÞ þ ¶

¶~ss
Uð~RRÞ

� �� �

¼ 0 ð18-38Þ

i.e., U must vanish at least as an outgoing cylindrical wave in the limit of infinite
radius.

By virtue of

d

dx
H0ðxÞ ¼ �H1ðxÞ ð18-39Þ

the normal derivative of the Hankel function becomes

¶

¶~ss
H0ðk~rr�~rr¢j jÞ ¼ kH1ðk~rr�~rr¢j jÞ cosW ð18-40Þ

where J is the angle between r –r¢ and~ss.
Finally we obtain the following form of the two-dimensional Kirchhoff diffraction

integral

UKð~rrÞ ¼
i

4

Rb

�b

Uð~rr¢ÞkH1ðk~rr�~rr¢j jÞ cosW�H0ðk~rr�~rr¢j jÞ ¶
¶~ss
Uð~rr¢Þ

� �

dx ¢ : ð18-41Þ

The two-dimensional first Rayleigh–Sommerfeld diffraction integral becomes,
accordingly

UIð~rrÞ ¼
i

2

Rb

�b

Uð~rr¢ÞkH1ðk~rr�~rr¢j jÞ cos Wdx ¢ ; ð18-42Þ

and the second Rayleigh–Sommerfeld diffraction integral becomes

UIIð~rrÞ ¼ � i

2

Rb

�b

H0ðk~rr�~rr¢j jÞ ¶
¶~ss
Uð~rr¢Þdx ¢ : ð18-43Þ

18.5

Huygens Principle

To derive Huygens principle we have to reinterpret the spherical wave used in the
derivation of the Kirchhoff diffraction integral (figure 18-7): By analogy with poten-
tial theory it is incidentally a “probe-wave” that originates from the point of observa-
tion (figure 18-7 left-hand side). According to Huygens principle it is the other way
round: Each point of the aperture is the source of a spherical wave – the Huygens
wavelet. The superposition of all Huygens wavelets provides the field at the observa-
tion point (figure 18-7 right-hand side).
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18.5 Huygens Principle

Figure 18-7: Huygens principle and the scalar diffraction integral.

In the following we give the form for the Huygens wavelets of the Rayleigh–Som-
merfeld diffraction integrals.

The first Rayleigh–Sommerfeld diffraction integral can be written as

UIð~rrÞ ¼
R R

A

Uð~rr ¢ÞKIð~rr �~rr ¢Þdr ¢ ð18-44Þ

with the Huygens wavelet

KIð~rr �~rr ¢Þ ¼ 1

2p
ik� 1

~rr �~rr ¢j j

� �
eik~rr�~rr ¢j j

~rr �~rr ¢j j cos W : ð18-45Þ

The second Rayleigh–Sommerfeld diffraction integral can be written as

UIIð~rrÞ ¼
R R

A

¶Uð~rr ¢Þ
¶~ss

KIIð~rr �~rr ¢Þdx ¢dy¢ ð18-46Þ

with the Huygens wavelet

KIIð~rr �~rr ¢Þ ¼ 1

2p

eik~rr�~rr ¢j j

~rr �~rr ¢j j : ð18-47Þ

The form of both wavelets is depicted in figure 18-8.
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Figure 18-8: Directional characteristics

of the Huygens wavelets for the first (left)

and the second (right) Rayleigh–

Sommerfeld diffraction integrals.

KI has a cosine-shaped direction characteristic with a maximum value perpendicular
to the aperture. There is no field radiated along J = –90�, i.e., along the aperture
plane. This is a direct consequence of reproducing the assumed boundary values of
the field in the plane of the aperture. If there were a radiated field in the aperture
itself, the value would change there and the boundary values would not be repro-
duced.

The directional characteristic of KII is isotropic because it is just a spherical wave,
i.e., the field is radiated into the complete half-space. In particular there is also a
field radiating along the aperture. Nevertheless, the boundary values are reproduced,
because in the second Rayleigh–Sommerfeld diffraction integral, the boundary val-
ues are given by the normal derivative of the field. This is not changed by the spher-
ical wave because the propagation direction is perpendicular to the normal vector of
the aperture with the consequence that its normal derivative in the aperture plane is
zero.

Both Rayleigh–Sommerfeld diffraction integrals can be written as a convolution

UIð~rrÞ ¼ Uð~rrÞ � KIð~rrÞ ;

UIIð~rrÞ ¼
¶Uð~rrÞ
¶~ss

� KIIð~rrÞ :
ð18-48Þ

18.6

Fourier Space Formulation

Because the scalar diffraction integrals come in the form of convolution integrals,
the convolution theorem can be applied to obtain a Fourier space, or angular spec-
trum, formulation.

F UIð~rrÞf g ¼ F Uð~rrÞf gF KIð~rrÞf g ;

F UIIð~rrÞf g ¼ F
¶Uð~rrÞ
¶~ss

� �

F KIIð~rrÞf g :
ð18-49Þ
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18.6 Fourier Space Formulation

The Fourier transform F{} of the Huygens wavelet acts as a propagation operator
P(~kk) describing the propagation of the field from the plane of the diffracting aper-
ture to the point of observation. Having the aperture in the xy plane at z = 0 yields

UIðx; y; zÞ ¼ F�1 F Uðx; y; 0Þf gPIð~kkÞ
n o

;

UIIðx; y; zÞ ¼ F�1 F
¶Uðx; y; 0Þ

¶z

� �

PIIð~kkÞ
� �

;
ð18-50Þ

where we have placed the aperture perpendicular to the z-axis. The Fourier treat-
ment of scalar diffraction theory is discussed in [18-3], [18-9]–[18-11].

The explicit form of the propagation operators follows from the angular spectrum
of a diverging spherical wave (Weyl’s representation [18-9])

F
eik0R

R

� �

¼ i2p
1

kz
eikzz ð18-51Þ

with

kz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k20 � k2x � k2y

q

¼ 2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

k
2 � m2x � m2y

r

: ð18-52Þ

The propagation operator for the second Rayleigh–Sommerfeld integral becomes

PIð~kk; zÞ ¼ i
1

kz
eikzz : ð18-53Þ

The propagation operator for the first Rayleigh–Sommerfeld integral is computed
directly using the fact that the 2D Fourier transform is independent of z

PIIð~kk; zÞ ¼ F
¶

¶z

eikR

R

� �

¼ ¶

¶z
F

eikR

R

� �

¼ eikzz : ð18-54Þ

The exponential in the propagation operator is simply the phase shift of the corre-
sponding plane wave for propagation over a distance z. This provides a simple phys-
ical explanation of scalar diffraction: The field (or its normal derivative) in the plane
of the diffraction obstacle is expanded into plane waves (figure 18-9). The spatial fre-
quencies of the field in the diffraction plane are just the projections of the corre-
sponding propagation vectors onto that plane. The propagation of the plane waves
over a distance z yields the angular spectrum of the field in the observation plane.

RS-I : F Uðx; y; zÞf g ¼ eikzzF Uðx; y; 0Þf g ;

RS-II : F Uðx; y; zÞf g ¼ i

kz
eikzzF Uðx; y; 0Þf g :

ð18-55Þ
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18 Scalar Diffraction

Figure 18-9: Angular spectrum representation of scalar diffraction.

Two exemplary plane waves are shown (|~kk1|=|~kk2|).

The dependence of both propagation operators on the spatial frequency and the
propagation distance is depicted in figure 18-10.
Note the exponential decay of the magnitude for k > k0 :

P1ð~kk; zÞ ¼
ei
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
0
�k2x�k2y

p
: k2x þ k2y £ k

2
0 ;

e�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2xþk2y�k2

0

p
: k2x þ k2y > k20 :

(

ð18-56Þ
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Figure 18-10: Magnitude and phase of propagation operators.



18.7 Examples of Scalar Diffraction Patterns

For
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2x þ k2y

q

£ k0 the propagation operator describes an undisturbed propagation
into free space. For

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2x þ k2y

q

> k0 the exponent becomes real, resulting in an expo-
nential decay of the plane wave components with larger magnitude than the free-
space propagation constant. In order to detect these components one has to place
the detector at a distance <k from the structure. This is the physical basis for near-
field optical microscopy.

The propagating plane wave components are phase-shifted according to their dif-
ferent angles to the z-axis while the phase of the evanescent components remains
constant.

The magnitude of PII (propagation operator of Rayleigh–Sommerfeld II) shows a
singularity at kx = k0, i.e., at a spatial frequency of m = 1/k (figure 18-11). It stems
from the plane wave component propagating along the plane of the aperture (cf. the
angular spectrum of a spherical wave).

Figure 18-11: Magnitude of propagation operators at z = 0.

18.7

Examples of Scalar Diffraction Patterns

18.7.1

Diffraction Fields Behind Slits

In figure 18-12 the diffraction at slits of various widths in a black screen is compared
according to the first and second Rayleigh–Sommerfeld diffraction integrals. The
width of the slits increases from 0.5 to 10 wavelengths. The intensity is indicated by
the color map. In addition, the iso-phase lines are plotted in blue.

The general appearance of the fields, according to the first and second Rayleigh–
Sommerfeld diffraction integrals, is quite similar. Note the stronger confinement of
the diffraction pattern for the smallest slit according to RS-I. This stems from the
obliquity factor. The differences between RS-I and RS-II are most pronounced for
distances from the slit which are within the slit width. Beyond this region, the
results are almost indistinguishable.
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18 Scalar Diffraction58

Figure 18-12: Examples of slit diffraction patterns for increasing slit width.

Color map: field-amplitude, blue lines = equi-phase lines.



18.7 Examples of Scalar Diffraction Patterns

18.7.2

Diffraction by a Rectangular Aperture

Figure 18-13 shows the diffraction pattern behind a rectangular aperture of 5k width
and 3k height computed according to the first Rayleigh–Sommerfeld diffraction inte-
gral. Note the continuous transition from the near-field region, where the shape of the
aperture is reproduced, to the “far field” with distinguished diffraction lobes. We have
chosen a rectangular shape because then the development of the far-field diffraction
pattern out of the near-field pattern, can be observed. According to the inverse scaling
law of Fourier theory the width of the diffraction pattern of a small aperture is larger
than the width of the corresponding pattern behind a large aperture. So the intensity
distribution of the Fraunhofer diffraction pattern of the horizontal rectangular aperture
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Figure 18-13: Diffraction pattern of a rectangular aperture for increasing distance

according to the first Rayleigh–Sommerfeld diffraction integral.



18 Scalar Diffraction

in figure 18.13 should show a larger extent in vertical direction. The near field, however,
has a larger extent in the horizontal direction. Traversing from a distance z = 0.01k to
z= 20kwe can see the gradual change in the diffraction pattern fromamainly horizontal
orientation to amainly vertical orientationwith a break-even point around 10k.

18.8

Fresnel Diffraction

The Fresnel approximation allows a simplified computation of scalar diffraction fields
for large distances (>>k) and small diffraction angles. It describes the transition region
in the z-direction between the extreme near field, that requires a direct evaluation of the
diffraction integrals, and the far field as given by Fraunhofer diffraction.

Assuming the diffraction aperture is at z¢ = 0, the Fresnel approximation follows
from an expansion of the distance of a point in the object plane~rr = (x¢,y¢,0) and the
point of observation~rr= (x,y,z) into a Taylor series

~rr �~rr ¢j j ¼ zþ 1

2

ðx � x ¢Þ2 þ ðy� y¢Þ2

z
� 1

8

ðx � x ¢Þ2 þ ðy� y¢Þ2
	 
2

z3
þ :::

» zþ 1

2

ðx � x ¢Þ2 þ ðy� y¢Þ2

z

ð18-57Þ
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18.8 Fresnel Diffraction

which is truncated after the quadratic term. Inserting the quadratic approximation
into the first Rayleigh–Sommerfeld diffraction integral (RS1)

Uð~rrÞ ¼ 1

2p

R R

A

Uð~rr ¢Þ ik0 �
1

~rr �~rr ¢j j

� �
eik0~rr�~rr ¢j j

~rr �~rr ¢j j cosWdr ð18-58Þ

and neglecting terms quadratic in (r – r¢), a replacement of (r – r¢) by z in the ampli-
tude prefactor, and cosJfi1 yields the Fresnel diffraction integral

Uð~rrÞ ¼ ik0e
ik0z

2pz

R R

A

Uð~rr ¢Þeik0
x�x ¢ð Þ2þ y�y ¢ð Þ2

2z dr : ð18-59Þ

In terms of the Huygens principle, the Fresnel integral is a diffraction integral with
parabolic Huygens wavelets. It can be written as a convolution

Uð~rrÞ ¼ U0ð~rrÞ � KFð~rrÞ ð18-60Þ

with the convolution kernel

KFð~rrÞ ¼
ik0e

ik0z

2pz
eik0

x�x ¢ð Þ2þ y�y ¢ð Þ2
2z : ð18-61Þ

18.8.1

Computation

Basically there are three different ways to evaluate the Fresnel integral: using

a) the propagation operator;
b) the Fourier transform with quadratic prefactor;
c) Fresnel integrals.

a) The propagation operator is obtained, as for the Rayleigh–Sommerfeld integrals,
by Fourier transforming the convolution kernel

PFð~kkÞ ¼
ik0e

ikz

2pz
e
i k2

0
�

k2xþk2y
2

� �

z
: ð18-62Þ

It yields a Fresnel diffraction integral of

Uðx; y; zÞ ¼ ik0e
ikz

2pz
F�1 F Uðx; y; 0Þf ge

i k2
0
�

k2xþk2y
2

� �

z

( )

: ð18-63Þ

Because of the underlying approximation, the propagation operator provides
physically meaningless results for large spatial frequencies. This can be concluded
from the fact that all spatial frequencies are propagating. Evanescent components
do not exist in Fresnel approximation.
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18 Scalar Diffraction

b) The exponential in (18.59) can be factorized further to yield

Uð~rrÞ ¼ ieikz

kz
eik

x2þy2

2z
R R

A

Uð~rr ¢Þeikx ¢
2þy ¢2

2z e�ik
xx ¢þyy ¢

z dx ¢dy¢ : ð18-64Þ

According to this evaluation, the Fresnel diffraction of a scalar field U(x¢,y¢) is
equivalent to the Fourier transform of the field multiplied by a quadratic phase
factor (within the Fourier integral)

Uð~rrÞ ¼ ieikz

k
eik

x2þy2

2z F Uð~rr ¢Þeikx
2þy2

2z

n o

mx¼ x
kz
; my¼ y

kz

: ð18-65Þ

c) The Fresnel integral is defined as (see appendix too)

FðwÞ ¼ R
w

0

ei2px
2

dx ¼ CðwÞ þ iSðwÞ ð18-66Þ

with

CðwÞ ¼ R
w

0

cos
p

2
x2

� �

dx

SðwÞ ¼ R
w

0

sin
p

2
x2

� �

dx

9

>>>=

>>>;

Cð0Þ ¼ Sð0Þ ¼ 0

Cð¥Þ ¼ Sð¥Þ ¼ 1

2

Cð�wÞ ¼ �CðwÞ; Sð�wÞ ¼ �SðwÞ
_

ð18-67Þ

It can be used to compute the Fresnel diffraction pattern behind an aperture.

18.8.2

Validity

The error of the Fresnel approximation is equal to the error of the quadratic approx-
imation (18.57). It is smaller than the maximum value of the first neglected sum-
mand. If, in the same way as Papoulis [18-12], we allow an angle-error of p/100 in
the exponent, then for the lateral range of validity of the Fresnel approximation in
one dimension, for a diffraction aperture of width b we obtain

k
jxj þ bð Þ4

8z3
<

p

100
, (18.68)

and

x

k







 <

1
ffiffiffi

5
p z

k

� �0:75

� b

k
: ð18-69Þ
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18.8 Fresnel Diffraction

So the minimum distance for the validity of the Fresnel approximation is

zmin ¼ 52=3
b

k

� �4=3

ð18-70Þ

and for larger z, xmust be below a curve depicted in figure 18-14.

Figure 18-14 Lateral region of validity of the Fresnel approximation

according to Papoulis [18-12].

Figure 18-15: Slit diffraction pattern for Fresnel and Rayleigh–Sommerfeld diffraction.

Color map: field amplitude, blue lines = equi-phase lines.

A comparison of the computed near-field of a slit of width 8k is shown in figure 18-
15, on the left-hand side, according to the angular spectrum formulation of the Fres-
nel integral (18.63) and on the right-hand side according to the first Rayleigh–Som-
merfeld integral. Note the higher fringe density near the aperture according to the
Fresnel integral and the contour of the phase lines near the screen. While they show
a spherical wavefront computed from the first Rayleigh–Sommerfeld integral
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18 Scalar Diffraction

(which makes sense) they are incredibly dense, according to the Fresnel approxima-
tion. One reason for this behaviour is that the evanescent components are not
damped in the Fresnel approximation.

18.9

Collin’s Fresnel Diffraction Integral

18.9.1

Definition

Consider the Fresnel diffraction integral (18.59) reduced to one transverse dimension

Eðx2; z2Þ ¼
ffiffi

i
p

� eikz
ffiffiffiffiffiffiffi

k z
p Ra

�a

Eð x1; z1 Þ � e�
ip
k z

� x2 � x1ð Þ2 dx1 : ð18-71Þ

In practical cases, there are very often optical systems which are located between the
starting plane (index 1) and the receiving plane (index 2). If these components or
subsystems can be considered as corrected and paraxial, the optical path length L

between two corresponding planes can be easily written in terms of the elements of
the paraxial system matrix (see vol 1, chapter 2)

M ¼ A B
C D

� �

ð18-72Þ

in the form

L ¼ Ax2
1 � 2 x1 x2 þ Dx2

2

2B
: ð18-73Þ

Using this, a generalized Fresnel integral is obtained which is named after Collins
[18-13], [18-14]:

Eðx2Þ ¼
ffiffi

i
p
ffiffiffiffiffiffiffiffi

kB
p Ra

�a

Eð x1Þ � e ip
kB

� Ax2
1
� 2 x1 x2 þDx2

2ð Þ dx1 : ð18-74Þ

Here the elements of the matrix occurring in the exponent constitute the eikonal
function. Figure 18-16 shows the principle of the idea, the paraxial system is com-
pletely described by the three elements A, B and D of the matrix, the element C can
be calculated with the help of the determinant

det Mð Þ ¼ 1 : ð18-75Þ

There are only three independent parameters in the matrix, where identical
refractive indices are assumed in the starting and the receiving space. The equation
(18.74) for the Fresnel diffraction integral is a paraxial approximation, but it is able

64



18.9 Collin’s Fresnel Diffraction Integral

to describe the propagation of a field with wave aberrations and special intensity pro-
files through nearly-perfect optical systems. Therefore its areas of application are
mainly in the simulation of laser optical systems, where the radiation has a strong
directionality and the Fresnel approximation gives very accurate results. The calcula-
tion of optical resonators and laser-beam delivery systems are mainly based on the
above formulation of the Fresnel integral.

Figure 18-16: Propagation of the field through a paraxial ABCD system.

Collins Integral for Conjugate Planes

In the special case of conjugated planes, the matrix element B vanishes at B = 0 and
the above formulation of the diffraction integral cannot be applied. But since eq.
(18.75) still holds, the integral can be rearranged with the help of D = 1/A in the
form

Eðx2Þ ¼
ffiffi

i
p
ffiffiffiffiffiffiffiffi

kB
p � e �ikC x2

2
2A
Ra

�a

Eð x1Þ � e
ipA
kB

� x1 � x2
Að Þ2 dx1 : ð18-76Þ

Using a representation of Dirac’s delta function

d ðxÞ ¼ 1
ffiffiffiffiffiffiffi

ipe
p e�

ix2
e





efi 0

ð18-77Þ

gives for the limiting case B fi 0 the equation for conjugate planes

Eðx2Þ ¼ 1

A
� e�ipC

kA
�x2

2 Eðx1Þ jx1 ¼ x2
A
: ð18-78Þ
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18 Scalar Diffraction

It can be seen from this expression, that the transverse field is scaled but conserves
its profile. But an additional quadratic phase is superposed on the complex field.

However, in real systems, there is always a limiting size of the components and
the aperture cone has a finite angle, truncating the spectrum. The above form of the
Fresnel integral cannot decribe these effects. Because of its paraxial nature, trans-
verse truncation effects are not incorporated. To do this, the system has to be divided
into two subsystems with a limiting aperture stop of radius a inside. The paraxial
matrix can be written as the product of four factors in the form

A B
C D

� �

¼ 1 z2
0 1

� �

� 1 0
�1=f1 1

� �

� 1 0
�1=f2 1

� �

� 1 z1
0 1

� �

: ð18-79Þ

This composition can be interpreted as a free-space transition, a thin lens with focal
length f1, a second lens with f2 and an additional transition. Figure 18-17 shows the
corresponding setup. The optical effect of the modified system is equivalent to the
ABCD segment, if the relations

f1 ¼ z1 ¼ D� 1

C
; ð18-80Þ

f2 ¼ z2 ¼ A� 1

C
ð18-81Þ

are fulfilled. The calculation of the field propagation can now be described by two
successive applications of the diffraction integral in the Fraunhofer approximation

EpðxpÞ ¼ R
E1ðx1Þ � e�

ik
z1 �x1 �xp dx1 ; ð18-82Þ

E2ðx2Þ ¼ R
EpðxpÞ � e�

ik
z2 �x2 �xp dxp ; ð18-83Þ

and a clipping of the field Ep components outside the opening of the aperture be-
tween the two lenses for xp




 > a.

Figure 18-17: Propagation of the field through a paraxial ABCD system

between conjugate planes, taking the finite aperture into account.
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18.9 Collin’s Fresnel Diffraction Integral

Collins Integral in the General Case

The extension of the above Collins integral (18.74) to two orthogonal transverse di-
mensions x and y is straightforward.

A more general paraxial three-dimensional system is described by a 4 � 4 matrix
of the form

~rr ¢ ¼ M � ~rr ¼ A B
C D

� �

�~rr ¼
Axx Axy Bxx Bxy

Ayx Ayy Byx Byy

Cxx Cxy Dxx Dxy

Cyx Cyy Dyx Dyy

0

B
B
@

1

C
C
A

�~rr : ð18-84Þ

The optical path length is given by [18-15]

L ¼ L0 þ
1

2
~rrT � R �~rr ð18-85Þ

with the combined position vector

~rr ¼ ~rr1
~rr2

� �

ð18-86Þ

and the matrix of the eikonal

R ¼ n1B
�1A �n1B

�1

n2 C�DB�1A
	 


n2DB
�1

� �

: ð18-87Þ

The Collins integral than takes the general form

E ~rr2ð Þ ¼ ieikL0

k
ffiffiffiffiffiffi

Bj j
p

RR
E ~rr1ð Þ � e�ip

�ck
�~rrT
1
�R�~rr2d~rr1

¼ ieikL0

k
ffiffiffiffiffiffi

Bj j
p

RR
E ~rr1ð Þ � e�ip

k
� ~rr1B�1A~rr1�2~rr1B

�1~rr2þ~rr2DB�1~rr2ð Þd~rr1
ð18-88Þ

with the determinant of the submatrix

Bj j ¼ detB ¼ BxxByy � BxyByx : ð18-89Þ

The application of this general form of the Collins integral is necessary in non-or-
thogonal systems with a coupling of the x and y-field components by rotated compo-
nents or centering errors.

18.9.2

Example

As a concrete example of this calculation procedure, figure 18-18 shows the optical
system of the phase space analyser [18-16], where the coherent field of a slit is propa-
gated through a special system. A lens and a toroidal lens which is rotated by 45�
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18 Scalar Diffraction

around the optical axis are located at appropriate distances. In the image plane of
the slit, wave aberrations in the slit plane are transformed by the non-orthogonal
system in transverse elongations. By analysing the deformation of the slit, this
allows the determination of the wave aberration by geometrical means. Figure 18-19
shows the deformation of the slit at various distances z for a spherical aberration of
k/2. The changing form of the slit image and the effect of defocussing can be seen.

Figure 18-18: Propagation of the coherent field of a slit with spherical aberration

through the paraxial non-orthogonal ABCD system of the phase-space analyser.

Figure 18-19: Deformation of the slit form, in the phase-space analyser,

as a function of the distance z for a spherical aberration k/2. The correct

imaging condition lies at the location z = 210.
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18.10 Fraunhofer Diffraction

18.10

Fraunhofer Diffraction

Neglecting terms that are quadratic in (x¢,y¢) in the Fresnel integral, i.e.,

~rr �~rr ¢j j»zþ x2 þ y2

2z
� xx ¢þ yy

z
ð18-90Þ

yields the Fraunhofer diffraction integral

Uð~rrÞ ¼ ieikz

kjzj e
ik
x2þy2

2z
R R

A

Uð~rr ¢Þe�ik
xx ¢þyy ¢

z dx ¢dy¢ ð18-91Þ

which is proportional to the Fourier transform of the field

Uð~rrÞ ¼ ieikz

kjzj e
ik
x2þy2

2z F Uð~rr ¢Þf gmx¼ x
kz
; my¼

y
kz

ð18-92Þ

The intensity of the Fraunhofer diffraction pattern is equal to the squared magni-
tude of the field in the aperture plane.

Some examples of Fraunhofer diffraction patterns are shown in figure 18-20. To
make the plots appear to the human eye (which is basically a logarithmic detector)
as a diffraction pattern, the squared magnitude of the Fourier transform of the aper-
ture is scaled to a single decade and the logarithm of the resulting quantity is
plotted.

The range of validity of the Fraunhofer approximation is given by the magnitude
of the neglected quadratic element in the expansion eq. (18.90). Its contribution to
the exponential must be negligible, i.e.,

k0
max x ¢2 þ y¢2

	 


2z
<< 1 : ð18-93Þ

With D = max(x¢2+y¢2) denoting the largest size of the diffracting aperture we can
define the Fresnel number

NF ¼ pD2

kz
<< 1 : ð18-94Þ

For NF << 1 we are in the region of Fraunhofer diffraction. For larger values Fres-
nel diffraction has to be applied. The development of the Fresnel number with
increasing distance for three aperture sizes is shown in figure 18-21.
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Figure 18-20: Examples of Fraunhofer diffraction patterns.

Figure 18-21: Development of Fresnel number NF with increasing distance

for aperture sizes D = k, 2k, 3k.
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18.11 Grating Diffraction

18.11

Grating Diffraction

From the point of view of diffraction theory, a grating is just a periodic object.
Because of its periodicity its diffraction spectrum is discrete. If the size of the grat-
ing is limited the diffraction spectrum becomes more continuous. Designs, shapes
and optical applications of gratings were presented in detail in chapter 14. Here we
discuss the properties of gratings in terms of Fraunhofer diffraction.

18.11.1

Ronchi Grating

The most simple and frequently applied grating is an amplitude grating with an
aspect ratio of 1:1 for transparent and opaque lines. It is called a Ronchi grating
(section 14.6.5) in honour of the Italian physicist Ronchi. He determined the optical
quality of optical instruments by inserting a line grating into the focus plane (the
Ronchi-test, section 16.10.4)). The diffraction orders overlap, interfere and produce
an interference pattern. From the interference pattern the quality of the wavefront
can be deduced as will be discussed elsewhere. Here we discuss the Fourier trans-
form of gratings which are important objects in optical imaging.

Figure 18-22: Schematic plot of a Ronchi grating.

The Ronchi grating is sketched in figure 18-22. Its mathematical form is

ronchiA
x

d

� �

¼ 1 x �m � dj j < d

2
0 else :

(

ð18-95Þ

Being a periodic function the Ronchi grating can be expanded into a Fourier series

ronchiA
x

d

� �

¼
X

m

cm � e2pimd x ð18-96Þ

with the Fourier coefficients

cm ¼ 1

d

Rd=2

�d=2

ronchiA
x

d

� �

� e�2pim
d
xdx ¼ 1

d

Rd=4

�d=4

e�2pim
d
xdx ¼ 1

2
sinc

m

2

� �

: ð18-97Þ
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Inserting (18.97) into (18.96) we obtain the Fourier series as

ronchiA
x

d

� �

¼ 1

2

X

m

sinc
m

2

� �

� e2pimdx ¼ 1

2
þ
X

m>1

sinc
m

2

� �

� cos 2p
m

d
x

� �

: ð18-98Þ

Finally, the sum can be computed yielding

ronchiA
x

d

� �

¼ 1

2
þ 2

p
cos 2p

x

d

� �

� 2

3p
cos 2p

3x

d

� �

þ 2

5p
cos 2p

5x

d

� �

� :::: ð18-99Þ

Figure 18-23 shows the synthesis of the Ronchi grating by the cumulative sum of
the Fourier coefficients up to seventh order. While the overall shape is reproduced
more accurately with an increasing number of Fourier coefficients, the overshoot at
the edges does not converge to a limit of 1 but to a limit of 1.179. This is called the
Gibbs phenomenon after the American physicist J. Willard Gibbs who published a
note on it in 1898 [18-17]. A discussion of the Gibbs phenomenon and a review of
the literature about it can be found in [18-18]. The Gibbs phenomenon is a general
type of behavior of the Fourier transform of discontinuous functions. Although the
overshoot persists for any finite number of Fourier coefficients, the approximation
of the discontinuous function in a least-squares sense, becomes increasingly accu-
rate. The reason for this is that the period of the oscillations increases with the num-
ber of coefficients (this can be seen clearly in figure 18-23).

Figure 18-23: Contribution of the lowest order Fourier coefficients to the

synthesis of the Ronchi grating. The plot shows the cumulative sum up

to the first, third, fifth and seventh order.

An alternative and more versatile way of computing the Fourier transform of the
Ronchi grating is based on its representation as a convolution of a grid of delta-
pulses (comb-function) with a rect function. Furthermore, we can represent the
finite extent of the grid if we multiply by a second rect function (figure 18-24 top)
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18.11 Grating Diffraction

ronchiA
x

d

� �

¼ rect
x

d=2

� �

� comb
x

d

� �

� rect x

D

� �

: ð18-100Þ

The Fourier transform becomes (18-24 bottom)

F ronchiA
x

d

� �h i

¼ D
d2

2
sinc

d

2
m

� �

� comb d � mð Þ
� �

� sinc Dmð Þ : ð18-101Þ

Figure 18-24: The finite Ronchi grating (top) and its frequency spectrum (bottom).

According to the convolution theorem of Fourier optics, the Fourier transform of
the finite Ronchi grating consists of the convolution of the delta grid (red in figure
18-24) with the Fourier transform of the large rect function (sinc, green). The result
is multiplied by the Fourier transform of the rect function of a single period (sinc,
blue).

The computation of the Fourier transform of a pi-phaseshifting Ronchi grating is
now straightforward. With the phase Ronchi grating

ronchiP
x

d

� �

¼ �1 x �m � dj j < d

2
1 else :

(

ð18-102Þ

the relation to the amplitude Ronchi grating becomes

ronchiP xð Þ ¼ 2 � ronchiA x=Pð Þ � 1: ð18-103Þ

The spectrum follows from the linearity of the Fourier integral:

cpm ¼ 2cAm � dm;0 ¼ sinc
m

2

� �

� dm;0 : ð18-104Þ
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18 Scalar Diffraction

The diffraction efficiency gm for the grating diffraction is given by the square of
the coefficients of the series expansion with gm= | cm|

2. For the amplitude grating
half of the incident power is absorbed by the grating and thus will be lost. In total
the diffraction efficiency of the amplitude grating is therefore only 50% of the phase
grating. The table 18-1 compares the diffraction efficiencies with the series expan-
sion coefficients for amplitude and phase gratings of the Ronchi type.

Table 18-1: Diffraction efficiencies of amplitude and phase gratings.

Orderm 0 1 2 3

Amplitude Amplitude cm 0.5 1/p= 0.32 0.0 –1/3p= –0.11

Efficiency gm 25 % 10 % 0 % 1 %

Phase Amplitude cm 0.0 0.64 0.0 –0.22

Efficiency gm 0 % 41 % 0 % 5 %

Figure 18-25: The generalized binary phase grating.

The diffraction orders, i.e., the direction of diffracted light is determined by the
grating period, while, in the scalar approximation, the diffraction efficiency of a grat-
ing is solely determined by the shape of the period. In the simplest case of a binary
grating, considered as a generalization of the Ronchi grating, the grating period is
formed by a single phase step of width a and amplitude j. The phase function of
the grating is given by:

j xð Þ ¼ 0 x �m � dj j < a

2
j else

(

: ð18-105Þ

The coefficients of the Fourier series expansion are thus given by:

cm ¼ 1

d
� R�a=2

�d=2

eije�2pim
d
xdx þ Ra=2

�a=2

eije�2pim
d
xdx þ Rd=2

a=2

e�2pim
d
xdx

" #

¼

¼ eijsinc mð Þ þ 1� eij
	 
 a

d
sinc m

a

d

� �

:

ð18-106Þ

For the zero’th diffraction order it follows that

c0 ¼ eij þ 1� eij
	 
 a

d
¼ a

d
þ eij

b

d
: ð18-107Þ
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18.11 Grating Diffraction

The condition for a vanishing zero diffraction order is therefore

eij ¼ �a

b
: ð18-108Þ

With a and b both real eq. (18.108) can only be solved for phase differences j of
multiples of p. The zero order thus only vanishes, for example, for gratings with
phase differences of j =p and a = b (an ordinary Ronchi grating). In this special
case it follows from eq. (18.106)

cm ¼ sinc
m

2

� �

� sinc mð Þ : ð18-109Þ

The diffraction efficiency of the mth diffraction order follows after squaring and
transformation from eq. (18.106) with

gm ¼ eijsinc mð Þ þ 1� eij
	 
 a

d
sinc m

a

d

� �







2

¼ sinc2 mð Þ þ 2
a

d
sinc m

a

d

� �

sinc mð Þ � a

d
sinc m

a

d

� �h i

cosj� 1ð Þ :
ð18-110Þ

For m = 0, eq. (18.110) can be written as

g0 ¼ 1� 2
a

d
1� a

d

h i

� 1� cosjð Þ ¼ 1� 2
ab

d2
� 1� cosjð Þ : ð18-111Þ

In an analogous way, for m „ 0 it follows that

gm ¼ 2
a

d

� �2

sinc2 m
a

d

� �

� 1� cosjð Þ ¼ Am � 1� cosjð Þ: ð18-112Þ

A small change in the phase step by dj causes a change in the diffraction efficiency
given by

dgm ¼ Am � 1� cos jþ djð Þ � 1þ cosj½ �

¼ Am � cosj � 1� cosdjð Þ þ sinj sin dj½ � » Am � cosj � dj
2

2
þ sinjdj

� �

:

ð18-113Þ

For typical phase gratings with j=p, the diffraction efficiency of the mth diffraction
order with |m| „ 0 is reduced by an amount proportional to the square of a phase
error dj, while the zero order increases by an amount proportional to dj2. Similar-
ly, for deviations of the grating aspect ratio from an ideal value of a = b = d/2, the
diffraction efficiency of the zeroth order increases by an amount proportional to the
square of the phase step position error dx.

For a general treatment of binary and multilevel phase gratings the reader is
referred to [18-19].
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18 Scalar Diffraction

Figure 18-26: Diffraction efficiency of the first diffraction orders

as a function of aspect ratio a/b and phase difference j.

18.11.2

The Sinusoidal Phase Grating and Surface Fabrication Errors

The Fourier transform of an amplitude grating, with a transmission function given
by the elementary harmonic functions cosine and sine, is evidently given by two
delta-functions at the grating frequencies with

sin 2p
x

d

� �

¼ 1

2i
ei2p

x
d � e�i2px

d

� �

, 1

2i
d

1

d

� �

� d � 1

d

� �� �

; ð18-114Þ

cos 2p
x

d

� �

¼ 1

2
ei2p

x
d þ e�i2px

d

� �

, 1

2
d

1

d

� �

þ d � 1

d

� �� �

: ð18-115Þ

The phase of a grating given by the sine-function with period d is

j xð Þ ¼ A � sin 2p

d
� x

� �

: ð18-116Þ
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The Fourier transform of the sinusoidal phase grating is then given by

u mð Þ ¼ R eiA� sin 2p
d
�xð Þe�i2pm�xdx ¼

X

m

Jm Að ÞR eim2p
d
�x � e�i2pm�xdx

¼
X

m

Jm Að Þ � d m�m � 2p
d

� � ð18-117Þ

where the Jacobi identity was applied:

eix sinj ¼
X

m

Jm xð Þ � eimj: ð18-118Þ

The Bessel function is given by the well-known series expansion

Jm xð Þ ¼
X¥

k¼0

�1ð Þk

k! m þ kð Þ! �
x

2

� �2kþm

¼ 1

m!

x

2

� �m

� 1

m þ 1ð Þ! �
x

2

� �2þm

þ ::: ð18-119Þ

which can be approximated for small arguments as

Jm xð Þ ¼ 1

m!

x

2

� � mj j
: ð18-120Þ

Table 18-2: Small argument approximations for Bessel functions of order m = 0 ... 3.

m 0 1 2 3

A fi 0 J0 ¼ 1 J1 Að Þ ¼ A

2
J2 Að Þ ¼ A2

8
J3 zð Þ ¼ A3

48

Figure 18-27: Bessel functions of orders m= 0 ... 3.
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Figure 18-28: Square of Bessel functions of orders m = 0 ... 3.

The diffraction efficiency of the mth diffraction order is thus given by

gm ¼ J2m Að Þ : ð18-121Þ

Table 18-3 gives the values of the diffraction efficiencies of the phase grating with
sinusoidal phase profile for diffraction orders m = 0 ... 3. The total diffracted light is
approximated by the sum over the diffraction efficiencies under consideration of the
– diffraction order, giving the total integrated scatter (TIS). From table 18-3 it can be
seen that the simple scalar analysis according to the Fraunhofer approximation,
gives considerably accurate results only for low amplitudes A of the sinusoidal-
phase grating. With increasing phase differences of the amplitude A the total inte-
grated scatter deviates rapidly from 100%. It is also remarkable that for the sinusoi-
dal-phase grating it is not possible to optimize the depth for only one diffraction
order. At a maximum efficiency of 33.8%, for the first diffraction orders at A »

1.846, about 10% is still diffracted into each of the zeroth and second orders.

Table 18-3: Maxima and minima of the diffraction efficiencies of the first

orders of a sinusoidal grating.

A J0
2(A) J1

2(A) J2
2 (A) J3

2(A) TIS(O3)

0.000 1.0000 0 0 0 1.00

1.846 0.0982 0.3386 0.1006 0.0111 1.00

2.402 0 0.2701 0.1861 0.0394 0.99

3.047 0.0759 0.1033 0.2367 0.1007 0.96

3.838 0.1622 0 0.1612 0.1772 0.84

4.189 0.1429 0.0182 0.0983 0.1887 0.75

5.127 0.0183 0.1150 0 0.1165 0.48

5.332 0.0042 0.1198 0.0042 0.0884 0.43

5.508 0 0.1163 0.0143 0.0646 0.39

Sinusoidal-phase gratings are frequently applied to illustrate the effect of small
surface errors due to fabrication errors. When only the –1 diffraction orders are con-
sidered, the total integrated scatter is then given after insertion of eq. (18.120) into
eq. (18.121), by the square of the RMS value of the phase error
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18.12 Scalar Diffraction at Dielectric Objects

TIS–1 ¼ 2 � J21 Að Þ » A
ffiffiffi
2

p
� �2

¼ RMS2 ð18-122Þ

with the root-mean-square average of the sinusoidal phase error given by

RMS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

d

Rd

0

A2 sin 2 2p

d
x

� �

dx

s

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2

2d
x þ d

4p
sin

4p

d
x

� �� �d

0

s

¼ A
ffiffiffi

2
p : ð18-123Þ

For surface gratings, the phase difference is given by multiplication of the surface
z(x) = a·sin(2p/d�x) with the propagation vector kz = 2p/k·n(x,z)·cosai (figure 18-29).

Figure 18-29: Relation between phase and surface error in transmission and reflection.

The transmission amplitude At and the reflection amplitude Ar of the sinusoidal
phase is therefore related to the amplitude of the surface error by

At ¼ n1 � n0ð Þ � 2p
k
a ; ð18-124Þ

Ar ¼ 2n0 cosai �
2p

k
a : ð18-125Þ

With n0 = 1 and n1 – n0 » 0.5 the well-known TIS formulae for transmission (index t)
and reflection (index r) follow:

TISt ¼ n� 1ð Þ 2p
k

a
ffiffiffi
2

p
� �2

¼ p � RMS

k

� �2

; ð18-126Þ

TISr ¼ 2 cosai

2p

k

a
ffiffiffi
2

p
� �2

¼ 4p � RMS � cos ainð Þ
k

� �2

: ð18-127Þ

18.12

Scalar Diffraction at Dielectric Objects

Incidentally, the scalar diffraction theories were applied to diffraction by apertures
in black screens. Of course, the scalar diffraction integrals can also be applied to the
propagation of arbitrary wave fields, with the effective aperture size becoming infi-
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18 Scalar Diffraction

nite and the spatial modulation being imposed on the incident wave. According to
the thin-element-approximation the transmitted field is computed according to the
law of geometrical optics as if the phase object is an infinitely thin, phase-shifting
sheet (figure 18-30)

Figure 18-30: Transmission through a phase object:

geometrical optics approximation.

Tðx; yÞ ¼ eik0 nðx;yÞ�1ð Þdðx;yÞ ð18-128Þ

where the local thickness is d(x,y) and the local refractive index is n(x,y).
The geometrical optic field in the plane of the sheet is conveniently divided into

the incident field and a scattered field

Uðx; yÞ ¼ Tðx; yÞUiðx; yÞ : behind object
Uiðx; yÞ : else

�

¼ Uiðx; yÞ þ
ðTðx; yÞ � 1ÞUiðx; yÞ : behind object

0 : else :

�
ð18-129Þ

Insertion into a scalar diffraction integral yields the diffracted field as the sum of the
propagated incident field and a scattered field. Using the first Rayleigh–Sommerfeld
integral we obtain, for instance,

Uð~rrÞ ¼ Uið~rrÞ þ
1

2p

R R

A

ðTð~rr ¢Þ � 1ÞUð~rr ¢Þ ¶
¶~ss

eik~rr�~rr ¢j j

~rr �~rr ¢j j dr : ð18-130Þ

The transmission according to geometrical optics, however, is only a very rough
approximation of the real boundary values and therefore deviations from the actual
fields are to be expected. Actually, the incident wave interacts with the object, pro-
ducing a scattered wave. The resulting wave, that is the diffraction field, is the sum
of the incident and the scattered field (cf. section 18.14). Intuitively one expects that
the above approximation is actually valid for only thin phase objects (d<<k). It turns
out, however, that the validity depends on the diffraction theory used, in combina-
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18.12 Scalar Diffraction at Dielectric Objects

tion with the polarization, the thickness of the sheet and the spatial frequency spec-
trum of the transmittance [18-20].

In order to compute the diffraction at thick phase objects, the object can be
divided into a stack of N infinitely thin, phase-shifting sheets of individual transmit-
tance (figure 18-31)

Tjðx; yÞ ¼ eik0 nðx;yÞ�1ð Þdjðx;yÞ: ð18-131Þ

Figure 18-31: Subdivision of a phase object into thin phase-shifting sheets.

In the first Born approximation, multiple scattering is neglected. In this context
this means that the diffraction of the undisturbed incident field is considered for
each sheet separately, i.e., the primary scattered fields of all sheets are superposed
without taking successive diffraction process into account. The diffracted field
becomes

Uð~rrÞ ¼ Uið~rrÞ þ
1

2p

XN

j¼1

R R

Aj

ðTjð~rr ¢Þ � 1ÞUið~rr ¢Þ
¶

¶~ss

eik~rr�~rr ¢j j

~rr �~rr ¢j j dr : ð18-132Þ

In a better approximation the successive diffraction is computed as in the beam
propagation method, i.e., the incident field onto the j th sheet stems from the dif-
fraction at the (j – 1)th sheet and the diffraction integral becomes

Ujð~rrÞ ¼ Uið~rrÞ þ
1

2p

R R

Aj�1

ðTj�1ð~rr ¢Þ � 1ÞUj�1ð~rr ¢Þ
¶

¶~ss

eik~rr�~rr ¢j j

~rr �~rr ¢j j dr ;

j ¼ 1; :::;N; U0 ¼ Ui :

ð18-133Þ

This approximation neglects backward scattering.
For numerical implementation, the propagation operator formalism is particular-

ly convenient because the Fourier transform of the transmitted field is readily com-
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puted without having to cope with artificial external boundaries as in the space-eval-
uation of the scalar diffraction integrals. If the latter is to be applied, the decomposi-
tion of the transmitted field into the undisturbed incident wave and a scattered field
is to be recommended.

18.13

Babinet’s Principle

The far-field Babinet principle indicates the similarity of the Fraunhofer diffraction
patterns (except for the central peak) behind complementary opaque obstacles in
which transparent and opaque parts are reversed [18-21].

Figure 18-32: Illustration of Babinet’s principle

from the measurements of D.W. Pohl [18-22].

This original formulation of Babinet’s principle is a special case of a more general
scalar Babinet principle [18-2] which states that the superposition of the complex
scalar diffraction fields UA(r) and UA(r) behind two complementary black screens A
and A equals the non-diffracted incident wave

UAð~rrÞ þUAð~rrÞ ¼ UIð~rrÞ : ð18-134Þ

This is a direct consequence of the superposition principle of scalar diffraction (stat-
ing that the diffracted field of two disjunctive obstacles is the sum of the individual
diffraction fields). Calculating the diffraction field of a weak phase object, however,
also implies an undisturbed superposition of the scattered fields of different parts of
the object. Multiple scattered fields are neglected. For this reason an extension of
Babinet’s principle to phase objects is possible as this is valid within the scope of the
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first Born approximation. A rigorous form of the scalar Babinet principle is provided
by Bouwkamp [18-23] for acoustics. Here complementary objects satisfy different
boundary conditions: The complement of a soft screen which satisfies U = 0, i.e.,
the Dirichlet condition is a hard obstacle which satisfies dU/d~ss = 0.

The electromagnetic Babinet principle for diffraction fields behind complemen-
tary perfectly conducting objects is frequently examined in the literature. A list of
early authors dealing with this principle can be found in [18-23]. The electromag-
netic Babinet principle relies on the duality of Maxwell’s equations [18-24]. In the
present chapter, we restrict ourselves to the approximate (i.e., not rigorous) scalar
Babinet principle, which can be extended to thick, transparent diffracting objects in
a much more straightforward way [18-25].

Consider two complementary phase objects P and P as depicted in figure 18-33,
where the phase-shifting parts are reversed so that the superposed object has con-
stant transmission.

Figure 18-33: Complementary phase objects.

The diffracted field of objects P and P are written as the sum of the incident and the
respective scattered fields

UPð~rrÞ ¼ Uið~rrÞ þUS
Pð~rrÞ ;

U�PPð~rrÞ ¼ Uið~rrÞ þUS
�PPð~rrÞ :

ð18-135Þ

Due to the superposition

UPð~rrÞ þU�PPð~rrÞ ¼ 2Uið~rrÞ þ ðT � 1ÞUið~rrÞ
¼ TUið~rrÞ þUið~rrÞ ;

ð18-136Þ

the superposition of the complex scalar diffraction fields behind two complementary
phase objects equals the undiffracted incident field, plus the field TUi transmitted
by the superposed dielectric object, that is, an infinite phase-shifting sheet. The con-
sequences of the extended Babinet principle for far-field diffraction patterns are the
same as those of the original one for black screens. The Fraunhofer diffraction pat-
terns are identical except for the central peak.

Since the extended Babinet principle is a consequence of the first Born approxi-
mation, it can be applied if the first Born approximation is valid – for instance for
weakly absorbing objects. The infinitely thin black screen does not affect the scat-
tered field in its vicinity and is therefore also included (T = 0).

Another consequence of this form of Babinet’s principle is that complementary
objects yield complementary near-fields. For the deviation of the diffraction field
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from the incident field, i.e., the amplitude Da ¼ Uj j= Uij jÞ � 1ð and the phase
Du ¼ argðUÞ � argðUiÞ, the extended Babinet principle becomes

1þ Dað~rrÞ½ �eiDuð~rrÞ þ 1þ Dað~rrÞ
h i

eiDuð~rrÞ ¼ T þ 1: ð18-137Þ

Using eiDu » 1þ iDu we obtain

Dað~rrÞ þ Dað~rrÞ ¼ Tj j � 1 ;

Duð~rrÞ þ Duð~rrÞ ¼ argðTÞ :
ð18-138Þ

The principle was verified by near-field measurements with 3 cm microwaves (fig-
ure 18.34).

Figure 18-34: Amplitude (a,c) and phase-distribution (b,d) for

increasing distance (z = 0.1k – 1.8k) behind complementary weak

phase objects (n = 1.02)measured with 3 cm microwaves [18-25].
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18.14

Scalar Scattering

In inhomogeneous media, the refractive index can be split into a constant part and a
spatially varying part dn(r). In particular, for the case of weakly inhomogeneous
media with nð~rrÞ ¼ �nnþ dnð~rrÞ, the space-dependent terms of the wave equation can
be combined and treated as a source term [18-26]:

DUð~rrÞ þ �nn2 k20Uð~rrÞ ¼ � 2dnð~rrÞ�nnþ dn2 ~rrð Þð Þ k20Uð~rrÞ ¼ Fð~rrÞ k20Uð~rrÞ : ð18-139Þ

The inhomogeneity F(r) can also be interpreted as the scattering potential. In the
case of weak scattering or Rayleigh scattering, the solution of eq. (18.139) is given by
the incident field Ui and a weak perturbation, the scattered field Us

Uð~rrÞ ¼ Uið~rrÞ þUsð~rrÞ ð18-140Þ

where the scattered field Us given by the implicit Fredholm integral equation

Usð~rrÞ ¼ k20
RRR

V

Fð~rr ¢ÞUð~rr ¢ÞGðr �~rr ¢Þd3r ¢ : ð18-141Þ

Figure 18-35: Scattering in the first Born approximation.

This is a three-dimensional convolution integral of the source term FU with Green’s
function. Taking a spherical wave as the Green’s function together with the spec-
trum is, according to eq. (18.51)

F
eikR

R

� �

¼ i
2p

kz
eikzz ð18-142Þ

which yields the plane wave expansion

Gð~rr �~rr ¢Þ ¼ eik0~rr�~rr ¢j j

~rr �~rr ¢j j ¼
i

2p

R¥

�¥

R¥

�¥

ei kx x�x ¢ð Þþky y�y ¢ð Þþkz z�z ¢ð Þ½ �
kz

dkxdky: ð18-143Þ
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Inserting the plane wave expansion into the Fredholm equation and performing the
2D Fourier transformation we obtain

usðkx; ky; zÞ ¼ k20
RRR

FðrÞ �UiðrÞ� 1
kz
� e�iðkxxþkyyþkzðz�z ¢Þdx ¢dy¢dz¢

¼ k20
ð2pÞ3 �

ei kzz

kz

RR R

g

f ðk� k�Þ � uiðkiÞd3ki :
ð18-144Þ

Accordingly, the angular spectrum of the scattered field is given by the convolution
of the incident angular spectrum with the three-dimensional Fourier transform of
the inhomogeneity F(r):

us kx; ky; z
	 


¼ k20
kz

eikzz � f ~ggð Þ � ui ~ggð Þ : ð18-145Þ

Multiple scattering can be considered by the Born series expansion. In general the
(p+1)th-order scattered field from the pth-order, according to eq. (18-141), is given by

Upþ1ðrÞ ¼ k20 �
RR

Fðr ¢Þ �Upðr ¢Þ �Gðr ¢� rÞ d2r ¢: ð18-146Þ

For the case of a single incident plane wave, which is described in the frequency
domain by a delta function

ui ~ggð Þ ¼ d ~gg �~kki

� �

; ð18-147Þ

eq. (18.145) reduces to

us kx; ky; kz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 � k2x � k2y

q

; z
� �

¼ i k20
kz

eikzz � f ~kk�~kki

� �

: ð18-148Þ

A consequence of eq. (18.148) is the Laue equation [18-27], which states that scatter-
ing is described by the spectrum of the scattering potential, taken at those object
frequencies

~gg ¼~kk�~kki ð18-149Þ

which correspond to possible frequency transfers from the incident ki-vector to the
Ewald sphere of the scattered k-vector (note that the angular components k of the
field distribution are restricted by the Ewald equation) [18-28]–[18-30].
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Figure 18-36: a) Laue construction of reflection at an interface.

b) Laue construction of refraction at an interface from

n0 = 1.5 to n1 = 1.0.

According to the Born approximation of first order, the solution of eq. (18.141) is
approximately given by a first-order series expansion [18-31]. As was pointed out by
Tatarski, this first-order approximation is only valid for small phase changes S1 rela-
tive to the phase S1 of the incident wave Ui [18-32]

S1j j << 1 with Us ¼ A � eiðS0þS1Þ: ð18-150Þ

For large, but smooth variations of the refractive index as in gradient index media,
the Rytov approximation is preferable [18-32].
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It has been shown that the Born approximation is also applicable for the approx-
imate treatment of refraction, diffraction and scattering at surfaces. For a surface
given by z= h(x,y) the scattering potential f(r) can be written as

Fð~rrÞ ¼ n2
0 � n2

1

	 

�H z� h x; yð Þð Þ ð18-151Þ

where the Heavyside step function is defined by H(z) = 1 for z > 0 and H(z) = 0 other-
wise. The frequency spectrum of the scattering potential is thus given by

f ~ggð Þ ¼ C
RR

d gzð Þ þ i

gz

� �

� exp �ih x; yð Þgz½ � � e�i gxxþgyyð Þ dxdy: ð18-152Þ

The d-function at gz = 0 will not contribute to the refracted spectrum and can be
omitted. Insertion of eq. (18-144) yields
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Figure 18-37: a) Amplitude distribution of a plane wave scattered

at a dielectric cylinder with index 1.5 and a diameter of 21 wavelengths

(image extension 85 � 42 wavelengths; b) Intensity distribution

corresponding to a); c) Intensity distribution of the scattering of a

plane wave at a deformed dielectric cylinder with index 1.5 [18-33].
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Uð~rrÞ ¼ vk2
0

2 2pð Þ3
R R

x ¢;y ¢

R R

kx ;ky

R

kiz

e
�ih x ¢ð Þ� kz�kizð Þ
kz kz�kizð Þ �Uiðx ¢; y¢; kizÞ

� ei kx x�x ¢ð Þþky y�y ¢ð Þþkzz½ �dx ¢dy¢dkxdkydkiz : ð18-153Þ

Using the Born series expansion, the scattered field at refracting surfaces can be
computed in a relatively simple manner especially when no analytical solutions can
be found [18-33]. Figure18-36 shows examples of simulation results at a perfect and
at a disturbed cylinder.

For an analytical solution of eq. (18-153), the first exponential can be written as a
Fourier series or the interface function h(x) can be expanded into a polynomial. For
small angles, the difference between the refracted and incident kz-vector can be
approximated by the difference between the refractive indices Dn multiplied by
2p/k. At z= 0, the first exponential can be interpreted as the transmission function
T(x) of the phase object as given in the Kirchhoff approximation for infinitesimal
thin objects:

Tðx; yÞ ¼ ei
2p
k
Dn�hðx;yÞ : ð18-154Þ

Therefore the Kirchhoff approximation for thin phase gratings is in the paraxial
approximation:

uðx; y; z ¼ 0Þ »Tðx; yÞ uiðx; y; z ¼ 0Þ : ð18-155Þ

The Kirchhoff approximation considers only transverse frequency transfers and
neglects the longitudinal frequency transfer [18-34].

18.15

Boundary Diffraction Waves

In the theory of boundary diffraction waves, diffraction fields U(r) are divided into
two parts. An undisturbed geometrical optics field Ugð~rrÞ and a boundary diffraction
wave UBDWð~rrÞ originating from the rim of the diffracting object (figure 18-38). For
scalar waves it is

Uð~rrÞ ¼ Ugð~rrÞ þUBDWð~rrÞ ð18-156Þ

with

UBDWð~rrÞ ¼
R

C

Kð~rr;~rr ¢;Uið~rr ¢ÞÞds : ð18-157Þ

The boundary diffraction wave is discontinuous when compensating for the discon-
tinuity of the geometrical optics field.
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Figure 18-38: Diffraction with a boundary diffraction wave.

The idea of calculating diffraction fields using a boundary diffraction wave dates
back to Young (1773–1829) [18-35]. The idea was later revived by Maggi [18-36] and
by Rubinowicz [18-37], who showed that the Kirchhoff diffraction integral splits into
two parts, namely a geometrical optics field and a boundary diffraction wave. Its
existence in the Rayleigh–Sommerfeld diffraction integrals was confirmed by Marc-
hand and Wolf [18-38].

The boundary diffraction wave is also the central concept in the geometrical diffrac-
tion theory (GTD) of Keller [18-39] – which becomes discontinuous at the shadow
boundary – and its successors, the uniformasymptotic theory (UAT) [18-40] and the uni-
form theory of diffraction (UTD) [18-41]. However, the best known example of a bound-
ary diffraction wave is definitely Sommerfeld’s exact solution of the diffraction by a per-
fectly conducting half-plane [18-2]. The geometrical theory of diffraction is of interest
because the fields are electromagnetic but the mathematical framework is nevertheless
comparatively simple. So it can be used for quick estimations of near-fields [18-45].
For this reason, we discuss them in the present chapter, which is concerned with
scalar diffraction, although they are, strictly speaking, electromagnetic.

18.15.1

Geometrical Theory of Diffraction

The Geometrical Theory of Diffraction (GTD) developed by J.B. Keller [18-39] applies
the concept of optical rays to the calculation of diffraction fields. In addition to the
geometrical optics rays, diffracted rays are introduced which emanate from inter-
faces, edges and vertices and behave and propagate inside a homogeneous medium
in the same way as ordinary rays.

Applying Fermat’s principle to edge diffraction, it can be shown that the dif-
fracted rays in conjunction with the reflected rays, represent the main part of the
scattered field, since all other rays interfere destructively (by the method of station-
ary phase). Hence in this high-frequency approximation, the scattering process is
treated as a local phenomenon. Summing up, the diffraction field is divided into a
(discontinuous) geometrical optics field and an (also discontinuous) boundary dif-
fraction wave emanating from the edges.
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18.15 Boundary Diffraction Waves

Figure 18-39: Diffracted rays.

Consider a perfectly conducting half-plane. The electromagnetic field behind it is
described as the superposition of a geometrical optics field (Eg, Hg) and a boundary
field (EBDW,HBDW), i.e., by analogy with (18.156)

~EEð~rrÞ ¼ ~EEgð~rrÞ þ~EEBDWð~rrÞ ;
~HHð~rrÞ ¼ ~HHgð~rrÞ þ ~HHBDWð~rrÞ :

ð18-158Þ

According to the geometry shown in figure 18-39, the edge of the half-plane coin-
cides with the y-axis and the electromagnetic field will be constant in this direction
(two-dimensional diffraction).

The boundary diffraction wave is identical for the GTD and the UAT. It is discon-
tinuous at the reflection and transmission shadow boundary. The geometrical optics
field is

~EEgð~rrÞ ¼
0 : shadow region

~EEið~rrÞ : lit region ;

�

ð18-159Þ

where ~EEið~rrÞ denotes the incident field. While in the GTD the geometrical optics
field remains unchanged, in the UAT it is modified for correction of the GTD singu-
larity at the shadow boundary:

~EEð~rrÞ ¼ ~EEmgð~rrÞ þ~EEBDWð~rrÞ : ð18-160Þ

The modified geometrical optics field can be written as the sum of two fields ema-
nating from the real source and a virtual source [18-42]

Ey
mgð~rrÞ ¼ DFðfiÞEy

i � DFðfrÞEy
r ð18-161Þ

with

DFðfÞ ¼ FðfÞ � F̂FðfÞ : ð18-162Þ

F(f) is the Fresnel function and F̂(f) is the asymptotic Fresnel function with
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FðfÞ ¼ e�ip=4

ffiffiffi
p

p R¥

n

eit
2

dt ;

F̂FðfÞ ¼ 1

2f
ffiffiffi
p

p eiðn
2þp=4Þ :

ð18-163Þ

Ei(r) in (18.159) denotes the incident field at the point of observation and Er(r) denotes
the field emanating from the virtual source that corresponds to an image source.

Figure 18-40: Geometry for UAT computations.

The geometrical arrangement is shown in figure 18-40. The virtual source has the
same distance to the object plane as the physical source. rsa denotes the distance be-
tween the source and the point of observation, and rse denotes the distance between
the source and the edge of the half-plane. The corresponding primed quantities
have the same meaning but they refer to the virtual source.

The detour parameters fi and fr are given by

fi ¼ ei
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k0 rse þ rea � rsað Þ
p

;

fr ¼ ei

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k0 r ¢se þ rea � r ¢sa
	 


q

:
ð18-164Þ

where ei is the shadow indicator with

ei ¼
�1 : lit region
1 : shadow region :

�

ð18-165Þ

If the cylindrical wave emanating from the source is normalized to “1” at a point on
the edge, the modified geometrical optics field becomes

Ey
mgð~rrÞ ¼ DFðfiÞ �

ffiffiffiffiffiffi
rsa
rsa ¢

r

eik0 rsa ¢�rsað ÞDFðfrÞ : ð18-166Þ

With the same normalization, the boundary diffraction wave becomes

Ey
BDWð~rrÞ ¼ DTM

eik0rea
ffiffiffiffiffi
rea

p
ffiffiffiffiffi
rsa
rse

r

eik0 rse�rsað ÞDFðfrÞ ; ð18-167Þ
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with the diffraction coefficient (wi and wr are defined in figure 18-40)

DTM ¼ eip=4
ffiffiffiffiffiffiffiffiffiffi

8pk0
p csc

wi

2

� �

� csc
wr

2

� �� �

: ð18-168Þ

As a consequence of the simple form of these equations, the calculation of the
diffraction field by means of the UAT can be performed extremely quickly.

The diffraction coefficient DTM is determined by comparison with the asymptotic
extension of the well known exact solution of A. Sommerfeld [18-2]. DTM becomes
singular for wi = 0 and wr = 0, and consequently the boundary diffraction wave
becomes discontinuous here. In the UAT these singularities are corrected by the sin-
gularities of DF, while they are not corrected in the GTD.

Using eqs (18.166)–(18.168), the diffraction field behind a perfectly conducting
half-plane can be calculated for TE polarization. For TM polarization the y-compo-
nent of the magnetic field can be calculated in a very similar way if (18.166) and
(18.167) are replaced by

Hy
mgð~rrÞ ¼ DFðfiÞ þ

ffiffiffiffiffiffi
rsa
rsa ¢

r

eik0 rsa ¢�rsað ÞDFðfrÞ ð18-169Þ

and

Hy
BDWð~rrÞ ¼ DTE

eik0rea
ffiffiffiffiffi
rea

p
ffiffiffiffiffi
rsa
rse

r

eik0 rse�rsað ÞDFðfrÞ ð18-170Þ

with the diffraction coefficient

DTE ¼ eip=4
ffiffiffiffiffiffiffiffiffiffi

8pk0
p csc

wi

2

� �

þ csc
wr

2

� �� �

: ð18-171Þ

The change from TE to TM polarization is equivalent to a change in the boundary
conditions which are given for a perfectly conducting screen in the xy-plane as

Ex;y ¼ 0;
¶Ez

¶z
¼ 0;

¶Hx;y

¶z
¼ 0; Hz ¼ 0; ð18-172Þ

i.e., the boundary condition for Ey in TE polarization is Ey = 0 and for Hy in TM
polarization it is ¶Hy/¶z = 0.

The formalism of the GTD/UAT can be extended to wedges [18-43] and to opaque
objects with limited conductivity as well as to phase objects [18-44]. For this, the
appropriate diffraction coefficient has to be determined [18-45] which requires
objects of simple geometry (half-planes, wedges, etc.). A simple extension of the
UAT to phase-shifting half-planes is derived in [18-46].
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18.15.2

An Empirical Boundary Diffraction Wave

Using Sommerfeld’s rigorous solution for diffraction at a perfectly conducting half-
plane [18-2], Andrews and Margolis [18-47] derived an empirical expression for the
boundary diffraction wave at such a half-plane in TE polarization (E parallel to the
edge): For a linearly polarized, normally incident plane wave, the boundary diffrac-
tion wave becomes

EBDW
y ðx; zÞ
Ei
yð0; 0Þ

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ sinu

1þ gð Þ r

k

s

eiðbþbg Þ

2p sinu
ð18-173Þ

with the polar coordinates (cf. figure 18-41)

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ z2
p

; tanu ¼ z

x
ð18-174Þ

with

g ¼ 1þ 1:5
ffiffiffi

b
p

pb 1þ bð Þ ð18-175Þ

and

bg ¼
p

4
1� e�

ffiffi
b

p� �

ð18-176Þ

where

b ¼ k0 r� zð Þ : ð18-177Þ

Figure 18-41: Polar coordinates for empirical boundary diffraction wave at a half-plane.
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18.15 Boundary Diffraction Waves

Figure 18-42: The empirical boundary diffraction wave. Top: field lines

(after [18-47]). Bottom: amplitude at a distance of 0.1k behind the object plane.

Figure 18-42 shows, on the left-hand side, the amplitude of the boundary diffrac-
tion wave for TE polarization (E || edge). Note the strong asymmetry of the ampli-
tude which is due to the fact that, for x < 0, the boundary diffraction wave propa-
gates in the vicinity of a perfect conductor with the boundary condition Ey = 0 at its
surface. With increasing distance the field becomes more symmetrical.

With the electromagnetic form of Babinet’s principle, the TM polarized version of
the boundary diffraction wave is easily obtained. In fact, Andrews and Margolis
used this boundary diffraction wave for a re-derivation of the electromagnetic Babi-
net principle. A consequence of this principle, is that the electric amplitude for TE
polarization and the magnetic amplitude for TM polarization are mirror-symmetric
to each other. The field lines plotted at the top of figure 18-42 illustrate this.

However, in the last two sections we have clearly left the field of scalar optics. The
methods were nevertheless presented in this (scalar) section because the considered
diffraction problems are essentially two-dimensional, thus reducing the vector dif-
fraction problem to a scalar one. The discussion of actual vector diffraction theories
will be presented in chapter 27.
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19.1

Basic Principles

19.1.1

Introduction

Usually only the light intensity can be measured in optics, i.e., the complex field
amplitude is not measurable at optical frequencies of the order of 1014 Hz. Generally
the absolute value of the amplitude of the electrical field can only be derived from
the measured intensity, and those effects, in which the phase of the field amplitude
is involved are actually not very common in practice. In special experimental
arrangements and in some cases, the phase relationships of the field amplitudes are
manifested in the occurrence of characteristic intensity patterns known as interfer-
ence effects. In interferometry, e.g., these interference effects are used for relative
measurements of the path length. According to the definition given by Zernike,
coherence should be understood as a measure for the observability of interference
effects, whereas the degree of coherence in a given intensity pattern depends in gen-
eral on the light source and the viewing apparatus [19-1].

In some cases, the purpose is to utilize coherence effects: examples are the pre-
viously mentioned interferometry for relative measurements of the path length or
optical image formation. According to the theory of Abbe, image formation is a
result of the interference of the diffraction orders occurring through diffraction at
the object from a light source. However, when operating with coherent light,
unwanted interference effects might occur. Sometimes the term “coherent light” is
defined by the occurrence of such effects. Thus, optical systems based on laser light
sources, e.g., often suffer from such undesired or parasitic interference effects,
caused, e.g., by scattering at rough surfaces, atmospheric turbulences or contamina-
tions, which are known as speckle effects.

The concept of coherence is therefore closely related to the phenomenon of inter-
ference. Since at least two interfering “partners” are always involved, one often
speaks of mutual coherence. In general there are three basic properties which affect
the mutual coherence of interfering electromagnetic fields: the frequency or color
spectrum, the spatial distribution or shape and size of the source and the polariza-
tion. The summation of the light amplitude can produce interference phenomena
only for the same vector components of the electromagnetic field; different vector
components have no effect on each other. Hence the discussion in this chapter will
be restricted to the scalar case.

Coherence in a more general sense is a statistical effect in wave optics and is dis-
cussed as such in numerous references [19-2] through to [19-11]. If there is no fixed
coupling of the phases of the complex field components, the superposition or the
interference of the waves results in reduced contrast of the interference patterns and
phase changes will have a minor impact. In the limit of totally statistical behavior of
the phases of the field components, down to dimensions of the wavelength, a wave
field is identified with perfect incoherence. If, on the other hand, all phases are
strictly coupled, the resulting intensity pattern will be very sensitive on phase
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changes, one speaks of ideal or complete coherence. Thermal light sources are, to a
large extent, incoherent and lasers operating in their fundamental mode can be con-
sidered to be coherent. The question of coherence, from a statistical point of view, is
thus also connected to the amount of information in a wave field. A coherent wave
field may be described by a single mode, while incoherent wave fields need a super-
position of at least several independent modes.

The coherence properties of optical imaging consequently are determined by:

1. Statistical initial phases of the emitted waves.
2. The finite length of the wave train and its finite spectral bandwidth.
3. Large differences in the optical path lengths of the transfer system as a result

of the finite size of the light sources.

Coherence is a spatial-temporal phenomenon, and may be separated in purely
spatial and purely temporal coherence. The parameters for the description of coher-
ence depend on the position in space and vary with the light propagation, but can be
recognized also at a definite position by observing the time dependence, e.g. These
two views on coherence properties can be observed in interferometric arrangements
by splitting the input wave either by “amplitude” or “phase” splitting:

. In the Michelson interferometer the amplitude is split and one observes the
temporal coherence.

. In the Young interferometer the wave is geometrically split and one observes
the spatial coherence.

In the so called phase space or, more general, Wigner space, fields with different
spatial coherence can be distinguished by their characteristic features. For a coher-
ent field, a well-defined coherent field strength exists at each point and consequently
can interfere everywhere. In phase space, one may obtain a narrow line whose width
is given by the diffraction limit. The Wigner distribution function, discussed later in
this chapter, for coherent wave fields will also have negative values, by which diffrac-
tion and interference effects are considered. On the contrary, when the light field is
perfectly incoherent, no destructive interference can take place, and one obtains in
the phase space, in the frame of the geometrical boundary conditions, a distribution
with a wide angular spectrum for each spatial position. In general the distribution
in the phase space exhibits an intermediate size between these two limiting cases
and, depending on geometry and coherence properties, a specific angular distribu-
tion at each point. Figure 19-1 illustrates the different spatial-angular radiation dis-
tributions and the representations in the phase space. This indicates that the
description of partially coherent light contains a substantially larger number of
degrees of freedom and correspondingly the numerical simulations of the light
propagation or imaging will require substantially more effort.
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19.1 Basic Principles

Figure 19-1: Radiation characteristics of light sources with different

coherence and the corresponding areas in the phase space with the cor-

responding density distributions.

19.1.2

Two-beam Interference and Double Slit Diffraction

A monochromatic plane wave incident on an infinitesimal slit produces a cylindrical
wave. Thus two cylindrical waves are generated behind a double slit. Hence, the two
slits correspond to two sources, which excite two field distributions oscillating in
phase with the incident plane wave. The superposition of two waves can be illustrat-
ed by the Moir� pattern, e.g., by marking the crests of the waves and superimposing
the two patterns at intervals from the two slits (Figure 19-2). Dark Moir� fringes
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19 Interference and Coherence

indicate zones where the crest of the first wave coincides with the trough of the
other wave and the two wave amplitudes with opposite phases extinguish each
other. In contrast, in the light regions the two waves interact in-phase, i.e., the com-
mon wave crests are intensified.

Hence the resulting intensity at any point behind a double slit is determined by
the superposition of the two field amplitudes U1 and U2

I x; zð Þ ¼ U1 x; zð Þ þU2 x; zð Þj j2: ð19-1Þ

Let us assume for simplicity that a monochromatic point light source illuminates
the two slits from some distance as shown in figure 19-3. Depending on the position
xs of the light source and the position of observation x2, different optical path
lengths are obtained for the two slits. In one of the limiting cases, the maximum
intensity is obtained for the image point x2 when the difference in the path lengths
is an integer multiple of 2p, i.e., the two wave crests coincide and constructive inter-
ference takes place. In the other extreme case one obtains complete extinction when
the optical path difference (OPD) sOPD is an odd integer multiple of p, i.e., when
wave crests meet wave troughs. The optical path difference depends on the separa-
tion z1 between the light source and the double slit and the distance z2 between the
double slit and the plane of observation, as well as on the slit spacing D, the lateral
position of the light source xs and the lateral position of the detector x2. Using eq.
(19-1) it is easy to derive the following expression for the resulting intensity:

I x2ð Þ ¼ A � eik0 �sOPD1 þ A � eik0 �sOPD2





2
» 2A2 þ 2A2 cos k0 � DsOPDð Þ; ð19-2Þ

DsOPD ¼ sOPD2 � sOPD1; ð19-3Þ

sOPD1 ¼ a1 þ b1; ð19-4Þ

sOPD2 ¼ a2 þ b2: ð19-5Þ

Figure 19-3 shows the geometry of the double slit arrangement.

Figure 19-3: Diffraction by a double slit in the case of a monochromatic point light source.
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19.1 Basic Principles

The exact geometrical realization of the above arrangement has a negligible
impact on the final result, which can be obtained as a solution of the optical diffrac-
tion problem using, e.g., the Kirchhoff integral. In the far-field limit one can apply
the Fraunhofer approximation, according to which the diffraction pattern and the
intensity distribution are given by the Fourier transform of the transmission func-
tion of the double slit. The double slit with a spacing D can be represented by a con-
volution of two delta-functions with a rect-function for a single slit of width d:

T x1ð Þ ¼ rect
x1
d

� �

� d x1 �
D

2

� �

þ d x1 þ
D

2

� �� �

: ð19-6Þ

After illumination by a plane wave with a propagation angle a relative to the z-axis,
the far-field distribution is given by the product of a cosine and a sinc-function:

U x2ð Þ» sinc
d

kz
� x2

� �

� cos p
D

kz
x2

� �� �

: ð19-7Þ

The sinc-shaped envelope function degenerates into a constant only for delta-shaped
slit apertures, which results in simple cosine-shaped interference fringes as defined
in eq. (19-2).

Figure 19-4: Interference patterns resulting from the coherent superposition

of two point light sources versus their distance D and wavelength k.

105



19 Interference and Coherence

Figure 19-4 illustrates the interference patterns obtained in a two-pinhole experi-
ment, which is equivalent to the superposition of two coherently emitting light
points in a plane containing both of them. It illustrates the interference pattern
resulting from the coherent superposition for different separations D and wave-
lengths k. The number of interference patterns increases with decreasing wave-
length and increasing pinhole distance. This corresponds to the argument in the cos
function of the last expression in eq. (19-2), which scales with DsOPD/k.

19.1.3

Contributions of Different Points of the Light Source

A light source of finite size can be considered as consisting of many point light
sources. Each point light source produces, depending on its position in space, a lat-
erally shifted interference pattern, whereby the lateral position of the far-field distri-
bution is determined by the position of the source point xs. First the question will be
investigated, whether waves, emitted by different light source points, may interfere
at all.

Figure 19-5: Interference between two points of a light source.

For the consideration the interference of two point sources it is assumed that the
emitted waves are monochromatic with different frequencies x1 and x2:

U1 ¼ A1 cos k1r � x1tþ j1ð Þ ;
U2 ¼ A2 cos k2r � x2tþ j2ð Þ :

ð19-8Þ

In the special case of equal amplitudes A1 =A2 =A and constant phase difference
j1 – j2 = const., one obtains for the field in the position x2

U tð Þ ¼ A � cos x1tð Þ þ A � cos x2tð Þ

¼ 2A � cos x1 þ x2ð Þ � t
2

� �

cos
x1 � x2ð Þ � t

2

� �

: ð19-9Þ
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19.1 Basic Principles

It follows from the last equation that the intensity is given by:

I tð Þ ¼ 4A2 � cos 2 x1 þ x2ð Þ � t
2

� �

� cos 2 x1 � x2ð Þ � t
2

� �

: ð19-10Þ

Figure 19-6: Beating as a result of the superposition of two plane waves with

different carrier frequencies (x1 = 2p, x2= 2.2p). U(t) is the amplitude and I(t)
the intensity of the interference signal.

The resulting interference pattern contains a high-frequency and a low-frequency
term. The high-frequency term will be considered first.

19.1.4

The High-frequency Term

Even if the carrier frequencies are equal, there is an oscillating term with frequency
x= (x1 + x2)/2. As a consequence, the interference pattern will, in any case, be
“flickering“ with an average temporal frequency 1/T =x/2p, defined by the propa-
gation velocity c0 of light divided by the wavelength k:

x

2p
¼ 1

T
¼ c0

k
: ð19-11Þ

Figure 19-7: Spatial interference pattern of two plane waves: a spatially

high-frequency pattern emerges which propagates to the right at ~1015 Hz.
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19 Interference and Coherence

If, e.g., one considers green light with a wavelength of 500 nm, the corresponding
frequency is 0.6 PHz= 600.000 GHz:

k ¼ 500 nmfi
1

T
¼ c0

k
¼ 3 � 108 m

s

.

0:5 � 10�6 m ¼ 0:6 � 1015Hz : ð19-12Þ

The optical frequencies are in the range 1014 – 1015 Hz and the high-frequency por-
tion of the interference signal with (x1 + x2)/2 is of the same order as the average
light frequency. Any detection process is associated with time averaging, electrons
have eventually to be excited and one has to measure the current or a photographic
film has to be blackened. Even modern detectors can operate only up to 1010 Hz
(10 GHz). Hence it is necessary to carry out an additional temporal averaging in eq.
(19-10) over approx. 104 oscillations. This time constant of the detector always
averages the high-frequency term (x1 + x2)/2. This term is actually absent when
one chooses the complex representation.

As a comment it has to be reminded, that the frequency is related to the energy of
the radiation. The photon energy comes into play, if the photon statistics like the
photon noise has to be considered. Such aspects will be disregarded at first.

19.1.5

The Low-frequency Term

In the complex representation, the two interfering waves are written as:

U1 ¼ A1e
i k1r�x1 tþj1ð Þ ; U2 ¼ A2e

i k2r�x2 tþj2ð Þ: ð19-13Þ

One obtains for the intensity:

I r; tð Þ ¼ U1 þU2j j2¼ U1U
�
1 þU1U

�
2 þU2U

�
1 þU2U

�
2

¼ I1 þ I2 þ A1A2 � ei Dkr�DxtþDjð Þ þ e�i Dkr�DxtþDjð Þ� �

¼ I1 þ I2 þ 2A1A2 � cos Dkr � Dxtþ Djð Þ :
ð19-14Þ

Figure 19-8: Vector construction of interference pattern with two Ewald

spheres with different radius ~1/k1 and ~1/k2; different wavelengths produce

a moving interference pattern with phase velocity Dx and fringe period d.
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In the case of light sources with different wavelengths one obtains running inter-
ference fringes with a spatial frequency Dk = k1 – k2 which move with a phase veloci-
ty of Dx (see figure 19-8).

In addition, the interference pattern is phase-shifted by Dj. Assuming at first a
constant phase difference of Dk·r + Dj= 0, one obtains after time averaging:

I r; tð Þ ¼ U1 þU2j j2
� �

¼ I1 þ I2 þ
2A1A2

T

RT=2

�T=2

cos Dx tð Þdt

¼ I1 þ I2 þ
4A1A2

TDx
sin Dx � T

2

� �

¼ I1 þ I2 þ 2A1A2 � sinc Dmt � Tð Þ

ð19-15Þ

with Dx= 2pmt. The contrast of the interference fringes decreases with the finite
integration time of the detector and the frequency separation Dx. Assuming a detec-
tor with a temporal resolution of 1/T ~ 1010 Hz (10 GHz) one can estimate the fre-
quency difference Dx which still allows the measurement of the moving interfer-
ence fringes. The first zero of the sinc-function occurs at

Dx ¼ x2 � x1 ¼
2p

T
: ð19-16Þ

The substitution x= 2pc/k yields, in the limit of small wavelength differences Dks in
the source, approximately

Dks ¼
k
2

cT
: ð19-17Þ

It follows that, for an average wavelength of 500 nm, the moving interference
fringes cannot be observed if the wavelengths of two light sources differ by more
than ~10 pm. Since the carrier frequencies in the optical range (of the order of
1014 s–1) are too high even for the fastest detectors, the averaging of the moving
interference fringes in the case of light sources with different wavelengths precludes
any interference contrast behind the Young double slit. Only in the special examples
like heterodyne interferometry slightly wavelength-shifted light sources and hence
moving interference fringes are applied for the measurement, e.g., of distances.

19.1.6

Different Light Source Points with Statistical Phase

In the case of equal wavelengths eq. (19-14) is reduced to the time-independent form:

I rð Þ ¼ I1 þ I2 þ 2A1A2 cos Dk � r þ Djð Þ: ð19-18Þ

Depending on the relative phase of the two waves a standing interference pattern is
formed in which the period d of the interference fringes is given by
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d ¼ 2p

Dk
¼ k

2 � sin a

2

� � ð19-19Þ

where a denotes the relative angle between the wave directions.

Figure 19-9: Vector construction of an interference pattern with the Ewald

sphere for equal wavelengths.

However, even in the case of equal wavelengths waves emitted by different light
sources, in general no visible interference fringes are formed if the phase relation
Dj of different source points are not constant. The resulting intensity is obtained by
time averaging over the time-dependent phase difference j(t):

I r; tð Þ ¼ U1 þU2j j2
� �

T
¼ I1 þ I2 þ

2A1A2

T

RT

0

cos D~kk �~rr � Dj tð Þ
� �

dt : ð19-20Þ

Depending on the phase relation Dj between the two point sources, three cases can
be distinguished (figure 19-10). The photons emitted by a thermal light source, e.g.,
an incandescent lamp, have statistical phases since the contribution of the sponta-
neous emission substantially exceeds that of the stimulated emission. The phase
differences between different points of the light source fluctuate stochastically so
that the interference term vanishes after time averaging. Thus one can analyse ther-
mal light sources as consisting of separate, uncorrelated point light sources which
do not interfere with each other. The resulting interference patterns of the individ-
ual light source points are therefore also uncorrelated and can be summated in
terms of intensity. This corresponds to the right-hand side case in figure 19-10: two
uncorrelated light source points produce no interference fringes and the visibility V
vanishes. The case of complete correlation depicted on the left-hand side occurs,
e.g., when the interfering waves originate from the same emission process and con-
sequently exhibit a fixed relative phase. The case shown in the middle corresponds
to weakly correlated relative phases, corresponding to a finite-sized thermal light
source or as might occur in concatenated imaging. Averaging over all wave pairs
then results in an averaged phase relation and a correspondingly weak interference
contrast.
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19.1 Basic Principles

Figure 19-10: Comparison of different phase relationships between two stationary signals.

Thus, interference occurs only with wave trains, which originate from the same
light source point and hence oscillate in-phase. Furthermore, interference between
field distributions with different temporal frequencies or colour cannot be observed.
Interference fringes of different colour occur of course under illumination with a
white light source (figure 19-11), and the fringe period is, according to eq. (19-19), a
function of the wavelength or colour. These coloured interference fringes emerge,
however, always as a result of the interference of two monochromatic waves with
subsequent incoherent superposition of the intensities of the different interference
fringes corresponding to the different colours.

Figure 19-11: Coloured interference fringes by incoherent superposition

of many interferences of different colours.

In the case of a finite-sizedmonochromatic light source, the intensities of the diffrac-
tion patterns of the double slit originating from separate source points takes are super-
posed in the observation plane. Depending on the separation between two source points
this results in extinction of the contrast or in-phase superposition of the interference
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19 Interference and Coherence112

fringes. In figure 19-12 two different separations of the source points are depicted. In
the upper picture with separation a1 constructive superposition of the interference
fringes takes place, i.e., interference fringes with maximum contrast can be observed.
For different separations, as in the case with separation a2 shown in the lower picture,
destructive superposition occurs, i.e., in theworst case the result is total extinction of the
interference fringes. It is easy to see that the image contrast or visibility V are propor-
tional to the cosine of the separation a of the light-source points:

V ¼ Imax � Imin

Imax þ Imin

~ cos B � að Þ ð19-21Þ

where the factor B is determined by the geometry.

Figure 19-12: Superposition of the intensities in the detector plane for different

separations a1 and a2 of two source points corresponding to constructive (upper picture)

and destructive (lower picture) superposition.

If instead of two light-source points a finite-sized light source with a maximum
extension DS is considered, one obtains for the pattern contrast after integration
over all source points

V ¼ Imax � Imin

Imax þ Imin

~ sinc B � DSð Þ : ð19-22Þ
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Figure 19-13: Visibility of the interference fringes behind a fixed double slit

in dependence on the light-source diameter DS.

Thus the interference contrast vanishes for increasing light source sizes and one
obtains the intensity as an incoherent sum of the displaced diffraction patterns of the
separate slits. This visual interpretation will be derived mathematically in the following
on the basis of the coherence function. For the time being one can summarize:

. The slit spacing determines the frequency of the interference fringes.

. The slit width determines the extension of the interference region.

. The frequency bandwidth of the light spectrum determines the visibility of
the interference fringes; as a rule, interference can be observed in the visible
range only for monochromatic light.

. The finite size of the monochromatic light source determines the interfer-
ence contrast.

19.2

Mathematical Description of Coherence

19.2.1

Coherence Function

For the description of coherence, the coherence function C serves as an important
mathematical concept in statistical optics. It is defined as the correlation of the com-
plex field amplitudes at different positions and times. The correlation integral is
averaged over a time interval T

C12ðsÞ ¼ Cð~rr1;~rr2; sÞ ¼ Uð~rr1; tþ sÞU�ð~rr2; tÞh i T

¼ 1

T

RtþT

t

Uð~rr1; tþ sÞ �U�ð~rr2; tÞ dt :
ð19-23Þ

113



19 Interference and Coherence

Since the field in this definition is compared to itself, the coherence C is given by
the cross-correlation of the field amplitude at different locations r and times t.
Figure 19-14 illustrates the formation of the correlation at two different positions x1
and x2 within the light.

Figure 19-14: Schematic representation illustrating the interpretation of the

coherence function as a correlation of the field strengths at two points in the

radiation field.

In the general case, the function C is hermitian and consequently the permuta-
tion of the spatial vectors gives the complex conjugate:

Cð~rr2;~rr1; sÞ ¼ C�ð~rr1;~rr2; sÞ: ð19-24Þ

After insertion of the complex amplitude, the first-order mutual coherence function
describes the correlation of the two signals U1 and U2 in the same position

C Un;Umð Þ ¼ UnU
�
m







� �

T
¼ 1

T

RT

0

AnAm cos Dknmr � Dxnm tþ sð Þ þ Djnm½ � ds

ð19-25Þ

with

Dxnm ¼ xn � xm ; ð19-26Þ

Dknm ¼ kn � km ; ð19-27Þ

Djnm ¼ jn � jm : ð19-28Þ

The mutual coherence function corresponds for n =m to the normal intensity and is
consequently referred to as mutual intensity. The intensity is obtained from the
coherence function by taking coincident positions in space~rr1 ¼ ~rr2 ¼ ~rr and vanish-
ing time difference.

Using eq. (19-25) one can identify the intensity with the autocorrelation function
of a signal
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I ¼ C Um;Umð Þ ¼ Cð~rr;~rr; 0Þ : ð19-29Þ

For multiple superposition of many amplitudes or modes, the coherence function
can be written in general as a double sum over all �signals’ Un:

I r; tð Þ ¼
X

n;m

C Un;Umð Þ ¼
X

n;m

ffiffiffiffiffiffiffiffiffi

InIm
p

c Un;Umð Þ : ð19-30Þ

For mutual incoherent fields or modes of vanishing cross-correlation, eq. (19-30)
simplifies to

Cð~rr1;~rr2Þ ¼
X

m

Cmð~rr1;~rr2Þ : ð19-31Þ

As a correlation, the coherence function is a mathematical construction and can not
be measured directly. An evaluation of the coherence function is possible, since the
coherence function specifies the contrast of the interference between two signals U1

and U2. By normalization, the coherence function is transformed to the so-called
complex degree of coherence c with values limited by 0£ |c| £ 1:

c12ðsÞ ¼ cð~rr1;~rr2; sÞ ¼ C12ðsÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C11ð0Þ � C22ð0Þ
p ¼ Cð~rr1;~rr2; sÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ið~rr1Þ � Ið~rr2Þ
p : ð19-33Þ

The correlation between two points in real light fields normally decreases both with
increasing time difference s and spatial separationDr. A typical dependence of the abso-
lute value of the degree of coherence on these two differences is shown in figure 19-15.

Figure 19-15: Schematic representation of the decreasing degree of coherence

with increasing temporal and spatial separation.
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Finally, the intensity of the interference pattern of two point light sources is given
by

Ið~rrÞ ¼ I1ð~rrÞ þ I2ð~rrÞ þ 2Cð~rr1;~rr2; 0Þ

¼ I1ð~rrÞ þ I2ð~rrÞ þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

I1ð~rrÞ I2ð~rrÞ
p

c12ð0Þ : ð19-34Þ

The stronger the correlation between the separate light sources, the higher the con-
trast of the interference pattern. In the limit c= 0 no phase coupling is present and
the two source points are not capable to interfere with each other. The visibility of
the interference pattern is defined as

V ¼ Imax � Imin

Imax þ Imin

¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

I1ð~rrÞ I2ð~rrÞ
p

I1ð~rrÞ þ I2ð~rrÞ
� c12ð0Þ ð19-35Þ

and it corresponds to the known contrast function in terms of intensities.
The temporal Fourier transform of the coherence function is referred to as the

cross-spectral density (CSD):

Sð~rr1;~rr2;xÞ ¼ R¥

�¥

Cð~rr1;~rr2; tÞ � e�ix t dt : ð19-36Þ

This distribution plays a major role in the consideration of the temporal coherence
and will be discussed in more detail in section 19.3.2.

The application of the wave equation in the Helmholtz formulation for the field
amplitude U at positions r1 and r2, respectively, leads in general to the two coupled
wave equations in both spatial coordinates, applicable not only to the field ampli-
tudes but also to the coherence function

�2
j C � 1

c2
� ¶

2 C

¶ t2
¼ 0 ; j ¼ 1; 2 : ð19-37Þ

This equation represents the general transport equation for the coherence function
and is a direct consequence of the wave equation. The frequently applied transport
integrals of the coherence function, according Cittert-Zernike and Hopkins are
time-independent formulations and are frequently given within the limits of Kirch-
hoff or Fresnel approximation. These purely spatial aspects of the coherence propa-
gation play an essential role in optical systems and will be discussed in section 19-4.

19.2.2

Wigner Distribution Function

The Wigner distribution function (WDF) is directly related to the coherence function
and is a powerful and visual description of partially coherent wave fields [19-12]. As
a quasi-density function in the phase space the Wigner distribution function W pos-
sesses a simple physical meaning. The combined use of coherence function C and
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Wigner distribution function W is especially useful for the consideration of propaga-
tion of coherence properties through optical systems in the case of partially coherent
radiation. With the center-of-mass and difference coordinates

~rr ¼~rr1 þ~rr2
2

; D~rr ¼~rr1 �~rr2 ð19-38Þ

~mm ¼ ~mm1 þ~mm2
2

; D~mm ¼ ~mm1 �~mm2 ð19-39Þ

the coherence function may be written as

C ~rr1;~rr2ð Þ ) J ~rr;D~rrð Þ : ð19-40Þ

The Wigner distribution function W(x,m) can now be directly obtained by a Fourier
transform of the coherence function J with respect to the difference coordinate Dr

[19-13] with transverse spatial frequency coordinate m:

Wð~rr;~mmÞ ¼ R
C ~rr þ D~rr

2
ð~rr � D~rr

2

� �

� e�2p�i�D~rr ~mm dD~rr : ð19-41Þ

After inversion of eq. (19-41) it is obtained

Cð~rr1;~rr2Þ ¼ R W ~rr1 þ ~rr2
2

; ~mm

� �

� e 2p�i�~mm�ð~rr1�~rr2Þ d~mm : ð19-42Þ

Frequently a modified formulation of the Wigner distribution function is applied with
the transversal spatial frequency m replaced by the x- and y-components of the optical
direction cosine vector p, respectively. Accordingly it can bewritten for eq. (19-41)

W ¢ð~rr;~ppÞ ¼ R
C ~rr þ D~rr

2
; ~rr � D~rr

2

� �

� e�i k0 �D~rr�~pp dD~rr ð19-43Þ

with the optical direction cosine vector~pp given by the sine of the angle u with respect
to the optical axis:

~pp ¼ sin~uu ¼ k �~mm ¼ k

2p
�~kk : ð19-44Þ

It is written W¢ instead of W to indicate the change of the second variable. In the
paraxial approximation, the direction cosine p can be approximated by the angle u.

Since Wigner distribution function W ¢ and coherence function are related by a
Fourier transformation, both contains the same information, but in a different rep-
resentation. In general both are four-dimensional functions. It represents a quasi-
density function in the phase space: a local angular spectrum at position r and a
local averaged phase space density, respectively. The Wigner distribution function
thus describes the amplitude of a beam at a position x, y with direction p, q (see
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figure 19-16 and figure 19-17). For example, the Wigner distribution function of a
light source is limited by the area and the aperture of the source. As the coherence
function, the Wigner distribution function W is applicable to radiation with an arbi-
trary degree of coherence. In addition, it considers wave-optic effects such as inter-
ference and diffraction. Since C is hermitian it follows thatW is always real.

Although the function W ¢ describes the density, its values are not necessarily pos-
itive everywhere. Negative values of W ¢ indicate destructive interference effects.

Figure 19-16: Schematic presentation of the Wigner distribution

function of a quasi-point light source at point P(x,y) as a local flow

of energy in a definite direction (u, v) with the cosines (p,q).

Figure 19-17: Schematic presentation of the Wigner distribution function

of a light source as a local distribution of the energy flow in a definite direction

in one dimension.

Figure 19-18 shows the geometrical-optical phase space density and the Wigner
distribution function in the object and image planes for the imaging of a 10k-slit
with coherent and incoherent illumination. The x-axis is pointing to the right and
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the frequency axis upwards. The geometrical-optical phase space densities in the left
part of figure 19-18 are limited in the direction of the x-axis by the width of the slit
and in the direction of the m-axis by the illumination aperture with m=rNA/k. For
incoherent illumination with r= 1 the frequency spectrum is limited at the end by
the aperture NA = 1. The Wigner distribution function, however, exhibits more dif-
fraction effects in the object plane due to the diffraction at the edge of the slit open-
ing, which is more distinctive with coherent illumination. The effect of low-pass fil-
tering of the optical system becomes noticeable in a low pass filtering, i.e. in a block-
ing of the higher propagation angles. At the same time, this leads to fading at the
edges of the diffracting structures in the x-direction.

Figure 19-18: Illustration of the coordinates of the Wigner distribution function

for imaging of a 10k-slit with coherent illumination and r = 0.05, and with incoherent

illumination and r = 1.

In figure 19-19 the numerically calculatedWigner distribution functions correspond-
ing to the case of figure 19-18 are shown. The diffraction fringes can be seen clearly.
Figure 19-20 shows the Wigner distribution function of an ideal point image.

Figure 19-19: Wigner distribution function of a 10k-slit upon

incoherent imaging: a) shows the object and b) the image plane.
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19 Interference and Coherence

Figure 19-20: Wigner distribution functionW(x,m) of an ideal point image.

19.2.3

Moments of the Wigner Distribution Function

Measurable physical quantities are obtained by integration of the density function
W ¢. The integral over the spatial coordinate ~rr gives the direction spectrum of the
intensity

Ið~ppÞ ¼ R
W ¢ð~rr;~ppÞ d~rr ð19-45Þ

and, correspondingly, the integration over the direction p yields the spatial distribu-
tion of the intensity

Ið~rrÞ ¼ 1

ð2pÞ2
� RW ¢ð~rr;~ppÞ d~pp : ð19-46Þ

The integral over r and p gives the total power of a field

P ¼ 1

ð2pÞ2
� RRW ¢ð~rr;~ppÞ d~rr d~pp ¼ R

Ið~rrÞ d~rr : ð19-47Þ

For any arbitrary function f one can define an average value in terms of the radiation
field

f ð~rrÞh i ¼
RR

f ð~rrÞW ¢ð~rr;~ppÞ d~rr d~pp
RR

W ¢ð~rr;~ppÞ d~rr d~pp : ð19-48Þ

The density W ¢ plays here the role of a weighting function. The spatial and angular
extents of a beam are given by the second moments for position and angle:

x2h i ¼ 1

P
� RRx2 �W ¢ðx; pÞ dx dp ; ð19-49Þ

p2h i ¼ 1

P
� RRu2 �W ¢ðx; pÞ dx dp ; ð19-50Þ
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with the total power of a beam

P ¼ RRW ¢ðx; pÞ dx dp : ð19-51Þ

The general formulation finds an important application in the definition of higher
moments, which describe e.g. the quality of laser beams.

19.2.4

Smoothing of the Wigner Distribution Function and Diffraction Focus

The negative values of the original Wigner distribution function arise from the mini-
mum spatial extend of a wave, i.e. from the non-local character of a wave. Negative
values corresponds to interference effects between distant points and arise only in
partial coherent or coherent wave fields. These negative values occur as a conse-
quence of the fact that the Wigner distribution function is a bilinear function. The
purely geometrical-optical description by rays is based on the use of delta functions
and consequently only local effects are included, excluding interaction of light rays
at different positions or with different directions, respectively.

In the general case of an arbitrary, coherent or partially coherent radiation, it is
always possible to expand the Wigner distribution function in Gaussian functions
and represent it as a sum of individual Gaussian modes. The Wigner distribution
function of a coherent superposition of two modes is given by

W ¢sumðx; pÞ ¼ W ¢1ðx; pÞ þW ¢2ðx; pÞ þW ¢intðx; pÞ ð19-52Þ

with an interference term W¢int. The interference term can be negative, while the
Wigner distribution function of a single Gaussian beam is always positive.

As shown above, the conventional Wigner distribution function is a locally aver-
aged quasi-probability in the phase space and can also take negative values [19-14].
Integrating the Wigner distribution function W ¢ over the elementary volume of the
phase space with a weight function, results in the averaged and smoothed, purely
positive, modified Wigner distribution function Q, which can be directly interpreted
as a probability.

Q ~rr;~ppð Þ ¼ RRW ¢ ~rr;~ppð Þ � e� ~r�~rr ¢
að Þ2� ~p�~pp ¢

b

	 
2

d~rr d~pp : ð19-53Þ

Only the Q-function can be measured, it is a true density and has always positive
values. By the Gaussian averaging kernel it takes into account the uncertainty prin-
ciple, since from quantum theory the exact measurement of conjugated quantities is
forbidden. The exact and simultaneous determination of x and p is impossible with-
in the area in phase space specified by a coherent Gaussian basis mode, the aver-
aging kernel. For this reason, certain fine structures of the Wigner distribution func-
tion at the resolution limit cannot be obtained by measurements. The convolution
leading to the Q-function smoothes these effects in addition to the noise which is
intrinsic to the measurement.
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19 Interference and Coherence

In a more general formulation, the convolution with arbitrary smoothing func-
tions G reads

Q x; pð Þ ¼ RRW ¢ðx; pÞ �Gxðx � x ¢Þ �Gpðp� p¢Þ dx ¢ dp¢ : ð19-54Þ

In the case of Gaussian functions one has

Gxðx � x ¢Þ ¼ 1
ffiffiffiffiffiffiffi

Dx
p � e�2 x�x ¢

Dxð Þ2 ; ð19-55Þ

Gpðp� p¢Þ ¼ 1
ffiffiffiffiffiffi
Dp

p � e�2
	
p�p ¢
Dp


2

: ð19-56Þ

In the case of minimal smoothing effect by the averaging kernel, the uncertainty
principle requires that the following relationship is satisfied

Dx � Dp ¼ k

p
: ð19-57Þ

The width of the averaging kernel in spatial and angular coordinates may be differ-
ent as long as eq. (19-57) is satisfied. One can determine the position at a higher
precision at the expense of angular resolution and vice versa. The averaging kernel
thus takes in general the shape of an elliptical area. A simple example are illustrated
schematically in figure 19-21.

Figure 19-21: Schematic presentation of the integration

of the Wigner distribution function over the elementary

phase space area.

19.2.5

Wigner Distribution Function of Coherent Fields

In the case of coherent quasi-monochromatic radiation fields, the Wigner distribu-
tion function can be directly obtained from the field amplitude, without the coher-
ence function, by

W ¢ðx; pÞ ¼ RU x þ Dx

2

� �

�U� x � Dx

2

� �

� e�ik0Dx�p dDx : ð19-58Þ

Thus the Wigner distribution function is a bilinear function of the complex field
amplitude. In the special case of coherent wave fields it is possible to obtain the field
amplitude directly by reversal of eq. (19-58) with

122
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UðxÞ ¼ 1

k �U�ð0Þ �
R
W ¢

x

2
; p

� �

� eik0px dp : ð19-59Þ

It is obvious that the complex field cannot be reconstructed from the Wigner distri-
bution function since with unknown U(0) at least the absolute value of the phase
remains undefined.

Frequently, coherent waves or beams are characterized at any location x by a sin-
gle definite direction p. Thus the description of a coherent beam by the two-dimen-
sional Wigner distribution function W ¢(x, p) can be reduced to a one-dimensional
description by amplitude A and phaseU. With

UðxÞ ¼ AðxÞ � e iUðxÞ ð19-61Þ

the direction of the wave at position x is given by the derivative of the phase function
[19-15]

pðxÞ ¼ k

2p
� dUðxÞ

d x
ð19-62Þ

and with the help of Dirac’s delta function d(p) one obtains for the Wigner distribu-
tion function

W ¢ðx; pÞ ¼ A2ðxÞ � d p � k

2p
� dUðxÞ

d x

� �

: ð19-63Þ

Since the Wigner distribution function is a bilinear function, the superposition of
two coherent fields U1 and U2 results in an interference term, considering the inter-
ference effects between the two fields

W ¢sumðx; pÞ ¼ W ¢1ðx; pÞ þ W ¢2ðx; pÞ þ W ¢intðx; pÞ ð19-64Þ

with

W ¢intðx; pÞ ¼ R
U1 x þ Dx

2

� �

�U�
2 x � Dx

2

� �

� eik0 �Dx�p dDx

þ RU2 x þ Dx

2

� �

�U�
1 x � Dx

2

� �

� eik0 �Dx�p dDx :
ð19-65Þ

19.2.6

Ambiguity Function

For a complex coherent field U(x) the so-called ambiguity function can be defined,
which depends on the spatial difference D~rr and the angular coordinate

~ss ¼ sin~ww ¼ k �~vv : ð19-66Þ

It follows for the ambiguity function
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19 Interference and Coherence

A¢~ss;D~rrð Þ ¼ RU ~rr þ D~rr

2

� �

�U� ~rr � D~rr

2

� �

� e�i�k0 �~rr�~ss d~rr : ð19-67Þ

When the wave field is partially coherent and the field amplitude can be considered
to be a statistical quantity, an analogous relation holds in terms of the coherence
function

A¢~ss;D~rrð Þ ¼ R J ~rr;D~rrð Þ � e�i�k0 �~rr�~ss d~rr : ð19-68Þ

Hence, the ambiguity function is given by a one-dimensional Fourier transform of
the coherence function with respect to the spatial center coordinate~rr. The intensity
can be obtained from the ambiguity function for D~rr ¼ 0 according to

Ið~rrÞ ¼ RA¢ð~ss; 0Þ � e�ik0 �~rr�~ss d~ss : ð19-69Þ

Furthermore, a two-dimensional Fourier transform relates the ambiguity function
to the Wigner distribution function

A¢~ss;D~rrð Þ ¼ RW ¢ ~rr;~ppð Þ � ei�k0 �ð~pp�D~rr�~rr�~ssÞ d~rr d~pp : ð19-70Þ

In a similar way to the Wigner distribution function, the ambiguity function can be
defined with the spatial frequency Dm (instead of the angle s) as an argument

A D~vv;D~rrð Þ ¼ RW ~rr;~vvð Þ � ei�2p�ð~vv�D~rr�~rr�D~vvÞ d~rr d~vv : ð19-71Þ

The ambiguity function for ideal imaging thus corresponds to the Wigner distribu-
tion function of a point image in one transverse dimension, rotated by 90� and
rescaled. Figure 19-22 illustrates the coordinate transformation according to
eq. (19-68) applied to the coherence transfer function c(m1,m2). The Fourier trans-
form along the vertical m-axis gives the ambiguity function A(Dm,Dx).

Figure 19-22: Ambiguity function A(Dm, Dx) of an imaging system obtained

from the coherence transfer function after coordinate transformation (Dm-axis

pointing to the right, Dx-axis upwards).
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19.2.7

The Characterizing Functions in their Context

The relations and the different definitions of the functions describing the coherence
are shown for comparison in figure 19-23.

Figure 19-23: Correlations between the functions: Fourier relations, coordinate

transformations and scaling transformations.

In one dimension, the following Fourier relations hold between the various func-
tions:

W x; mð Þ ¼ R J x;Dxð Þ � e�2piDx�mdDx ; ð19-72Þ

A Dm;Dxð Þ ¼ R J x;Dxð Þ � e�2pix�Dmdx ; ð19-73Þ

j Dm; mð Þ ¼ RR J x;Dxð Þ � e2pi x�Dm�Dx�mð ÞdxdDx ; ð19-74Þ

W x; mð Þ ¼ R R A Dm;Dxð Þ � e2pi x�Dm�Dx�mð ÞdDxdDm : ð19-75Þ

In addition, the coordinate transform to the separated coordinates x1, x2 and m1, m2
respectively, connects J with C and j with c. Finally, the scaling from the spatial fre-
quencies m, Dm to the angle coordinates p, s delivers the functionsW ¢ and A¢.
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19 Interference and Coherence

19.3

Temporal Coherence

19.3.1

Superposition of Signals with Different Frequency

As has been shown in section 19.1, the principles of coherence can be understood to
a great extent even on the basis of a purely qualitative consideration. The exact math-
ematical description and, especially, the treatment of coherence in optical imaging,
requires a more detailed treatment and a generalization of the mutual coherence
function. The superposition of two monochromatic signals of different color

U1 r; tð Þ ¼ A1e
i k1r�x1tþj1ð Þ ð19-76Þ

and

U2 r; tð Þ ¼ A2e
i k2r�x2tþj2ð Þ ð19-77Þ

yield, after temporal averaging:

I r; tð Þ ¼ U1 þU2j j2
� �

T

¼ I1 þ I2 þ 2
1

T

RT

0

A1A2 cos Dk12r � Dx12 tþ sð Þ þ Dj12½ �ds : ð19-78Þ

As an example, the interference of two signals with a fixed phase coupling
(Dj= const.) is considered. With a integration time T of the detection process, the
absolute value of the mutual coherence function is given by a sinc-function with an
argument Dx·Twith the frequency difference Dx=x1 – x2:

c U1;U2ð Þj j ¼ 1

T

RT

0

cos Dx tþ sð Þ½ �ds ¼ sinc Dx � Tð Þ: ð19-79Þ

As already established, the contrast of the interference fringes decreases due to the
finite integration time of the detector with increasing frequency separation Dx. The
frequency difference, for which the interference contrast vanishes as a result of the
averaging over one period of the running interference fringes, is given by the first
zero of the sinc-function in eq. (19-79).

The coherence function c corresponds to the correlation of two signals and
vanishes for uncorrelated signals, i.e., when, for example, the phases j exhibit sta-
tistical fluctuations as happens in thermal light sources. Interference occurs in the
case of uncorrelated light sources only if the two signals passing through the two
apertures are emitted by the same source point, as was shown in Young’s double slit
arrangement.

Two monochromatic amplitudes U1 and U2 behind the slit apertures, assumed to
be very small, emitted by a single monochromatic source point S1, are still fluctuat-
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ing but possess a fixed relative phase difference Dj(S1) for small path length differ-
ences. Thus the differences of the statistically fluctuating phases are constant for a
given wavelength. One obtains:

C U1;U2ð Þ ¼ A1 S1ð ÞA2 S1ð Þ cos Dkr � Dj S1ð Þ½ � : ð19-80Þ

A fixed phase relation is obtained likewise for a different source point S2, however,
the phase difference Dj(S2) is modified as a consequence of the different optical
paths. The resulting intensity distribution is determined by summation or integra-
tion over all source points. This will be considered in more detail in the section 19.4
about spatial coherence.

19.3.2

Spectral Distribution of a Light Source

The light emission by e.g. an atom occurs in reality only for a finite time Dt. The
resulting wave train has a finite length. Since it is not an infinitely extended periodic
function it is represented by a finite spectrum according to

EðtÞ ¼ R AðxÞ � e�ix tdx : ð19-81Þ

A(x) above denotes the spectral amplitude density. A wave train of finite length
should not, in principle, be monochromatic. For a hard rectangular truncation of a
sine-wave one has, e.g.,

AðxÞ ¼ sin x � Dtð Þ
x � Dt : ð19-82Þ

The width of this spectral distribution (the separation of the zeros) is given by

Dx ¼ 2p

Dt
: ð19-83Þ

The shorter the wave train the broader the corresponding spectral width. The
decomposition of a finite wave train into its spectral components is schematically
illustrated in figure 19-24.
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19.3.3

Bandwidth-limited Signals

Bandwidth-limited signals are often found, e.g., in the spectra of sources dominated
by spectral lines like gas discharge sources, or by restricting the detected wavelength
range by a band-gap filter given by the transmission properties of optical materials
or the sensitivity of the detector.

As an example, the interference of two bandwidth-limited signals is considered,
i.e., interference of signals with finite spectral extent. The averaging as a result of
the measurement is expressed by the function M(t), e.g., M(t) = 1/T·rect(t/T). The
geometrical factor Dk·r–Dj can be represented in general by a time difference s.
One then obtains for the dependence of the coherence function on the time differ-
ence between the two signals,

Cnm sð Þ ¼ UnU
�
m







� �

T
¼ R Un tþ sð ÞU�

m tð ÞM tð Þdt : ð19-84Þ

Substitution of the spectrum and reordering yields

Cnm sð Þ ¼ RRRun x¢ð Þe�ix tþsð Þdx¢ � u�
m xð Þeþixtdx �M tð Þdt

¼ RRun x¢ð Þu�
m xð Þe�ixs � RMðtÞei x�x ¢ð Þtdt dx dx¢

: ð19-85Þ

Since the integration time is in general much longer than the oscillation period 1/mt
the time integral can be approximated by a delta-function and one obtains

Cnm sð Þ ¼ Run xð Þ � u�
m xð Þ � e�ixsdx : ð19-86Þ

The product of the two spectra in eq. (19-86) is referred to as the mutual spectral
density:

Snm xð Þ ¼ un xð Þ � u�
m xð Þ : ð19-87Þ

Hence, the mutual coherence function Cnm is given by the Fourier transform of the
mutual spectral density Snm, also known as the cross-spectral density, which is in
general a function of the spatial coordinates

Sð~rr1;~rr2;xÞ ¼
R¥

�¥

Cð~rr1;~rr2; sÞ � e� ixs ds : ð19-88Þ

For identical signals and coinciding positions r1 = r2, the cross spectral density is
given by the auto-correlation of the complex signal and is also called the power spec-
tral density (PSD)

SðxÞ ¼ Sð~rr;~rr;xÞ ¼ Sð~rr;x Þ ¼ SnnðxÞ ¼ unðxÞj j2 : ð19-89Þ
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The intensity of a multi-spectral field can be computed as an integral over the power
spectral density S(x) in the form

I ¼ R
¥

0

SðxÞ dx : ð19-90Þ

Real light sources can be described in an approximate manner by analytical expres-
sions for the spectral function. Several such model functions are included in table
19-1.

Table 19-1: Spectral distribution functions of practical importance.

Distribution shape Spectral function Spectral width

Gaussian

Gas lamp, Doppler effect

SðxÞ ¼ sc � e�s2cx
2

Dxfwhm ¼ ln2

sc

Top hat SðxÞ ¼ 1 xj j £ xo � Dx
2

0 otherwise

�

Dxfwhm ¼ 1

sc

Lorentz

Collisional line-broadening in

gas light sources

SðxÞ ¼ Dx

2p
� 1

x� x0ð Þ2þ Dx
2

	 
2 Dxfwhm ¼ 1

p sc

Exponential SðxÞ ¼ sc � e�sc x�x0ð Þ
Dx ¼ 1

sc

With n =m from eq. (19-86) one obtains the Wiener-Khinchin theorem according
to which the autocorrelation of a signal is given by the Fourier transform of the
power spectral density Snn

Cnn sð Þ ¼ R un xð Þj j2e�ixsdx ¼ F̂F Snn xð Þf g : ð19-91Þ

In a simplified form this can be written as

CðsÞ ¼ R¥

�¥

SðxÞ � e�ixs dx : ð19-92Þ

The inverse Fourier transform gives the power spectrum as the Fourier transform of
the temporal coherence function

SðxÞ ¼ R¥

�¥

CðsÞ � e ixs ds: ð19-93Þ
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19.3.4

Axial Coherence Length

As a consequence of the Wiener-Khinchin theorem, a spectrally broad light source
exhibits a very short coherence time, and vice versa. Since the temporal and spectral
widths of two functions related by a Fourier transformation are inversely propor-
tional, the coherence time and the spectral line-width of a light source are inversely
proportional

sc ¼
2p

Dx
: ð19-94Þ

The interpretation of this equation is shown in figure 19-25. As a result of the statis-
tical emission processes, independent wave trains of length l are emitted (figure
19-25, right hand side). The length l of a wave train is referred to as the coherence
length of a light source. Spectral width Dx and temporal length l of a wave train are
given by eq. (19-94) in equivalence to the uncertainty principle.

Figure 19-25: Schematic illustration of the spectrum of a bandwidth-limited

signal (left) and a coherent wave train (right).

Figure 19-26: Schematic illustration of the emission of single wave trains with duration sc.
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Assuming that the initial phases of the individually emitted wave trains fluctuate
statistically and that each single wave exhibits a decay time of sc, it follows that sc is
precisely equal to the coherence time of the radiation. This scenario is illustrated in
figure 19-26.

The application of Parseval’s theorem to the Fourier pair of the Wiener-Khinchin
theorem yields the relationship between the power spectral density and the coher-
ence time

sc ¼
R¥

�¥

IðxÞj j2 dx : ð19-95Þ

An alternative definition of the coherence time is based on the average of the square
of the coherence function

sc ¼
R¥

�¥

cðsÞj j2 ds : ð19-96Þ

The axial coherence length is obtained simply as a product of the coherence time
and the wave propagation speed c

lc ¼ c � sc : ð19-97Þ

The coherence length of a non-monochromatic wave may be illustrated at the exam-
ple of two waves of different wavelengths k1 and k2. Starting with coinciding phases
of the two plane waves, the same phase is obtained at a distance lc proportional to
the frequency difference Dx

lc ¼ c � sc ¼
2p � c
Dx

: ð19-98Þ

The distance lc in eq. (19-98) corresponds to the longitudinal coherence length of
(19-97). The superposition of two waves results in beating, the maxima of which are
separated by lc. This situation is illustrated in figure 19-27. The interference of the
two waves is a harmonic wave of frequency Dx. The detected contrast vanishes for
multiples of the integration time sc, corresponding to multiples of the coherence
length lc.

Figure 19-27: Temporal coherence between different wavelengths.
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Table 19-2: Typical bandwidths, coherence times, and axial coherence lengths

of some common light sources.

Light source sc lc

Incandescent lamp 8.3 fs 2.5 mm

Hg-lamp 2 ps 600 mm

Hg-high-pressure lamp, 546 nm line 67 fs 20 mm

Hg-low-pressure lamp, 546 nm line 200 ps 6 cm

Kr-isotope lamp, 606 nm line 2.3 ns 70 cm

LED 67 fs 20 mm

Multimode HeNe-laser, cavity length L= 1 m 0.67 ns 20 cm

Single frequency HeNe-laser 1 ms 300 m

To summarize, in order to interfere with itself, the time difference s should not
exceed the wave train length divided by the propagation speed c, i.e.:

s <
1

Dx
¼ l

c
ð19-99Þ

with the coherence length determined according eq. (19-98) by

l »
2p � c
Dx

»
k
2

Dk
ð19-100Þ

with the frequency difference approximated by

Dx ¼ 2p � c
k
2 � k2 � k1ð Þ : ð19-101Þ

Example: an excimer laser at 193 nm possesses a bandwidth of 0.35 pm. Hence, its
coherence length is given by

l »
193 nm2

0:35 pm
¼ 3:7 � 10�14 m2

0:35 � 10�12 m
¼ 10:6 cm : ð19-102Þ

The coherence length l, especially in the case of monochromatic imaging, is sub-
stantially longer than the path length differences which normally occur in the imag-
ing systems. In the ideal case the latter possess equal optical lengths for all light
paths (conservative or orthotomic systems). In order to avoid disturbing interference
effects it is therefore advantageous deliberately to introduce path length differences
for the different light paths in the illumination systems, which minimizes the capa-
bility for temporal interference.
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19.3.5

Thermal Light Sources

The coherence function of narrow-band thermal light sources as spectral or dis-
charge lamps is dominated by spectral broadening due to collisions. The resulting
field distribution of N independent light sources is given by

U tð Þ ¼
X

i

Ui � e�ix0tþUi : ð19-103Þ

The coherence function for a single emission process can be specified as

Ui tð ÞU�
i tþ sð Þ

� �

T
¼ U2

i e
�ix0s � ei U tð Þ�U tþsð Þ½ �� �

T
¼ U2

i e
�ix0s

R¥

t¼s

p tð Þdt

¼ U2
i e

�i x0sþ s
T l

� �

ð19-104Þ

with the probability

p tð Þ ¼ 1

Tl

e
� t
Tl ð19-105Þ

where Tl corresponds to the average time-of-flight of a free atom in the distribution
of the source.

Figure 19-28: Statistical distribution of the wave trains occurring as a result

of emission processes interrupted by collisions.

Figure 19-28 shows schematically the phase distribution U(t) versus time; the
light emitted between two collisions has the same phase while collisions cause
abrupt phase changes. The probability that no collisions have taken place and two
signals can still interfere, decreases with the time t and this is expressed in the expo-
nential decay of p(t).

The power spectrum S(x) is given by the Fourier transform of the coherence
function and its shape corresponds to the so-called Lorentz spectrum:

u xð Þ ~ r

x0 � xð Þ2þr2
ð19-106Þ

with the “damping constant” r = 1/T0.
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Figure 19-29: Coherence function c(s) and power spectrum S(x) with a Lorentz shape.

An ion in a plasma experiences about 1000 collisions in the process of emission.
Typical average times-of-flight for free ions amount to » 10–11 s which results in
a spectral bandwidth r of about 1011/s corresponding to a coherence length of
» 3 mm. In contrast, the “lifetime” of an emission process in a laser with a cavity
length of 30 cm typically amounts to T0 ~ 10–8 s which gives a coherence length of
about 3 m.

It should be mentioned that an additional spectral broadening occurs as a result
of the Doppler shift of the power spectrum, which can be taken into account by the
Maxwell distribution of the ion velocities in the plasma. The Doppler broadening
leads to a power spectral density of Gaussian shape.

19.3.6

Temporal Coherence in the Michelson Interferometer

In the Michelson interferometer a beam splitter divides the amplitude into two parts to
form signal and reference. The experimental setup is sketched in figure 19-30.

Figure 19-30: Arrangement of a Michelson interferometer.
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19.4 Spatial Coherence

By variation of the path length in either the reference or signal path of the Michel-
son interferometer, the temporal coherence function can be determined. Different
lengths of the interferometer arms result in temporal shifting of the wave trains
along the propagation direction. With increasing path length difference, this leads
in general to a contrast loss. Vanishing contrast is obtained for path length differ-
ences larger than the coherence length lc. The spectral distribution of the light
source can be obtained by so-called Fourier spectroscopy. Writing for the detected
intensity as a function of path length difference z

IðzÞ ¼P
m

Im þ 2
P

n<m

ffiffiffiffiffiffiffiffiffiffiffiffi
In � Im

p � cos jnðzÞ � jmðzÞ½ �, (19-107)

where the phase difference is proportional to the path difference

Dj ¼ jn � jm ¼ 2Dk � z ¼ 4p � D k � z
k
2 , (19-108)

the power spectral density of the signal is obtained by Fourier-transformation of I(z).
The behavior of the signal I(z) as a function of the path difference z is shown in
figure 19-31.

Figure 19-31: Signal from a Michelson interferometer.

19.4

Spatial Coherence

19.4.1

Introduction

Uncorrelated light from a source S can interfere only through signals emitted by the
same source points. In this case, the differences of the statistically fluctuating
phases, for given path length differences within the coherence length of the light
source, are also constant (cf. figure 19-32).
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Although, for a monochromatic source point P1, the two amplitudes U1 and U¢1
behind the slit apertures are fluctuating, they have a fixed relative phase difference
Dj(S1) determined by the path length difference. One obtains:

C U1;U ¢1ð Þ ¼ A1 S1ð ÞA¢1 S1ð Þ cos Dkr � Dj S1ð Þ½ � : ð19-109Þ

For another source point P2, again a fixed phase relation is obtained. However, the
modified path length difference leads to a different phase difference Dj2. The
mutual coherence function of the signals coming from different source points P1

and P2 of a thermal light source, vanishes:

C U1;U ¢2ð Þ ¼ 0 : ð19-110Þ

This consideration can be extended to the more general case of the superposition of
many signals. In the general case, the intensity may be written as a double sum or
integral over all light source points

I r; tð Þ ¼
X

n;m

ffiffiffiffiffiffiffiffiffi

InIm
p

c Un;Umð Þj j cos arg c Un;Umð Þð Þ : ð19-111Þ

An extended thermal light source can be considered as consisting of many mutually
incoherent emitting light source points, whereby all mixed terms in eq. (19-111)
vanish. The visibility V or the maximum possible contrast of the interference fringes
is given in general by
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Figure 19-32: Two correlated signals U1 and U2 from an extended light source

can be produced, e.g., by a double slit. An interference pattern with visibility V is

seen on a distant screen.
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V ¼ Imax � Imin

Imax þ Imin

¼
2
P

n<m

ffiffiffiffiffiffiffiffiffi
InIm

p
c Un;Umð Þj j

P

m

Im
: ð19-112Þ

For a finite-sized light source, the spatial distribution of the coherence function indi-
cates the limits of the spatial region where the phases of the waves are still corre-
lated. Figure 19-33 illustrates a source of finite extension and two points in a detec-
tion plane. Even if the source elements dr are strictly uncorrelated, the resulting
complex amplitudes in image points P1 and P2 may be correlated. This is represent-
ed by coherence function c with a lateral diameter Lc. A simplified example of the
coherence function is schematically shown in figure 19-34.

Figure 19-33: The mutual coherence function of two points P1 and P2 is
determined by the source size.
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Figure 19-34: Spatially coherent domain

within the illuminated surface.
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19.4.2

Propagation of the Coherence Function

The coherence properties of a wave field in general change with the light propaga-
tion. The spatial degree of coherence increases with the distance z. For a given
source size, the effective source area decreases with increasing distance between
source and the detection points. From another point of view, illustrated in figure
19-35, the size of the common area in the source plane, which contributes to both of
the detection points P1 and P2, increases while the source size in the source plain
remains constant. If the source is smaller compared to the common area, the
mutual coherence at points P1 and P2 will be high and vice versa.

Figure 19-35: Change in the coherence state of light emitted by a finite source with the distance.

The mutual coherence at points P1 and P2 is thus determined by the visible angle
of the source, i.e. the effective source size, which decreases with increasing distance.
For a rough estimation, the following approximation can be made. At some distance
an incoherent light source with dimension 2a appears to be a partially coherent
source. If the distance exceeds the value

z ¼ a2

k
ð19-113Þ

the source turns out to be coherent. This corresponds to a Fresnel number of the
associated free-space propagation of smaller than 1. Therefore phase differences
larger than k/2 are not possible from different points of the light source and destruc-
tive interference cannot occur. Even a large light source can be considered to be
coherent for large distances as long as the visible angle satisfies the relation

h £
k

a
: ð19-114Þ
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In a general consideration, the propagation of the coherence function follows from
the linearity of the Maxwell equations and the Helmholtz equation for the complex
field amplitude may be applied to the coherence function as well:

�2
j C � 1

c2
� ¶

2 C

¶ t2
¼ 0 ; j ¼ 1; 2 : ð19-115Þ

From a general formulation of the solution of Helmholtz transport equation with
help of Greens function in three dimensions as propagator,

Uið~rr ¢Þ ¼
RRR

G ~rr �~rr ¢ð Þ �U0ð~rrÞ d~rr ; ð19-116Þ

the generalized transport equation for the coherence function can be formulated
and the Hopkins integral is obtained:

C i ~rr ¢1;~rr ¢2ð Þ ¼ RRR RRRC o ~rr1;~rr2ð Þ �G ~rr1 �~rr1 ¢ð Þ �G ~rr2 �~rr2 ¢ð Þd~rr1 d~rr2: ð19-117Þ

The intensity in the detection plane is given by the diagonal elements of the coher-
ence function with~rr1 ¼ ~rr2 ¼ ~rr

Ii ~rr ¢ð Þ ¼ RRR RRRCo ~rr1;~rr2ð Þ �G ~rr1 �~rr ¢ð Þ �G ~rr2 �~rr ¢ð Þd~rr1 d~rr2: ð19-118Þ

It should be noted, that in the absence of stationary conditions or when the coher-
ence length of the light source is in the order of the path length differences in the
optical system, the time should also be taken into account as well in Hopkins inte-
gral. Both the time dependence of the source field Uð~rr; tÞ and the consideration of
propagation time in the transferring optical system then have to be considered. For
the complex amplitude, one obtains the representation

Uið~rr ¢; t¢Þ ¼
RR RR

G ~rr �~rr ¢; t� t¢ð Þ �U0ð~rr; tÞ d~rrdt: ð19-119Þ

In the paraxial approximation and after insertion of the paraxial free-space transfer
function for Green’s function in the transverse coordinates only

Gparaxialð~rr;~rr ¢Þ ¼ e�
ik
2z ~rr�~rr ¢ð Þ2 ð19-120Þ

the paraxial approximation for free-space propagation of the complex amplitude is
obtained

Uð~rr ¢; zÞ ¼ �ik
2p z

RR
Uð~rr; 0Þ � e� ik

2z ~rr�~rr ¢ð Þ2d2~rr, (19-121)

where with plane source and detection planes the integration is reduced to two dimen-
sions. From this the paraxial transport equation for the coherence function is obtained

Cð~rr1 ¢;~rr2 ¢; zÞ ¼
k

2p z

� �2

�RR RR Cð~rr1;~rr2; 0Þ � e�
ik
2z

~rr2�~rr2 ¢ð Þ2þ ik
2z

~rr1�~rr1 ¢ð Þ2d2~rr1 d
2~rr2 : ð19-122Þ

The computation of the coherence function requires a double integration over the
start planes. Accordingly, the calculation of the coherence propagation is in general
a rather complex task.
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19.4.3

Van Cittert-Zernike Theorem

In the case of incoherent light sources the coherence function of a light source in
general can be simplified by

C0 ~rr1; ~rr2ð Þ ¼ I0 ~rr1ð Þ � d ~rr1 � ~rr2ð Þ : ð19-123Þ

Insertion in the general transport equation (19-117) the Van Cittert-Zernike theorem
for incoherent light sources is obtained:

C i ~rr1 ¢;~rr2 ¢ð Þ ¼ RR Io ~rrð Þ �G ~rr �~rr1 ¢ð Þ � G ~rr �~rr2 ¢ð Þ d2~rr : ð19-124Þ

The van Cittert-Zernike theorem consideres the propagation of the coherence func-
tion of an incoherent light source through an arbitrary optical system and represents
a special case of the general transport equation. In the special case of a free-space
propagation over a distance z, and assuming the paraxial approximation, one
obtains

C ið~rr1 ¢;~rr2 ¢; zÞ ¼
k

2p z

� �2

�eþ ik
2z ~rr ¢2

1
�~rr ¢2

2ð Þ � RR I0ð~rr; zÞ � e�
ik
2z
~rr � ~rr1 ¢�~rr2 ¢ð Þd2~rr : ð19-125Þ

According to this equation the coherence function at infinite distance to an incoher-
ent light source is given by the Fourier transform of the intensity distribution of the
source with respect to the difference of the coordinates.

19.4.4

The Coherence Function of a Circular Source

Circular light sources are of special importance in classical optical systems with rota-
tional symmetry. In practice, the consideration of the image formation in the case of
partially coherent illumination includes the pupil as a secondary light source which
very often is of circular shape. Within the paraxial regime, the coherence function of
a circular and homogeneously emitting effective source with radius a and distance z
is given by the Fourier transform of the circular area

C ~rr1;~rr2ð Þ ¼ C �
J1 2p � a � ~rr2 �~rr1j j

k � z

� �

~rr2 �~rr1j j : ð19-126Þ

The geometry of this arrangement is schematically shown in figure 19-36.
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Figure 19-36: Evolution of the coherence state of light emitted by a finite

circular sourcewith the distance z.

The diameter of the coherence region is approximately given by

Lc ¼ ~rr2 �~rr1j j ¼ 1:22
k � z
R

: ð19-127Þ

For the contrast between a point at radius r and the centre at r = 0 one obtains

VðrÞ ¼ k � z
p � ar � J1

2p ar

k z

� �

: ð19-128Þ

The visibility or contrast according to eq. (19-128) is illustrated in figure 19-37. At
certain radii, the zeros of the Bessel function lead to vanishing contrast. Thus, an
interference experiment with a circular light source of radius a one obtains the van-
ishing interference contrast for detection point distances r corresponding to the first
zero of the Bessel function

2p a

k
� r
z
¼ 2p a

k
� NA ¼ 3:83 ð19-129Þ

from which for the visible angle of the source follows:

sin hnull ¼ 0:61 � k
a

: ð19-130Þ

This approach is applied e.g. in Michelson’s stellar interferometer for the analysis of
star diameters.
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Figure 19-37: Contrast of the radiation from a circular light source as a function of the distance z.

According to a convenient definition, the region of coherence is given by the
angle of the light cone, at which the Bessel function drops by 12% to 0.88 of its max-
imum value. This corresponds to arguments of the Bessel function equal to 1. One
obtains for the angle

sin hcoh ¼ 0:16 � k
a
: ð19-131Þ

As a consequence, the field at a distance z from the light source is considered to be
coherent over a coherence area having a diameter

Lc ¼ 2z sin hcoh ¼ 0:32 � k � z
a

: ð19-132Þ

For incoherent imaging, where the pupil of the imaging system is completely filled
by the light source, the coherence function is equivalent to the point-spread function
of the optical system. If a smaller light source is applied, the coherence radius
increases in comparison with the point-spread function. In general, the smaller the
source, the longer the wavelength or the longer the distance to the source, the larger
the coherence range.

A further example with practical importance is the illumination of the earth by
the sun. The sun is seen from the earth at an angle of ~32¢, corresponding to
~9.3 mrad. Hence one obtains for a/z ~ 0.005. The coherence range of monochro-
matic sunlight on the earth thus is given by

Lc;Sun » 0:12mm for k ¼ 500 nm : ð19-133Þ

Hence, even using a color filter, it is difficult to observe interference effects with
sunlight. One needs a double slit with a spacing of less than 50 mm or a grating with
a period of less than 50 mm.
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19.4.5

Coherence Function behind a Double Slit

In Young’s interference experiment, the light from a quasi-monochromatic light
source at a distance z1 is diffracted at two pinholes or a double slit with spacing D.
This new source consisting of two points, forms an interference pattern in a certain
region on a screen at a distance z2 behind the apertures. Figure 19-38 shows the
geometry of this arrangement.

In a simplified approach of complete coherence the primary light source is con-
sidered as a point. The intensity distribution, with x as a coordinate on the screen, is
given by

IðxÞ ¼ 4I0 � cos 2 pDx

k � z2
: ð19-134Þ

For the period of the interference fringes it follows

D x ¼ k � z2
D

: ð19-135Þ

Figure 19-38: Young’s double slit experiment with interference fringes.

The general case of a finite-sized light source with lateral dimension a is illustrat-
ed in figure 19-39. The finite extent of the incoherently emitting light source in gen-
eral decreases the contrast of the interference fringes, depending on the geometry of
the set-up.
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Figure 19-39: Double slit experiment with an extended light source.

Figure 19-40 shows a typical intensity distribution obtained by Young’s double slit
experiment. The contrast reduction when increasing the width D of the slits is illus-
trated in the cross-section on the right side of figure 19-40.

Figure 19-40: Interferogram and cross-section obtained in Young’s experiment

with a double slit using a partially coherent light source.

Figure 19-41 compares the coherence function C(x1,x2) in the image plane behind
a double slit for a small and a large light source. The main diagonals of the coher-
ence function correspond to the intensity I(x1) =C(x1,x1), which, in the case of a
large light source, degenerates into a constant function (figure 19-41b). In contrast,
interference fringes are visible in the case of a small light source. The opposite diag-
onal describes the coherence function C(x2–x1).
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Figure 19-41: Coherence functions C(x1,x2) behind a double slit for different sizes

a of the incoherent light source: a) small light source corresponding to coherent

illumination; b) incoherent source.

The typical behaviour of the contrast function in dependence on the double slit
separation D is illustrated in figure 16-42 at the example of several measurements
with an excimer laser emitting at a wavelength of k= 193 nm as source. With
increasing slit separation D the visibility of the interference pattern is decreasing.
The difference in the propagation time for the two-beam paths increases with
increasing double slit distance and the two slits, as secondary sources, become more
and more incoherent.

Figure 19-42: Examples of the contrast function in Young’s double slit experiment

with a partially coherent excimer laser. The slit separation D is given in mm.

Figure 19-43 shows the intensity distribution of a double slit experiment with a finite
size light source and varying partial coherence. The coherence is quantified by the para-
meter r, the effective size of the source is given by ra. The distance of the double slit is
four times the Airy diameter, with slit widths equal to the Airy diameter. The decreasing
coherence results in reduced contrast, and for r=0.4 almost no interference is visible.
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Figure 19-43: Contrast function in Young’s double slit

experiment with partially coherent illumination.

19.4.6

Propagation of the Wigner Distribution Function

The changes in the coherence properties of wave field due to propagation can be
described by the Wigner distribution function. Particularly for paraxial systems, the
treatment of propagation with the help of the Wigner distribution function is con-
siderably simpler and can be numerically accomplished at a higher speed compared
to propagation of the coherence function.

With the Greens function G as the coherent transfer function of the field U, the
coherent propagation of light can be written in the most general form

Uð~rr2Þ ¼ RR
Gð~rr2;~rr1Þ �Uð~rr1Þ d~rr1 : ð19-136Þ

A general propagator applied to the Wigner distribution function, however, must be
four-dimensional, and for the propagation of the Wigner distribution function it
may be written

W ¢ð~rr2;~pp2Þ ¼ RR RR
Kð~rr2;~pp2;~rr1;~pp1Þ �W ¢ð~rr1;~pp1Þ d~rr1 d~pp1 ð19-137Þ
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with the transfer kernel

K ~rr2;~pp2;~rr1;~pp1ð Þ ¼

1

4p2

RR
G ~rr2 þ

~rr2 ¢

2
; ~rr1 þ

~rr1 ¢

2

� �

G� ~rr2 �
~rr2 ¢

2
; ~rr1 �

~rr1 ¢

2

� �

e�ik0 ~rr2 ¢~pp2�~rr1 ¢~pp1ð Þ d~rr2 d~rr1 : ð19-138Þ

The propagation of the Wigner distribution function in free space is given in accor-
dance with the geometrical interpretation in section 19.2.2 by

x ¢ ¼ x þ z � tan u ¼ x þ z � m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2=k2 � v2
q ð19-139Þ

v¢ ¼ v ; u¢ ¼ u : ð19-140Þ

In the phase space this corresponds to a shearing in direction of the x-axis as shown
in figure 19-44. In the paraxial approximation, the shear according eq. (19-139) may
be simplified by a linear shear. The propagation is then given by a simple linear
scale transformation of the position x.

Figure 19-44: Free-space propagation in the phase space is characterized

by angular deformation in the general and the paraxial case.

The propagation of the Wigner distribution function is illustrated in figure 19-45
at the example of a point light source. The spatial intensity distribution I(x) is
obtained by integration over m. The shearing of the function W(x,m), however,
obviously leads to broadening of the intensity I(x) with increasing distance z.

In imaging optical systems, the propagation kernel for the Wigner distribution
function takes over a more complex form. In one dimension it may be written as

Kðx1; p1; x2; p2Þ ¼ k
2p Bj j

RR
e�ikV x2þx2 ¢=2; x1þx1=2ð ÞþikV� x2�x2 ¢=2;x1�x1=2ð Þ�ikp2x2 ¢þikp1x1 ¢ dx2 ¢ dx1 ¢

ð19-141Þ
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Figure 19-45: Wigner distribution functions of a point image (5 nm slit) by

free-space propagation from z = 0 mm to 1.5 mm.

with the point eikonal V(x,x¢) (see paragraph 20). In practical cases, this formulation
is simplified to a convolution of the incoming Wigner distribution function with a
filtering function, which characterizes the optical system. The Wigner distribution
function in the image plane may thus be written as

W ¢outðx; pÞ ¼
RR

W ¢inðx; p¢Þ �W ¢filtðx � x ¢; p� p¢Þ dp¢ dx ¢ : ð19-142Þ

In ideal or paraxial systems, the point eikonal is represented by the elements of the
ABCD matrix. The transport of the Wigner distribution function can be written as

W ¢ ~rr ¢ð Þ ¼ W ¢ M�1 �~rrð Þ ð19-143Þ

with the spatial and the angle coordinates written as vector ~rr. In two dimensions,
this equation takes the well-known simple form with the angle u instead of p for the
paraxial approximation

W ¢outðx; uÞ ¼ W ¢inðD � x � B � u ; �C � x þ A � uÞ : ð19-144Þ

Within the scope of this approximation, the Wigner distribution function has a con-
stant value along a paraxial ray and, for numerical evaluation of propagation, only
an interpolation between the starting and the receiving coordinate grids has to be
taken into account, as illustrated in figure 19-46.
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Figure 19-46: Propagation of the Wigner distribution function in a paraxial optical system.

A second type of propagation problem is important for the evaluation in practical
examples. If an optical element can be approximated by an infinitely thin object, it
has no effect on the dependence from the coordinate x and the propagation of the
Wigner distribution function through the element reduces to a change of the optical
direction cosines p as a function of the coordinate x. If the object, for example, is
pure imaginary, as the case for wave aberrations,

TðxÞ ¼ e iUðxÞ ð19-145Þ

and the variation of the phase with the position x is smooth, the Wigner distribution
function of the object is given by

W ¢objectðx; pÞ ¼
R
T x þ x ¢

2

� �

� T� x � x ¢

2

� �

� e�ik�x ¢�p dx ¢ ð19-146Þ

and the transport can be calculated by a convolution with respect to the angle coordi-
nate only

W ¢outðx; pÞ ¼
R
W ¢inðx; p¢Þ �W ¢objectðx; p� p¢Þ dp¢ : ð19-147Þ

This special case is frequently applied to incorporate e.g. wave aberrations in the
propagation through optical systems.

19.5

Gaussian Schell Beams

19.5.1

Definition of Gaussian Schell Beams

There exists a simple type of partially coherent beam which can be analytically
described in close analogy to the Gaussian beams in the coherent case [19-16],
[19-17], [19-18], [19-19], [19-20]. These so-called Gaussian Schell beams rest upon
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simple statistical assumptions concerning the coherent basis functions of C. Their
transport properties are fully equivalent with those of the Gaussian beams with the
consequence that their propagation can be described analytically, see, for example,
eq. (19-155). In practice, these ideal solutions are useful as a first approximation for
the description of partially coherent radiation and will be considered in more detail
in the following.

Gaussian Schell beams are partially coherent Gaussian beams with a Gaussian
shaped coherence function. In the beam waist, where at z = 0 the phase front is
plane, the coherence function is real and is given by the expression

C ð r1 ; r2 Þ ¼ e
� r2

1
þr2

2

w2
0 � e � r1�r2ð Þ2

2L2c : ð19-148Þ

The transverse coherence length Lc in the above formula is an additional parameter
responsible for the description of the coherence. In the limiting case Lc fi ¥ one
obtains the conventional coherent Gaussian beams. With decreasing Lc

. the emitting area radiates more incoherent radiation,

. the beam divergence increases for a constant emitter area,

. the beam depth of focus decreases,

. the value of the beam parameter product becomes larger and the beam qual-
ity degrades.

These dependences are shown in figs 19-47 to 19-49. Besides Lc the following
equivalent quantities are commonly used:

1. Normalized transverse coherence length

a ¼ Lc =wo : ð19-149Þ

2. Auxiliary parameter e according to

e ¼ 1 þ 1

a2
¼ 1 þ wo

Lc

� �2

> 1 : ð19-150Þ

3. Degree of coherence b

b ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 þ wo=Lcð Þ 2
q ¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ a�2

p ¼ 1
ffiffiffi
e

p < 1 : ð19-151Þ

As opposed to the classical Gaussian beams, three parameters are allocated for the
description of the Gaussian Schell beams. The waist radius wo and the far-field diver-
gence ho are independent parameters for a given wavelength k. In particular, the
depth of focus for the Gaussian Schell beams is shorter in comparison to the coher-
ent Gaussian beams

zo ¢ ¼
zo
ffiffiffi
e

p ¼ b � zo < zo : ð19-152Þ
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Figure 19-47: Depth of focus as a function of the normalized transverse coherence

length a for Gaussian Schell beams.

The parameter zo¢ decreases for reduced coherence (figure 19-47).
At a constant far-field divergence ho the waist radius of Gaussian Schell beams

increases when Lc decreases, i.e., when the degree of coherence b becomes smaller.
Figure 19-48 demonstrates this behavior for three different values of the parameterb.

Figure 19-48: Beam radius of Gaussian Schell beams for constant divergence

angle and different degrees of coherence in the waist region.

When, on the other hand, the waist radius wo is kept constant, the far-field diver-
gence angle grows with decreasing coherence. Figure 19-49 shows some examples
of this case. Practically, the meaning of this relationship is that, in order to achieve
the same focal size, the light from a more incoherent source should be focussed
with a larger numerical aperture.
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Figure 19-49: Beam radius of Gaussian Schell model beams for constant waist

radius and different degrees of coherence in the waist region.

This dependence of the far-field divergence angle from the coherence can be
quantitatively described by the expression

ho ¢ ¼ ho �
ffiffiffi
e

p
: ð19-153Þ

The coherence length Lc in the waist can be calculated for given k, wo and h¢o from
the following formula

Lc ¼ wo
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pwoh¢ o
k

� �2

� 1

s : ð19-154Þ

Gaussian Schell beams exhibit a value of the degree of coherence b which is be-
tween the geometrical-optical incoherent case with b= 0 and the ideal coherent
Gaussian beams with b= 1. This can also be seen in the image formation behavior,
which is shown in figure 19-50 for a single lens with focal length f. The image for-
mation or transformation equation for Gaussian Schell beams reads

1

zT ¢
� 1

zT
� 1

1 þ z¢2o
zT � f þ zTð Þ

� � ¼ 1

f
: ð19-155Þ

and deviates, similar to the Gaussian beams, from the geometrical-optical models.
In an analogous way, the position of the beam waist at the image-side can be calcu-
lated analytically.
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It should be taken into account that the normalized degree of coherence in the
transport of Gaussian Schell beams does not change with the coordinate z

bðzÞ ¼ const : ð19-156Þ

It should also be noticed, that Gaussian Schell model beams are by definition para-
xial and the relation (19-156) is valid only in this approximation.

Recently, the simple partially coherent Gaussian Schell beams described here
were generalized using various beam models. These include twisted beams [19-21],
[19-22], [19-23], flatter or more complex intensity profiles [19-24] and vector proper-
ties [19-25].

Figure 19-50: Illustrating the image formation properties of Gaussian Schell beams

with object-side and image-side waist positions zT and z¢T in dependence on the coherence

parameter b.
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19.5.2

Coherence and Wigner Functions of Gaussian Schell Beams

The coherence function of Gaussian Schell beams has the following analytical form
for arbitrary planes z

Cð~rr1;~rr2; zÞ ¼ Io �
wo

wðzÞ

� �2

e
�
~rr2
1
þ~rr2

2

w2ðzÞ e
�ð~rr1�~rr2Þ2

2 L2c ðzÞ e
�ip ð~rr2

1
�~rr2

2
Þ

kRðzÞ : ð19-157Þ

The coherence function reduces to eq. (19-148) at the beam waist where the curva-
ture term vanishes and Lc takes the value at the waist plane

Cð~rr1;~rr2; 0Þ ¼ Io � e
�
~rr2
1
þ~rr2

2

w2
o e

�ð~rr1�~rr2Þ2
2 L2c : ð19-158Þ

The Wigner function for Gaussian Schell beams reads, in paraxial approximation

W ~rr;~uuð Þ ¼ Io
2p

� w
2ðzÞ � L2

c ðzÞ
w2ðzÞ þ L2

c ðzÞ
� e�

2~rr2

w2ðzÞ � e�
2p2

k2
� w

2ðzÞ�L2c ðzÞ
w2ðzÞþL2c ðzÞ

� ~uu�~rr
Rð Þ2

¼ Io
2p

� w
2ðzÞ � L2

c ðzÞ
w2ðzÞ þ L2

c ðzÞ
� e�

2~rr2

w2ðzÞ � e�
2
h2
� ~uu�~rr

Rð Þ2 :
ð19-159Þ

The intensity distribution of a Gaussian Schell beam follows a Gaussian function in
both the transverse dimension as I(x) and as a function of the angle I(u). Figure
19-51 illustrates these relationships for the Wigner function W ¢(x,u) by the intensity
profiles in a general x-u phase-space representation. A Gaussian Schell beam is rep-
resented in the phase space by a set of ellipses in which each ellipse corresponds to
a W ¢ contour. According to this, the full width of the angular distribution is found
only in the beam center on the axis while the angular spreading in the peripheral
regions is substantially smaller.

The above diffraction-related angular distribution overlaps at any arbitrary posi-
tion outside the beam waist with a geometrical-optical term resulting from the para-
bolic phase contribution. The latter corresponds to a paraxial radius of curvature R

and acts in the phase space as a tilting of the contour lines in accordance with the
straight line u ¼ x =R. The stronger the focussing of the Gaussian Schell beams,
the larger the relative geometrical-optical angular contribution. Then, the phase
space ellipses of the Wigner function become increasingly elongated.

It is known from Fourier optics that the spatial distribution occurring in the focus
of a lens is proportional to the angular spectrum. This operation corresponds in
phase space to a 90� rotation. In accordance with this the Wigner function in the
focus of a paraxial lens has the same form as in front of the lens being only rotated
about an angle of 90�.
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19.5 Gaussian Schell Beams

Figure 19-51: Transformation of a Gaussian Schell beam by an ideal lens.

The bottom row shows the angular distribution and the middle row shows the

spatial distribution. The axes are scaled in arbitrary units, the scale steps in

the angular extent at the lens and in the spatial extent for the focussing can

be clearly seen.

Figure 19-52: Transformation of a Gaussian Schell beam by a slit aperture

which truncates its profile. The bottom row shows the angular distribution

and the medium row shows the spatial distribution.

155



19 Interference and Coherence

If a Gaussian Schell beam is truncated by an aperture, the corresponding Wigner
function exhibits characteristic diffraction patterns. Figure 19-52 shows an example.
One can see the effect of the edge diffraction and the comparatively unaffected inner
region of the beam. The aperture interacts mainly with the outer region of the
beam. At the same time the interference capability and therefore the occurrence of
the characteristic diffraction ripples depends on the degree of coherence. The more
incoherent the beam, the less pronounced are the diffraction effects.

According to their definition, however, Gaussian Schell beams are paraxial beams
that are not transversally truncated. In the example presented, the incoming beam
is a Gaussian Schell beam but the action of the lens changes its character and the
beam is no longer of the Gaussian Schell type behind the aperture. Nevertheless it
is still possible to describe the beam using the Wigner function.

19.5.3

Basis Mode Expansion of Partial Coherent Fields

The coherence function obeys the system of differential equations (19-115). Accord-
ing to the theorem of Mercer in the spectral theory of partial differential equations,
the eigenfunctions of the equations can be used to express an arbitrary solution in
the form of an expansion. In the special case of the coherence function, these coher-
ent basic mode functions are superimposed incoherently and constitute the partial
coherent field [19-26]. The expansion of the coherence function then takes the form

Cð~rr1;~rr2Þ ¼
X¥

n¼0

kn jn ~rr1ð Þj�
n ~rr2ð Þ ¼

X¥

n¼0

kn Cn ~rr1ð~rr2ð Þ ð19-160Þ

with the mode functions jn ~rrð Þ, the eigenvalues kn and the mode index n. The corre-
sponding eigenvalue equation with the coherence function as kernel reads

R
C ~rr1;~rr2ð Þjn ~rr1ð Þ d~rr1 ¼ kn jn ~rr2ð Þ : ð19-161Þ

The intensity of the field distribution can be obtained from eq. (19-160) in the usual
manner and is given by

Ið~rrÞ ¼
X¥

n¼0

kn jn ~rrð Þj j2 ¼
X¥

n¼0

kn In ~rrð Þ : ð19-162Þ

The last equation shows that the eigenvalues determine the power distribution of
the superposition of the independent coherent basic modes. It should be noted, that
an expansion must not necessarily use the eigenfunctions. It can also take arbitrary
non-orthogonal complete systems of basic functions. For example, it is very useful
to choose localized beamlet functions with a gaussian form. This delivers the
decomposition of the field according to the theory of Gabor [19-27].

In a very similar manner, the Wigner distribution function can be expressed by
the corresponding basic modes in the expansion
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W ¢ðx; pÞ ¼
X¥

n¼0

k n wn x; pð Þ ð19-163Þ

where the functions wn x; pð Þ are calculated by the basic functions jn ~rrð Þ according
to

wnðx; pÞ ¼ R
jn x þ Dx

2

� �

� j�
n x � Dx

2

� �

� e� ik 0Dx�p dDx : ð19-164Þ

In the simple case of, for example, Gauss Schell model beams, the representation of
the field in the form of a basic mode expansion can be performed analytically in
several ways. One possibility uses the classical Gauss-Hermite basis functions [19-
28], another way is to use elementary gaussian modes in special geometrical config-
urations such as displacement, tilt or twist axes [19-29].

Figure 19-53 shows the approximation of a super gaussian profile into single
gaussian beamlets according to eq. (19-162). This one- dimensional picture is gener-
alized to rotational symmetry in figure 19-54. The axis of the elementary beamlets
are located on a cone.

Figure 19-53: Expansion of an intensity profile into single non-orthogonal gaussian beamlets.

In particular, the generalization of beams with intrinsic twist properties can be
illustrated very easily in this framework. Figure 19-55 shows the geometry for two
single beamlets. The axis of these modes are skew to one another. This causes a cou-
pling of the x- and y-section planes, the resulting field contains an internal twist, the
beam shows a kind of rotation during the propagation. The individual beamlets are
given by the field strength
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19 Interference and Coherence

Figure 19-54: Expansion of an intensity profile into single non-orthogonal

gaussian beamlets for rotational symmetrical geometry.

Figure 19-55: Expansion of an intensity profile into single non-orthogonal gaussian

beamlets, general geometry with twist of the beam axis.

U x; y; x0; y0ð Þ ¼ U0 � e
� x�x0ð Þ2

w2
0x

� y�y0ð Þ2
w2
0y � e2p i� a�x0y�b�y0xð Þ ð19-165Þ

with two parameters a and b describing the twist. The coherence function is given
by the equation

C x1; y1; x2; y2ð Þ ¼ RR
Pðx0; y0 Þ �U x1; y1; x0; y0ð Þ �U� x2; y2; x0; y0ð Þ dx0 dy0 ð19-166Þ

with a weighting function P(xo,yo), which is determined by the intensity profile of
the source field.
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19.6

Statistical Optics and Speckle

19.6.1

Photon Statistics

The predominant part of the light from thermal sources is emitted spontaneously,
i.e., almost all photons are statistically independent of each other. Each photon can
be considered as an independent degree of freedom of the electromagnetic field and
the photon number determines the noise of an image by its statistical character.
This can be easily observed with modern digital cameras in the darkness.

In contrast, the photons emitted from a laser by stimulated emission are coupled
and cannot be distinguished from each other. These identical photons are described
by the spatial modes of the laser. Thus the degree of freedom is limited to a great
extent by the number of modes. Many lasers emit in the fundamental mode only,
others like the excimer lasers emit simultaneously in more than 1000 modes. The
number of modes, which dominates the statistical effects in the intensity formation,
is thus typically much smaller than the number of photons.

The different effects will be sketched in the following using the image formation
as an example. As already mentioned in the beginning it is the carrier frequency
which determines the photon energy:

Q ¼ �h � x ¼ h

T
¼ hc

k
¼ 6:626 � 10�34Js � 2:99792 � 108 ms

k
¼ 19:865 � 10�17J nm

k
ð19-167Þ

where h = 6.626 · 10–34 Js denotes Planck’s constant and c = 2.998 · 108 m/s is the
speed of light. The same expression in eV reads

Q ½eV� ¼ 1986:5 � 10�19

1:60219 � 10�19

1 eV

k
nm ¼ 1239:9 eV

k
nm : ð19-168Þ

Thus the quantum energy of light with a wavelength of 12.4 nm amounts to 100 eV.
Using eq. (19-167) one obtains for the number of photons N per energy interval

N

Q
¼ k � 1 J

c � h
1

J
¼ 5:034 � 1015 k

nm

1

J
: ð19-169Þ

The parameter used in radiometry instead of power is called the radiant flux
Ue ¼ ¶Q=¶t, measured again in Watts [W]. Since a radiant flux of 1 Watt corre-
sponds to 1 Joule per second, one can calculate the number of photons of a source
per second from the radiant flux:

N

U
¼ k

c � h
1

W

� �

¼ 5:034 � 1015 k

nm

1

W
: ð19-170Þ

159



19 Interference and Coherence

A source emitting 1000 photons per second in the visible has therefore a flux of
2 femto-Watts (1 fW= 10–15 W). A 30 mW HeNe-laser emits about 1017 photons/s.
Since the photon energy decreases with the wavelength, the number of photons, for
a constant radiant flux, increases with the wavelength. As a consequence of the sta-
tistical fluctuations of the photon number (Poisson statistics and shot noise, respec-
tively) any power measurement is affected by a definite signal-to-noise ratio (SNR)
given by

SNR ¼ 10 log10

r2
s

r2
n

� �

~

ffiffiffiffi
N

p

N
ð19-171Þ

where rs
2 denotes the average square of the signal amplitude and rn

2 is the variance
of the noise. Table 19-3 shows, for comparison, the necessary photon number and
the resulting noise per resolvable image point for a wavelength of 1000 nm, 100 nm
and 10 nm, assuming a detector or a film requiring illumination intensities of
1 mW/cm2 whereas the resolution is, of course, wavelength dependent (NA =0.6).
Figure 19-56 shows the double logarithmic dependence of the noise on the wave-
length for different detector sensitivities and apertures of the imaging optics.

Tabelle 19-3: Photon number and noise per image point for a radiation flux density of 10 lW/cm2

and different wavelengths.

1000 nm 100 nm 10 nm

Frequency
1

T
¼ c0

k
3 · 10

14
Hz 3 · 10

15
Hz 3 · 10

16
Hz

Energy Q ¼ �hmt 1.24 eV 12.40 eV 123.99 eV

Photons/Watt
N

U
5.03 · 1015/mW 5.03 · 1014/mW 5.03 · 1013/mW

Photons/area at 1 mW/mm2 (in N/mm2) 5.03 · 1013 5.03 · 1012 5.03 · 1011

Point image radius for NA = 0.6 1.02 mm 0.10 mm 0.01 mm

Number of photons per resolvable image

point

1.6 · 108 1.6 · 105 1.6 · 102

Statistical noise
ffiffiffiffi
N

p �
N 0.008 % 0.25 % 7.81 %

When using lasers, one should take into account that the stimulated emission
results in a number of in-phase photons per laser mode and the number of statisti-
cally independent photons is consequently substantially lower. The signal-to-noise
ratio SNR is then given by the number of independent modes M with SNR=
ffiffiffiffiffi
M

p
/M. The statistical effects, which occur to a much larger extent when using

lasers in comparison with thermal light sources, are usually denoted as speckle
[19-30], [19-31], [19-32].
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19.6 Statistical Optics and Speckle

Figure 19-56: SNR per image point for different apertures and intensities.

19.6.2

The Speckle Effect

When highly coherent laser light is incident on a rough surface, a grainy area
instead of a uniform light spot is observed. This is the so-called speckle pattern. The
light of a laser beam scattered on the wall forms a complex standing wave field.
When the roughness is of the same order or larger than the wavelength k, the inter-
ference from different points of the surface possesses a statistical phase. The grainy
pattern can be seen sharply by focussing on an arbitrary point in space.

Since in this type of consideration the exact optical path differences depend on
the observation point, the exact shape of the speckle pattern is a function of the
observation position and vice versa, and the grainy structure seems to move and
change when the observer is moving with respect to the scattering surface. This
form of the effect is called objective speckle.

Considering an illuminated area of size D and observation at a distance z, one
obtains from the outermost points of the illuminated field, a fringe width of

d ¼ k � z
D

¼ k

2 sin u
»

1

2
� Dairy : ð19-172Þ

This lateral parameter is the smallest grain diameter that can appear in the
speckle pattern. This is the typical grain size of the so-called objective granulation,
which occurs without additional optics. Depending, however, on the exact form of
the surface segment in the aperture, for a given observation point, the grain size can
exceed the Airy diameter. The diffraction pattern represents a lower limit for the
speckle structural size.
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19 Interference and Coherence

Figure 19-57: Occurrence of speckle upon reflection of coherent radiation at a rough surface.

Since, according to eq. (19-172) the size of typical speckle regions is proportional
to the separation z, the speckle image typically depends on the numerical aperture
and the distance of the image plane, respectively. This is shown in figure 19-58,
using several examples.

Figure 19-58: Speckle images corresponding to different distances z.
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19.6.3

Speckle Parameters and Surface Structure

Let the function h(x,y) describe the surface contour of a scattering area which is
illuminated by coherent light with amplitude Uin(x,y) at an angle of incidence h and
let Ch(Dx,Dy) be the normalized autocorrelation function of the surface. In the most
general case the relationship between the surface properties and the reflected wave
is very complicated because the following effects have to be considered:

1. Fresnel reflection at different local angles.
2. Multiple scattering.
3. Vignetting.
4. Extremely small radii of curvature of the surface, which are comparable with

the wavelength.

Assuming an average reflectivity of r one obtains as an approximation for the
reflected wave amplitude

Urðx; yÞ ¼ r �Uinðx; yÞ � eik� 1þ coshð Þ�hðx;yÞ : ð19-173Þ

Denoting by r2
h the variance of the surface roughness and assuming a Gaussian

dependence of the surface function, one obtains for the complex coherence factor of
the reflected field

c Dx;Dyð Þ ¼ eik 1þ coshð Þ� h x2 ;y2ð Þ�h x1 ;y1ð Þ½ �� �
¼ e�k2ð1þ coshÞ2 �r2

h
� 1�Ch Dx;Dyð Þ½ � : ð19-174Þ

Assuming further an isotropic Gaussian distribution of the surface correlation func-
tion with a coherence length rc

ChðrÞ ¼ e�
r
rcð Þ2 ð19-175Þ

where r is the linear distance, it is possible to obtain curves for the dependence of
the coherence factor on the coordinate difference for different variances of the sur-
face, as shown in figure 19-59.

The number of correlation domains which contribute to the intensity when con-
sidering the imaging of a scattering surface with a pupil area Apup and a correspond-
ing surface roughness, amounts by use of (19-172) to

N ¼ k
2 � z2

Apupp � r2c
: ð19-176Þ

The average contrast in the speckle field

Vh i ¼ rI

Ih i ð19-177Þ
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has a dependence on the roughness variance for different N as shown by the curves
in figure 19-60. It should be noticed here, that this modified definition of the con-
trast contains statistical quantities and therefore does not correspond to the classical
normalized definition of V. A contrast of V = 1 is approached only for sufficiently
large peak-to-valley heights. The contrast slowly increases also with the number N of
the contributing correlation cells. For small variances the contrast exhibits a quadrat-
ic dependence.

Figure 19-59: Coherence factor as a function of the normalized distance r / rc and the roughness r.

Figure 19-60: Contrast of a speckle structure as a function of the roughness

and the number of correlation cells.
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19.6.4

Computation of Speckle Effects

Consider an optical system in which an incident coherent field distribution can take
many paths with different optical lengths to a single point in the plane of observa-
tion. The field distribution results from the interference of all contributing fields. In
general the path lengths will depend on time – for instance if a rotating diffuser is
considered. The instantaneous field is described by (cf. figure 19-61)

U ~rr; tð Þ ¼
X

i

Uið~rrÞ � e�i x0tþUi tð Þ½ � ¼ A ~rr; tð Þ � e�i x0tþj ~rr;tð Þ½ � : ð19-178Þ

Figure 19-61 Interference of mutually coherent waves of arbitrary phase.

Assuming time independence, i.e. a fixed coupling of all phases, a superposition
of constant amplitudes A(t) with equal phases takes place and the resulting phase j
is constant.

If all interfering waves Ui are, on the other hand, of statistical origin, i.e., all
amplitudes Ai and relative phases Ui are different, the total amplitude A(r,t) and the
resulting phase j(r,t) are, in general, position and time dependent. For random sig-
nals the amplitude A(r,t) is given by the random walk of the single amplitudes (cf.
figure 19-62, right picture).

Figure 19-62: N independent field amplitudes are superimposed with

correlation decreasing from left to right. The average amplitude is given

by the center of the blue circle.
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Finally, the correlation of the field distribution U(t) at the position x is given by

U tð ÞU� tþ sð Þh i ¼
X

i

X

j

UiU
�
j � ei �x0sþUi tð Þ�Uj tþsð Þ½ �

* +

: ð19-179Þ

For M field distributions of identical phase and amplitude, eq. (19-179) can be
rewritten in the form (cf. figure 19-62, left picture)

C coh sð Þ ¼ M2 Ui tð ÞU�
i tþ sð Þ

� �
¼ M2U2

i ð19-180Þ

which describes the coherent case. In the case of correlated signals the intensity grows
quadratically with the number of interfering field distributions. In the other extreme
case of uncorrelated field distributions one obtains (cf. figure 19-62, right picture)

C incoh sð Þ ¼ M Ui tð ÞU�
i tþ sð Þ

� �
: ð19-181Þ

Hence, in the case of uncorrelated signals, time averaging is equivalent to ensemble
averaging and the intensity increases linearly with the integration time. That is why
in the case of incoherent imaging it makes no difference whether the image is
recorded at once, by multiple illumination or, e.g., by scanning [19-33], [19-34].

Figure 19-63 shows typical speckle patterns resulting from the superposition of
M independent modes. The contrast (visibility V) reaches a maximum with V = 1 for
M = 1 because the �random walk’ can lead to complete mutual extinction of the
amplitudes.

Figure 19-63: Typical speckle patterns resulting from the superposition ofM independent modes.

In the case of partially coherent radiation fields, produced by the superposition of
statistically independent field distributions and modes, respectively, the overlapping
speckle patterns are, depending on the number M of the modes, statistically inde-
pendent. The RMS-value of the speckle pattern decreases with

ffiffiffiffiffi
M

p
/M. However,

one should keep in mind that this does not hold for the contrast (figure 19-64).
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Figure 19-64: RMS and visibility V of a typical speckle pattern resulting from

the superposition ofMmutually incoherent modes.

In most practical cases, the observed speckle pattern is a superposition of several
separate patterns. The overlap of the various beams normally takes place from the
same scattering screen. The speckle size remains unchanged, but the statistics and
the probability for the occurrence of a definite intensity are different.

In the incoherent case when the correlation of two overlapping distributions is
completely absent, the probability distribution of the intensity is given by

wðIÞ ¼ 4I

I20
� e�2 II0 : ð19-182Þ

Hence, the probability for dark areas with I = 0 is vanishing and a concentration
with averaged brightness takes place. This trend proceeds for the superposition of
an increasing number of patterns and a homogeneous illumination occurs in the
limiting case.

In the general case of superimposing M ideal uncorrelated speckle images, the
probability distribution for the intensity is given by

wMðIÞ ¼
MM

ðM � 1Þ! �
IM�1

IM0
� e�

M�I
I0 : ð19-183Þ

These probability distributions are plotted in figure 19-65 for several values of the
number M of the speckle images. The probability tends to have a peak at the value
I0 with increasing number of overlapping single images. Hence, one obtains a
homogeneous illumination with constant intensity in the limiting case. This is the
underlying principle of speckle reduction.
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Figure 19-65: Probability distribution of the intensity for incoherent superposition

of N speckle images.

For the computation of the intensity one can use the approach described in sec-
tion 19-4, whereas an additional integration over all modes has to be taken into
account. The source distribution is represented as a sum of mutually incoherent
modes:

I ~rrsð Þ ¼
X

n

In ~rrsð Þ ¼
X

n

Un ~rrsð Þj j2 : ð19-184Þ

For this reason the coherence function is also expressed as a sum over all incoherent
modes:

C ~rr1;~rr2ð Þ ¼
X

n

Cn ~rr1;~rr2ð Þ ð19-185Þ

where the coherence functions of the separate modes are defined by

Cn ~rr1;~rr2ð Þ ¼ R R
S ¢

R R

S

G ~rr1 �~rrsð ÞG� ~rr2 �~rr ¢sð Þ �Un ~rrsð Þ �U�
n ~rr ¢sð Þd~rrsd~rrs ¢ : ð19-186Þ
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19.6.5

Speckle Reduction

Since speckle is a coherence phenomenon and the coherence, as described above,
possesses a spatial-temporal structure, different possibilities for the suppression of
speckle effects exist. There are several different approaches possible:

1. Illumination with temporally partially coherent light, which is equivalent to
lowering the temporal coherence.

2. Illumination with spatially partially coherent light, which is equivalent to
lowering the spatial coherence.

3. Time averaging by a moving aperture.

The optical path lengths in an ideal imaging system are the same for all rays so
that disturbing interference effects in the case of coherent illumination have no
impact. A real imaging systems under coherent illumination, however, suffers from
disturbing interference effects caused in particular by:

. Parasitic interferences by scattering particles (dust, scratches, contamina-
tions) as well as double reflections and, in general, ghost light.

. Air turbulence, particularly in astronomy.

By diffraction or other types of wave-splitting, the wave is decomposed into sever-
al mutually coherent waves. These overlap in the observation plane, generating an
intensity pattern, which, depending on the origin of the splitting, can have a com-
parable or higher contrast than the desired image contrast. This speckle pattern is
time-independent or stationary for steady-state systems, which indicates the way in
which one can avoid speckle effects. Speckle patterns, as interference effects, can be
easily affected by temporally changing elements producing different speckle pat-
terns which cancel each other after time averaging [19-35], [19-36], [19-37].

The only possibility of reducing the temporal coherence is, in principle, con-
nected with the manipulation of the radiation spectral bandwidth. Since the coher-
ence length

lc ¼ k
2

Dk
ð19-187Þ

is inversely proportional to the spectral bandwidth, in order to suppress coherence
effects, the bandwidth should be increased.

In order to lower the spatial coherence different setups are possible:
1. Insert a moving scattering plate (diffusing plate, ground glas) into the beam

path. This plate produces a statistical phase-mixing across the beam cross-section as
is shown in figure 19-66.
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Figure 19-66: Speckle elimination with the help of a moving scattering plate.

Let the surface relief of the scattering plate be given in the normal plane by the
height function h(x,y) with vanishing average and a RMS-value of

h2ðx; yÞh i ¼ d
2 : ð19-188Þ

If the lateral roughness scale is given by r, then the autocorrelation function of the
scattering plate reads

CDiff ¼ hðx; yÞhðx þ Dx; yþ Dyh i ¼ d
2 � e�

Dx2þDy2

r 2 : ð19-189Þ

A displacement of the diffusing plate produces a new field distribution through the
imaging optics. The cross-correlation between the light amplitudes with and without
displacement of the scattering plate indicates the displacement for which a new
uncorrelated granulation is obtained, that can be statistically overlapped with the old
one. Let D be the pupil diameter of the optical system and s the distance between
the pupil and the scattering plate. Assuming that the cone of the scattered light fills
the pupil, one has

r

d � k <<
k � s
D

(19-190)

and one obtains for the correlation of the field amplitudes in the image plane x¢, y¢

for a displacement Dx¢, Dy¢

Uðx ¢; y¢ÞU�ðx ¢þ Dx ¢; y¢þ Dy¢Þh i ¼ Uðx ¢; y¢ÞU�ðx ¢; y¢Þh i � sincDx ¢ � D
k � s¢ � sincDy¢ � D

k � s¢ :

ð19-191Þ

Thus, for a displacement of the scattering plate given by

Dx ¢ ¼ k � s
D

ð19-192Þ
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one observes a sufficiently strong decorrelation in the image plane. The speckle sup-
pression with a moving scattering plate is, in principle, carried out as ensemble aver-
aging on the time axis. However, a prerequisite for this is to have detector integra-
tion times, which are sufficiently large in comparison with the characteristic time
constant of the motion.

2. An improved modification of the method is based on two sequential scattering
plates of which only one is moving. The double scattering results in considerable
improvement of the phase modulation and hence strongly improves the speckle
suppression. This principle is shown in figure 19-67.

Figure 19-67: Speckle elimination by two diffusers, one is moved.

One obtains the following expression for the autocorrelation in the image plane

Uðx ¢; y¢ÞU�ðx ¢þ Dx ¢; y¢þ Dy¢Þh i

¼ Uðx ¢; y¢ÞU�ðx ¢; y¢Þh i � e
� k2 � Dx2þDy2ð Þ

r1=d1ð Þ2 þ r2=d2ð Þ2sinc
Dx ¢ � D
k � s¢ � sincDy¢ � D

k � s¢ : ð19-193Þ

The minimum required displacement of the moving scattering plate is given, for
equal parameters of the two diffusers, by

Dx ¢ ¼ k
ffiffiffi
2

p
p
� r
d

: ð19-194Þ

This expression is independent, in contrast to the arrangement with a single diffu-
ser, of the geometrical imaging parameters, and is a function only of the diffuser
characteristics. It can be verified numerically that this approach requires a substan-
tially smaller displacement, which is more convenient for practical realizations.
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19.7

Array Homogenizer

19.7.1

Setup of the System

In this section, as a concrete application of coherence theory, the intensity homoge-
nization of a partial coherent beam with a lenslet array component and a condenser
lens will be demonstrated. Figure 19-68 illustrates the geometry of the array compo-
nent. The array consists of N lenses. A single lenslet has a focal length farr and a
diameter

Dsub ¼ Darr

N
: ð19-195Þ

The array is modeled as a thin element and can be described in this approximation
as a thin mask. A ray reaches the array at the height xray in the subaperture No. j. If
the center of this lens is xcent with

xcent ¼ Dsub � j�N þ 1

2

� �

ð19-196Þ

the change in direction of the ray is in paraxial approximation

DuðxÞ ¼ � xray � xcent
farr

ð19-197Þ

and the new ray direction is

uout ðxÞ ¼ uinðxÞ þ DuðxÞ ð19-198Þ

A single lenslet for one sub-aperture is described in paraxial approximation by
the transmission function

TsubðxÞ ¼ e
i� xray�xcentð Þ2

2k�farr : ð19-199Þ

The whole array therefore can be modeled by the transmission function [19-38],
[19-39]

TarrðxÞ ¼ rect
x

Dsub

� �

� e
ix2

rel

2k�farr � comb
x

Dsub

� �" #

� rect x

Darr

� �

: ð19-200Þ
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Figure 19-68: Ray trace at an array component.

The complete system for the homogenization of an intensity profile consists of the
array and a condenser lens with focal length fcon. Figure 19-69 shows the principle
of the setup. The array splits the incoming beams into the subaperture beamlets.
Every beamlet is propagated into the receiver plane. All the light of the subapertures
is superimposed there. Within the paraxial approximation of the propagation of the
beamlets according to Fresnel approximation, the size of the illuminated area is
given by

Dill ¼ Dsub �
fcon
farr

: ð19-201Þ

Figure 19-69: Array illuminator system to homogenize the intensity distribution

in one selected plane. The numbers indicate the planes for which the calculation

results are shown in figure 19-76.

Every subaperture contains a different part of the incoming intensity profile. The
superposition of all these contributions gives a good homogenization, if a large
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number of subapertures is illuminated. This principle works well in the ideal inco-
herent case, where the intensities are added in the receiving plane.

One important parameter for the design and optimization of the diffraction array
homogenizer is the Fresnel number of a single subaperture, which is defined by
(cf. eq. 18-94)

NðsubÞ
F ¼ pD2

sub

k � farr
: ð19-202Þ

The illumination field is located in the Fresnel range of the subaperture. Therefore, if
the light inside one subaperture can be regarded as coherent, the intensity distribution
of each subaperture shows typical Fresnel structure with diffraction ripple. The number
of the ripple roughly corresponds to the Fresnel number of the propagation. The larger
the Fresnel number, the better the homogeneity of the field and the easier it is to make
the gradient of the illumination field boundary steep. But if the size of the desired
illumination field is given, a large Fresnel number causes a small number of suba-
pertures, so the superposition and the generation of the mean do not work well.

Figure 19-70: Full setup of a two-staged illuminator with two arrays.

So, a more sophisticated setup of a homogenizing array illuminator is shown in
figure 19-70. The concept of this two-staged system shows a significant better perfor-
mance. The first array focusses the incoming collimated light beam onto the second
array, which acts as a field lens. The second array therefore images the first array
into the plane of homogeneous illumination. One advantage of this more compli-
cated design is a nearly perfect decoupling of the output illumination field from the
properties of the incoming light beam. Furthermore, the finite divergence angle h of
the beam does not cause the field edges to be less sharp in the receiving plane.
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19.7.2

Pupil Filling

In the plane of the homogenized illumination field, the distribution of the light is
not homogeneous with respect to the angle of propagation. This corresponds to a
structured illumination of the pupil. The maximum aperture angle reads

sin u¢m ¼ ðN � 1Þ � Darr

2fcond
: ð19-203Þ

In the center of the light field, the angular distribution of the illumination light con-
centrates around the lines, which connects the point with the center points of the
lenslets of the array. Around this selected direction, the light is distributed according
to the angular divergence h of the incoming beam. Depending on this value in com-
parison to the aperture angle of the individual subapertures u¢/(N–1), the angular
distribution forms a structured illuminated array and separates in the extreme case
into single illumination areas in the pupil. Figure 19-71 shows a section through the
angle u¢ for these two different cases, figure 19-72 illustrates the pupil illumination
for the case of isolated areas in two dimensions.

Figure 19-71: Composition of the pupil illumination.
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genizer in two dimensions.
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Since every subaperture focusses its individual beam, this decomposition of the
pupil illumination can be regarded as a new secondary source of point sources in
the corresponding distance of the illumination field. The concept for this idea is
shown in figure 19-73.

Figure 19-73: Model of the secondary point sources.

The structured illumination of the pupil in the angular domain causes the effect
that the homogeneity of the illumination is destroyed immediately, if the receiver is
defocussed against the ideal illumination plane.

19.7.3

Coherence Effects

According to the model of the secondary point sources, the occurrence of diffraction
and interference effects in the simple diffraction array illuminator can be under-
stood easily [19-40], [19-41]. If the incoming beam has a non-zero transverse coher-
ence length, the different point sources can interfere with a finite contrast and the
generation of the resulting illumination corresponds to grating diffraction according
to the picture in figure 19-73. Figure 19-74 defines the relevant terms for the coher-
ence consideration of the array setup.

With the help of the Hopkins formula, the degree of coherence can be written
with these parameters in the form

cðxÞ ¼ sin p�N�x�X ¢
k�d

	 


N � sin p�x�X ¢
k�d

	 
 � sin p�xl ¢
k�d
	 


p�xl ¢
k�d












: ð19-204Þ

This function is shown in figure 19-75. It resembles the grating function. The first
term is the fast oscillating one and results from the subaperture interference. The
second factor is the envelope function and comes from the subaperture profile
itself.
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Figure 19-74: Coherence model for the simple array illuminator.

Figure 19-75: Coherence factor of the simple array illuminator.

19.7.4

Example Calculation

If the incoming beam has a certain degree of coherence, a residual non-uniformity
or speckle effect remains in the receiving plane. This effect depends on the relation
between the lateral coherence length Lc of the incoming beam to the size of the
beamlets Dsub. Figure 19-76 shows a calculation of the above setup with the plot of
the Wigner distribution function and the intensity distribution as a function of the
spatial and the angle coordinate in the selected planes 1 to 5 as indicated in figure
19-69. As an incoming beam, a Gauss Schell model beam is used. In the second
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column of the series of plots it can be seen that the array has divided the beam into
beamlets. The fourth column shows the focussing of the beams in each subaperture,
and in the fifth column, the nearly perfect homogenized intensity profile in the spa-
tial domain can be recognized in the second row. It should be noticed that the angle
distribution is not homogeneous, as can be seen in the right picture of the last row.

In the right picture of the second row, the residual speckle as a result of the coher-
ence of the incoming beam shows the limits of the setup. The pictures in the bottom
row, up to the third, indicate the structured illumination of the pupil as an angle
distribution.

Figure 19-77: Measured intensity profile of an excimer laser, homogenized

by: a) a simple array; and b) a double array setup.
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Figure 19-76: Wigner distribution function, in

the selected planes of figure 19-69, for an array

illuminator system with partially coherent illu-

mination. The second row shows the intensity

as a function of the spatial coordinate I(x), the

last row shows the angular distribution of the

intensity I(u). It should be noted that the

coordinate scales in the first picture of the row

is stretched by a factor of 10 in comparison

with the other four cases.
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As a practical example, figure 19-77 shows the measured beam profile of an exci-
mer laser in the left part, which is homogenized by a single array illuminator. The
residual interference effects can be seen very clearly. If, on the other hand, the same
beam is homogenized with a full system with two arrays, according to the arrange-
ment of figure 19-70, the observed profile shows a much better homogeneity as can
be seen in the right side of figure 19-77. Here only negligible residual diffraction
effects appear in the illumination field.

19.8

Miscellaneous

19.8.1

General Coherence Length

A general averaged transverse coherence length can be defined over the cross-sec-
tion of a partially coherent beam as a normalized second moment of the square of
the coherence function [19-42]

Lc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RR

C ~rr1;~rr2ð Þj j2�~rr1 �~rr2j j2d~rr1 d~rr2
RR

C ~rr1;~rr2ð Þj j2d~rr1 d~rr2

v
u
u
t : ð19-205Þ

This coherence length can be interpreted as an average lateral size of the coherence
region within the beam cross-section. The fact that this moment is defined, not by
the contrast and hence by the absolute value of C, but instead by its square, is related
to the characteristic properties of the correlation function. The averaging requires
integration over both coordinates. Each integral itself transforms in the limiting
case of equal coordinates, into an integral over the intensity, giving the power as a
physically meaningful quantity.

Substitution of the Wigner function for the coherence function results in an alter-
native formula for the computation of the general coherence length

Lc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

RR ¶W ~rr;~ppð Þ
¶~pp

� �2

d~rr d~pp
RR

W2 ~rr;~ppð Þ d~rr d~pp

v
u
u
u
t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

RR
~̂pp~pp � �~uuW ~rr;~ppð Þ
� �2

d~rr d~pp
RR

W2 ~rr;~ppð Þ d~rr d~pp

v
u
u
u
t : ð19-206Þ

In the one-dimensional case, the definition of the transverse coherence length
should be supplemented with an additional scaling factor of 2

Lc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 � RR C x1; x2ð Þj j2� x1 � x2j j2dx1 dx2
RR

C x1; x2ð Þj j2dx1 dx2

v
u
u
t : ð19-207Þ

For a Gaussian Schell beam with a coherence function in the waist given by
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Cðx1; x2Þ ¼ I0 � e�
x2
1
þx2

2

w2 e
�ðx1�x2Þ2

2L2 ð19-208Þ

one obtains the expression

Lc ¼
L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ L

w

� �2
s : ð19-209Þ

In the limiting case of ideal coherence the last expression gives

LcðLfi ¥Þ ¼ w : ð19-210Þ

For strongly incoherent beams, the asymptotically obtained coherence length corre-
sponds to that of the conventional Gaussian Schell beam definition.

LcðLfi0Þ ¼ L � 1� L2

2w2

� �

: ð19-211Þ

The lateral coherence length can be measured with the help of Young’s double pin-
hole experiment. As a characteristic parameter, one records in this case the contrast
V of the fringe pattern in dependence on the decreasing hole separation. This quan-
tity equals the absolute value of the normalized coherence function

Vðx2 � x1Þ ¼ Cðx2; x1Þj j : ð19-212Þ

Typically, the half-width a of the decaying contrast curve is taken as a lateral measure
of the coherence but a definite relationship with the above defined quantity Lc can
be obtained only for given forms of the decaying coherence curve.

1. For a contrast with Gaussian decay shape one has

afwhm ¼
ffiffiffiffiffiffiffiffi

ln2
p

� Lc ¼ 0:833 � Lc : ð19-213Þ
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2. For a top-hat coherence function it follows that

afwhm ¼
ffiffiffi

3

2

r

� Lc ¼ 1:225 � Lc : ð19-214Þ

Figure 19-79: Contrast curves with super-gaussian shapes.

In the general case of coherence functions with super-gaussian profile and shapes
such as those shown in figure 19-79 for an exponent m = 0.5 ... 20,

C Dxð Þ ¼ e�Dxm ; ð19-215Þ

it is possible to define the transverse coherence length in several different ways:

1. Second moment with C

Lc1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 � RR C x1; x2ð Þj j � x1 � x2j j2dx1 dx2
RR

C x1; x2ð Þj jdx1 dx2

s

: ð19-216Þ

2. Second moment with C2

Lc2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 � RR C x1; x2ð Þj j2� x1 � x2j j2dx1 dx2
RR

C x1; x2ð Þj j2dx1 dx2

v
u
u
t : ð19-217Þ

3. Threshold value of C at 50 %

Cðx2; x1Þj jLc3¼x2�x1
¼ 0:5 : ð19-218Þ

4. Threshold value of C at 1/e = 0.3678

Cðx2; x1Þj jLc4¼x2�x1
¼ 1=e ¼ 0:3678 : ð19-219Þ
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Depending on the exponent m, one obtains for the lateral coherence length Lc, the
curves shown in figure 19-80. The corresponding distributions of the coherence
function are scaled by their 1/e-width. Realistic values of m > 1.3 (the contrast decay
converges significantly to zero) result in differences in the coherence lengths as
large as a factor of 5, depending on the curve shape of C(Dx).

Figure 19-80: Several definitions of the transverse coherence length for

contrast decays with super-gaussian shape as shown in figure 19-79.

19.8.2

General Degree of Coherence

A definition of the degree of coherence with global validity and an averaging prop-
erty across the beam cross-section can be formulated with the help of the coherence
or the Wigner function in the form

c2 ¼
RR

Cðx1; x2Þj j2dx1 dx2

R
Cðx; xÞ dx

� �2 ; ð19-220Þ

c2 ¼ k �
RR

W ¢
2ðx; pÞdx dp

R R
W ¢ðx; pÞ dx dp

� �2 : ð19-221Þ
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19.8.3

Coherence and Polarization

The polarization, or the composition, of the directional components of the electro-
magnetic field, remains unchanged for free-space propagation. Hence, a separate
coherence function can be defined for each vector component and the consideration
can be limited to the scalar case.

Passage through optical systems, however, can result in cross-talk between the
vector components, e.g., an x-component at the input of an optical system can be
transformed into a y-component at the output. Hence, an x-component of the light
source can actually interfere with a y-component. Because of that mutual correlation
functions are defined for the different polarization components. The resulting polar-
ization coherence function matrix has the form

C ~rr1;~rr2ð Þ ¼
Cxx Cxy Cxz

C yx C yy C yz

Czx Czy Czz

0

@

1

A ð19-222Þ

where the mutual coherence functions of the light source are given by

C ij ~rrs;~rr ¢sð Þ ¼ R R
S ¢

R R

S

Ei;s ~rrsð Þ � E�
j;s ~rr ¢sð Þd~rrsd~rrs ¢: ð19-223Þ

The polarization coherence function Cxy characterizes the capability of the different
vector components to interfere. Through the correlation of two polarization direc-
tions the polarization coherence function describes the polarization degree of a
given field distribution. It has to be noted, that the coherence matrix according to
eq. (19-222) is over-specified because it stems from the superposition of two-dimen-
sional Jones vectors (see chapter 28 for more details). For vanishing coherence func-
tion the light is unpolarized, otherwise it can be partially polarized or polarized:

Cxy ¼ 1 polarized;
0 < Cxy < 1 partially polarized;
Cxy ¼ 0 unpolarized:

ð19-224Þ

Propagation through an optical system can be described in an abstract form by a
propagator or a Green function, where the Green function has a matrix form. One
has for the field vector in the observation plane

~EE ~rrð Þ ¼ R R
S

G ~rr �~rrsð Þ �~EEs ~rrsð Þd~rrs : ð19-225Þ

The cross-talk between different vector components is accounted for in the non-diag-
onal components of the Green function matrix. Thus the correlation integral can
again be determined for each vector component in the image plane. The coherence
function itself is also represented by a vector with x,y,z-components:
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Ck
ij ~rr;~rr ¢ð Þ ¼¼ R R

S ¢

R R

S

Gki ~rr �~rrsð ÞEi;s ~rrsð Þ �G�
kj ~rr ¢�~rr ¢sð ÞE�

j;s ~rr ¢sð Þd~rrsd~rrs ¢: ð19-226Þ

The mutual intensity in the image plane is given now by a triple sum over all diag-
onals of the polarization coherence functions

I ~rrð Þ ¼
X

i;j;k

Ck
ij ~rr;~rrð Þ : ð19-227Þ

In each case, two arbitrary vector components i and j, in the input plane, can con-
tribute to a vector component, e.g., to the x-component, in the image plane.

The last chapter of this volume will be devoted to further consideration of the
polarization coherence function.
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20.1

Introduction

The design and analysis of optical imaging systems is based on ray-tracing and the
geometrical optical description. The advantages of ray-tracing are numerous: it is
powerful, fast, flexible and applicable over large scales, and there are a variety of
commercially available software packages. With certain approximations and, e.g.,
statistical methods, even scattering or diffractive optical elements can be considered.
However, ray-tracing alone is not sufficient to describe optical imaging. A wave-opti-
cal description is necessary in order to consider diffraction and interference effects.
Diffraction effects from boundaries like the pupil stop can be neglected in most
cases, but diffraction effects at the object and intensity formation in the image plane
by interference, are not considered by ray-tracing.

The description of optical imaging is based on the, at first glance, abstract charac-
teristic functions. The characteristic functions, which are in general four-dimen-
sional functions, are based on fundamental geometrical-optical principles such as
the minimum principle for the optical light path length, and are usually obtained by
ray-tracing, measurement, or – in selected examples – analytically. The transition
from geometrical optics to the wave-optical description with the help of the charac-
teristic function allows a wave-optical treatment of optical imaging systems. For
example, the calculation of the image intensity of a single point gives the point-
spread function. In the case of incoherent imaging, when coherence effects can be
neglected, the image is obtained by a convolution of object transmission with the
wave-optical point-spread function. Partial coherent or coherent image formation
requires a wave-optical treatment of diffraction at the object and interference in the
image plane. In any case, however, the description of the imaging system is based
on the characteristic functions. The concept of the characteristic function in combi-
nation with the transition to the wave-optical description allows comprehensive
interpretation of optical imaging.

In section 20.2, the geometrical-optical description is introduced and some funda-
mental properties of geometrical optics and optical imaging systems are outlined.
The characteristic functions are derived using the variation principle, and the transi-
tion to wave optics is performed. The point-spread function of ideal incoherent im-
aging systems is derived in section 20.3. As an example of two-point resolution,
incoherent imaging is considered, further examples of incoherent imaging are given
in comparison with partial coherent imaging in chapter 24. In section 20.4 aberra-
tions are considered. In section 20.5, some remarks on the Helmholtz invariant and
information theory are included. The Fourier-optical description of optical imaging
according to Abbe is described in chapter 21. In chapter 22, several mathematical
descriptions of partial coherent imaging theories are compared. Three-dimensional
image formation is described in chapter 23.
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20.2

Characteristic Functions

20.2.1

Geometrical Optics and the Wave Equation

The development of classical optical instruments usually takes place within the geo-
metrical optical approximation. The design of optical systems may be carried out
using first-order optical equations such as Newton’s equations or third-order Seidel
coefficients. Optical systems are further evaluated and optimized by means of ray-
tracing. Here only the formal aspects of geometrical optics are introduced in so far
as they are useful for comprehension, a detailed description is given in volume 3 of
this book series. The reader familiar with the Hamiltonian description of classical
mechanics will recognize the terms since, like classical mechanics, geometrical
optics is based on a minimum principle and allows application of the calculus of
variations. Incidentally, William Rowan Hamilton (1805–1865; publication of his
theory from 1828–1837) originally developed his formalism for optics rather than
for mechanics. For more details of variation calculus and the formal theory of geo-
metrical optics, the reader is referred to [20-1] and [20-2].

Geometrical optics is based on a fundamental principle, Fermat’s law. Fermat
repeated an idea of Hero of Alexandria according to which light takes the path with
the shortest time of travel. This minimum principle for the time of travel can be
converted into a minimum principle for the light path between two (infinitesimally
adjacent) points:

dV ¼ 0; with V ¼ c � T ¼ R cdt ¼ R c
v
ds ¼ Rnð~rrÞds ð20-1Þ

where ds is the infinitesimal length element ds ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dx2 þ dy2 þ dz2
p

. The function
V ~rr0;~rr1ð Þ describes the light path between the two points r0 and r1 and is called the
point characteristic. The point characteristic describes the path length of an optical
system by the object and image points,~rr0 and~rr1 as parameters. The light path be-
tween these two points is not otherwise specified in more detail. In a perfectly imag-
ing optical system there can be infinitely many light paths of the same length be-
tween object and conjugated image point.

For the description of the light path through optical systems, the infinitesimal
length element ds is impractical. With the z-coordinate as parameter instead it fol-
lows from (20-1) that

V x0; y0; x1; y1; z0; z1ð Þ ¼ Rnds ¼ RL x; y; _xx; _yy; zð Þ dz: ð20-2Þ

Equation (20-2) is applicable as long as the object and image space possess axes of
symmetry with coordinates z0 and z1. The function L is the Lagrange function,
given by

L ¼ n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

_xx2 þ _yy2 þ 1
p

ð20-3Þ
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with _xx ¼ ¶x=¶z and _yy ¼ ¶y=¶z. The canonical conjugated variables to the space coor-
dinates x and y together with the Hamilton function H are given by the Hamilton–
Jacobi equations:

p ¼ ¶L

¶ _xx
¼ ¶V

¶x
¼ n _xx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ _xx2 þ _yy2

p ; ð20-4aÞ

q ¼ ¶L

¶_yy
¼ ¶V

¶y
¼ n_yy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ _xx2 þ _yy2

p ; ð20-4bÞ

m ¼ ¶V

¶z
¼ n _zz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ _xx2 þ _yy2

p ¼ �H x; y; p; qð Þ : ð20-4cÞ

The canonical conjugates px and py to the space coordinates x and y are equivalent to
the x- and y-components of the tangent vector to a light-ray of length n, also called
the optical direction cosine vector. For convenience, the optical direction cosine vec-
tor is also written as~pp ¼ p; q;mð Þ. The Hamiltonian is equivalent to the negative of
the z-component of this vector. Due to the analogy with classical mechanics, the
optical direction cosine vector ~pp ¼ px; py; pz

	 

¼ p; q;�Hð Þ is also called the quasi

momentum. Equation (20-4) represents the vector equivalent to the Eikonal equa-
tion

~pp ¼ ~��V ¼ n~ss : ð20-5Þ

From the square of eq. (20-5) the known Eikonal equation (17-103) follows with
~��V








2

¼~pp2 ¼ n2. The optical direction cosine vector ~pp plays an important role in
optics and imaging systems. As will be shown, ideal optical systems have to perform
linear transformations to transverse space coordinates x, y and also directions
cosines q, p. As will be shown below, the transverse components of the optical direc-
tion cosine are also proportional to the canonical pupil coordinates of an imaging
optical system.

By analogy with quantum mechanics, the optical direction cosines can be written
as operators for a wave function by

p̂px ¼ �i
k

2p

¶

¶x
; p̂py ¼ �i

k

2p

¶

¶y
and ĤH ¼ i

k

2p

¶

¶z
ð20-6Þ

and after insertion into the Hamiltonian we obtain

ĤHU ¼ i
k

2p

¶

¶z
U ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2 � k

2p

� �2
¶
2

¶x2
� k

2p

� �2
¶
2

¶y2

s

U ¼ 0 : ð20-7Þ

From the square of eq. (20-7) the Helmholtz equation (17-17) follows:

¶
2

¶x2
þ ¶

2

¶y2
þ ¶

2

¶z2
þ n2 2p

k

� �2
" #

U ¼ DU þ n2k20U ¼ 0 : ð20-8Þ
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For paraxial rays with small angles to the z-axis with _xx << 1 and _yy << 1, the Hamilto-
nian can be expanded

Hp ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2 � p2 � q2
p

»
1

2n
p2 þ q2ð Þ � n ð20-9Þ

and the paraxial wave equation is obtained as:

ĤHpU ¼ i
k

2p

¶

¶z
U ¼ 1

2n

k

2p

� �2
¶
2

¶x2
þ ¶

2

¶y2

� �

U � nU ¼ 0 : ð20-10Þ

By analogy with classical mechanics, the paraxial Hamiltonian Hp can be written as
a sum of the �kinetic energy’ T and a potential V, while the refractive index can be
interpreted as a potential determining the trajectories of light rays.

20.2.2

The Characteristic Functions

The point characteristic V of eq. (20-2) is the most simple characteristic function
although there are several others. Its function value is the optical light path length
between two points in the object and the image plane z0 and z1, andmay bewritten as

V ~rr0;~rr1ð Þ ¼ R
~rr1

~rr0

nds ¼ R
~rr1

~rr0

n
d~rr

ds
� d~rr ¼ R

~rr1

~rr0

~pp � d~rr ¼ R
~rr1

~rr0

pdx þ qdy�Hdzð Þ : ð20-11Þ

The first integral is equivalent to the path length integral over the infinitesimal
curve parameter ds ¼ d~rrj j (eq. (20-1)). It can be converted with the help of the optical
direction cosine ~pp= (p,q,m) into the Hilbert integral over the scalar product of the
direction cosine and position vector (eq. (20-11), right-hand side). The total differen-
tial of the point characteristic is thus given by

dV ¼~pp1 � d~rr1 �~pp0 � d~rr0
¼ p1dx1 þ q1dy1 þm1dz1 � p0dx0 � q0dy0 �m0dz0 : ð20-12Þ

Thus, in an existing optical system, there is a vector field of optical direction cosines
to each pair of object and image points, which is given by the gradient of the path
length or point characteristic V (eq. (20-5)). The optical path length or point charac-
teristic V takes over the role of the potential in classical mechanics. As is known, the
rotation of a gradient field vanishes, i.e., every closed path integral (Hilbert integral)
yields the value 0:

rot~pp ¼ 0 : ð20-13Þ

Equations (20-5) and (20-13) express the commonly known fact that light rays run
perpendicular to the planes of equal light-path lengths. The planes of equal light-
path lengths V = const. are thus equivalent to the wave fronts of the wave-optical
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description. This property, called orthotomy or normal congruence of rays, is illus-
trated in figure 20-1 for homogeneous object and image space. The orthotomy is
valid throughout optical systems and is especially preserved at boundaries where, as
a consequence, Snell’s law of refraction can be derived from (20-13).

Figure 20-1: Normal congruence of rays or orthotomic system: the light rays run

perpendicular to the wave fronts; any closed light path-integral has the length zero.

The conservation of the normal congruence in optical systems is used for ener-
getic consideration of the optical imaging: from the equivalence of the density of the
geometrical-optical rays to the energetic radiance the energy transfer from object to
the image is given by the conservation of congruence. The radiant flux U1 through a
surface element dA1, limited by at least three rays in image space, is equivalent to
the radiant flux U0 through the corresponding surface element dA0 limited by the
same rays in object space, and may only be weakened by absorption or reflectance
losses (figure 20-2).

Figure 20-2: Conservation of energy as a consequence of conservation of congruence.

For constant z coordinates of the object and image plane the point characteristic
is a four-dimensional function. The characteristic function V(x0,y0;x1,y1) can be
transformed into other characteristic functions by a Legendre transformation. By
writing, e.g.,

dW1 ¼ d V � x1p1 � y1q1ð Þ
¼ �x1dp1 � y1dq1 þm1dz1 � p0dx0 � q0dy0 �m0dz0 ð20-14Þ

the mixed characteristic W1(x0,y0;p1,q1) is obtained as a function of the transverse
object coordinate and the optical direction cosines in the image space. By further
Legendre transformations the point characteristic can be converted further into the

192



20.2 Characteristic Functions

second mixed characteristic W2(p0,q0;x1,y1) and into the Schwarzschild angular eiko-
nal T(p0,q0;p1,q1) [20-3]. So in total there are four characteristic functions:

V x0; y0; x1; y1ð Þ ð20-15aÞ

W1 x0; y0; p1; q1ð Þ ¼ V � x1p1 � y1q1 ð20-15bÞ

W2 p0; q0; x1; y1ð Þ ¼ V þ x0p0 þ y0q0 ð20-15cÞ

T p0; q0; p1; q1ð Þ ¼ V � x1p1 � y1q1 þ x0p0 þ y0q0 : ð20-15dÞ

A characteristic function parameterized in direction cosines gives the path length of
a light ray with reference to the intersection point with the perpendicular line
through the origin of coordinates. Figure 20-3 illustrates this for the example of the
mixed characteristic W1. As will be shown below, the mixed characteristic W1 is of
special importance for optical imaging systems.

Figure 20-3: The function value of W1 is equivalent to the light path

between an object point and the perpendicular through the origin of

coordinates to the light ray in image space.

The characteristic functions can, in general, be determined by ray-tracing soft-
ware. The mixed characteristic for an object point, for example, is obtained by tra-
cing a bundle of rays from the object point into image space, whereby the light path
is determined up to an arbitrary plane z1 in image space. In general, the plane z1
may even be a virtual plane, i.e., obtained by a prolongation of the light rays in
image space in the negative direction. From this plane the light rays propagate in
free space and the mixed characteristic W1 is changed according to

W1 x0; y0; z0; p1; q1; z1 þ Dz1ð Þ ¼ W1 x0; y0; z0; p1; q1; z1ð Þ þWhom
1 Dz1ð Þ

¼ W1 x0; y0; z0; p1; q1; z1ð Þ þ Dz1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2
1 � p21 � q21

p

:
ð20-16Þ

The preference of the mixed characteristic W1 for the description of optical imaging
systems becomes clear when considering the Hamilton–Jacobi equations. By differ-
entiation of the parameters, the image coordinate x1, y1 and the optical direction
cosine in the object space p0, q0, respectively, are obtained:

¶W1

¶p1
¼ �x1;

¶W1

¶q1
¼ �y1 ; ð20-17aÞ
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¶W1

¶x0

¼ �p0;
¶W1

¶y0
¼ �q0 : ð20-17bÞ

The dependence of the lateral coordinates in image space from the position of the
image plane z1, e.g., by a change of focus, can easily obtained from eq. (20-16) by

x1 ¼ � ¶Whom
1 Dz1ð Þ
¶p1

¼ Dz1 �
p1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2 � p21 � q21
p ¼ Dz1 � tanj ð20-18Þ

with j as the propagation angle relative to the z1-axis of the ray projection into the
x1–z1 plane.

The mixed characteristic, however, is determined by taking the propagation angle
in image space into account. The dependence on the exit pupil coordinates p1 and q1
at first glance seems impractical, since the exit pupil coordinates are in general not
known beforehand for a light ray starting at object point x0 and y0 and have to be
found by ray aiming. However, as will be shown below in more detail, in well-cor-
rected optical systems there is a linear relation between exit and entrance pupil coor-
dinates, allowing for a description in entrance pupil coordinates instead. Depending
on the precision requirements the canonical exit pupil has to be scanned using an
appropriate number of rays. For the description of rotational-symmetric pupils by
eigenfunctions (Zernike polynomials) occasionally scanning in polar coordinates is
preferred.

Beside numerical computation by ray-tracing, it is possible to derive the character-
istic functions analytically. For systems comprising only spherical surfaces of radius
Ri with distances di, for example the mixed characteristic can be written by a sum
over contributions from the individual surfaces:

W1 x0; y0; p1; q1ð Þ ¼ �z0m0 � x0p0 � y0q0 þ
Xk

i¼1

dimi

þ
Xk

i¼1

Ri mi�1 �mið Þ þ Risign ni � ni�1ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pi � pi�1ð Þ2þ qi � qi�1ð Þ2þ mi �mi�1ð Þ2
q� �

:

ð20-19Þ

In general, it is possible to decompose the characteristic functions to the contribu-
tions from individual surfaces. Since the direction cosine components at the inter-
faces are in general not known, the computational effort to solve eq. (20-19) is rather
complex, and becomes even more complex, if aspherical surfaces have to be consid-
ered.

20.2.3

Geometrical-optical imaging

For a geometrical-optical description of the optical imaging it is required that all
light rays emitted from an object point meet in an image point at the ideal image
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plane z1. So with eq. (20-17) the mixed characteristic of an ideal system – in addition
to an arbitrary dependency on x0 and y0 – has to have only linear terms in p1 and q1:

W1ðx0; y0; p1; q1Þ ¼ �b x0p1 þ y0q1ð Þ þ C x0; y0ð Þ : ð20-20Þ

Due to the orthotomy, all light paths between object and conjugated image points
have the same length. Ultimately, a phase-synchronized superposition of the ele-
mentary wave emitted from the object point has to take place at the image point. A
segment of a divergent spherical wave has to be transformed into a segment of a
convergent spherical wave. This is fulfilled by the characteristic function of the ideal
system with eq. (20-20). Deviations or wave-front errors W of the mixed characteris-
tic W1 from the ideal form eq. (20-20) with

W1ðx0; y0; p1; q1Þ ¼ �b x0p1 þ y0q1ð Þ þ C x0; y0ð Þ þW x0; y0; p1; q1ð Þ ð20-21Þ

lead via the Hamilton–Jacobi equations eq. (20-17) to transverse aberrations. The
wave-front aberration W(x0,y0;p1,q1) gives the optical path length difference or wave-
front aberration for an object point x0,y0 in the direction cosines or canonical pupil
coordinates in image space p1,q1, thus also called the canonical exit pupil.

Ultimately it is the goal of the optics designer to find an optical system described
by as many parameters as required to make the four-dimensional function W invar-
iant within a specified field and aperture described by the direction cosines. An
invariant wave-front errorW yields a minimum transverse aberration given by:

dx1 ¼ � ¶W

¶p1
¼ � ¶W1

¶p1
þ bx0 <

!
e : ð20-22Þ

In real systems, after summation over all ray angles in the image space, a spot dia-
gram is obtained as a distribution of ray intercept points with the image plane
whose center of mass generally deviates from the ideal image position; furthermore
the image point is not stigmatic but faded. In general the distortion can be defined
by the deviation of the center of mass from the ideal image point with:

Dx ¼

R

p1 ;q1

A p1; q1ð Þdx1dp1dq1
R

p1 ;q1

A p1; q1ð Þdp1dq1
¼ �

R

p1 ;q1

A p1; q1ð Þ ¶W1

¶p1
dp1dq1

R

p1 ;q1

A p1; q1ð Þdp1dq1
: ð20-23Þ

Assuming A(p1,q1) = 1 for the amplitude of each ray within the required aperture, it
follows that

Dx ¼ � 1

C

R

aperture

¶W1

¶p1
dp1dq1 : ð20-24Þ

The point image diameter ˘ of the dispersion figure is determined by the second
moment of the distribution:



˘ ¼ � 1

C

R

aperture

¶W1

¶p1
þ ¶W1

¶q1











2

dp1dq1 : ð20-25Þ

20.2.4

The Canonical Pupil

In the formal theoretical description derived above, the entrance pupil of an optical
system describes for a given object, the angular spectrum passing through the aper-
ture stop of an optical system, while the exit pupil is the corresponding angular
spectrum forming the image point (figure 20-4). Since the optical direction cosines
are the canonical conjugates to the space coordinates, both pupils are also called the
canonical pupils of an optical system.

Figure 20-4: Canonical entrance and exit pupils.

The entrance pupil is the projection of the physical limits of the imaging system,
limiting the angular spectrum passing the optical system, and the exit pupil is given
by the projection of the physical limits in image space. The transverse components
of the optical direction cosine~pp0 and~pp1 are proportional to the coordinates xp and yp
in the aperture plane of the optical system. From eq. (20-17) and (20-20) it follows
for ideal systems that the canonical coordinate of the exit pupil p1 for the axial point
x0 = 0 is obtained from the canonical coordinate of the entrance pupil p0 by a linear
transformation:

p1 ¼ n sina1 ¼ km1 ¼
xp
S1

¼ 1

b
p0 ¼

1

b
n sina0 : ð20-26Þ

Equation (20-26) is equivalent to Abbe’s sine condition (see chapter 21). The canoni-
cal pupils are thus given in the angular domain and may be illustrated in the space
domain for each object of the field point by spheres of arbitrary diameter. Figure 20-
5 illustrates the definition of the canonical pupil coordinates according to eq. (20-26)
with a positive z-component in the object and image space. Beside this definition, a
diverse definition with an inversion of pupil coordinates in image space is common,
which is derived from the unit planes of an aplanatic system (see also chapter 21,
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section 21.3.2). The canonical pupils for a telecentric imaging system are illustrated
in figure 20-5 in comparison with the unit planes for the axial object–image point
pair. Pupil coordinates are frequently scaled in units of the maximum numerical
aperture NA.

Figure 20-5: Canonical pupils in comparison with unit planes for an aplanatic system.

As a simplification, the pupil plane of an optical system is frequently described as
the plane where the aperture stop is placed. The role of the aperture stop is to limit
the ray bundles propagating through the optical system, and thus to limit the optical
direction cosines passing the optical system from object space to image space. For
identical imaging conditions, for all field points, it is essential that the aperture stop
limits the ray bundles for all pairs of object–image points in a similar way. In addi-
tion to an offset of the center of gravity, given by the chief ray with optical direction
cosine ~ppc, the effective stop has to limit the optical direction cosines identically.
Therefore, the aperture stop is typically placed at a position in the optical system,
where the chief rays for all the object or image points ~ppc x; yð Þ intersect the optical
axis. In the case of a telecentric imaging, the canonical pupils are centered around
parallel chief rays pc x; yð Þ ¼ 0 and qc x; yð Þ ¼ 0 for all pairs of object and image
points. This case is illustrated in figure 20-6 for the example of a lithographic imag-
ing system [20-4], [20-5].

Figure 20-6: Canonical pupils for a telecentric imaging system.

Since the angular spectrum in the object or image space generally varies over the
field for every object–image point pair, the canonical pupil may be different for each
field point. However, for space-invariant optical imaging the canonical pupil for
each image point must be identical, and the pupil planes of the image points can be
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mapped onto each other. Only for telecentric imaging, are the pupils identical for all
field points. For a homocentric pupil position the chief rays pc are tilted accordingly
(figure 20-7). The ideal imaging of the entrance and the exit pupil follows according
to the linear imaging equation for optical direction cosines [20-1]

p1 ¼ � 1

f
x0 þ

1

b
p0 : ð20-27Þ

For an imaging system with homocentric entrance pupil and parallel chief rays,
where pc1 = 0 in the image plane, the chief rays are thus given by pc0 ¼ b=f � x0.

Figure 20-7: Chief rays for telecentric (top) and homocentric (bottom) pupil

position for the example of the entrance pupil.

In the general case, however, there is a slight deviation from the ideal telecentric
or homocentric pupil position, respectively. This has to be compensated for by suit-
able aiming of the chief ray. Starting with a ray bundle centered around the chief
ray, the wave-optical image of an object point can be evaluated numerically, as will
be shown in chapter 20.3. For the computation and scaling of the wave front in the
exit pupil a mesh of rays over the entrance pupil and linear scaling according eq.
(20-26) is performed for the corresponding pair of object and image point.

It can be shown that wave front aberrations according eq. (20-21) lead in general
also to aberrations of the imaging of entrance pupil into exit pupil. The image error
coma, for example, corresponds to a distortion of coordinates from entrance to exit
pupil coordinates. Since in case of weak aberrations the wave-front errors is a slowly
varying function, these effects can be neglected in typical image simulations. For
exact computation or large aberrations, the linear transformation has to be replaced
by an exact pupil transformation derived from eq. (20-17) [20-1].

It has to be noted that the linear relationship between entrance and exit pupil
according to the sine condition in eq. (20-26) is valid only for aplanatically corrected
optical systems, which is the common case for lateral imaging systems. It has how-
ever been proposed to optimize for other conditions instead the sine condition, such
as Herschel or Lagrange-conditions. These conditions, eventually illustrated by non-
spherical unit planes, are of less importance in optical imaging [20-6].
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20.2.5

A Note on Diffractive Optical Elements

For conventional refractive optical systems it has been shown that the point charac-
teristic V is equivalent to a conservative potential, which defines a vector field of
optical direction cosines with vanishing rotation. This property is a necessary condi-
tion for image formation, since according to the physical interpretation at an ideal
image point all interfering waves have to add in phase, i.e. all light paths between
object and image point pairs have to be identical. For monochromatic fields, how-
ever, a superposition in phase is in general also achievable by path length differ-
ences varying by multiples of the wavelength. The monochromatic point character-
istic can thus be generalized by

V ¼ R nds –mk : ð20-28Þ

In general, the rotation of the vector field is now given by a multiple of the wave-
length

rot~pp ¼ mk : ð20-29Þ

In consequence there exist optical elements for monochromatic applications, which
allow for perfect imaging conditions although they violate the principle of Malus
and Fermat. Such elements are given by diffractive optical elements with phase
steps of multiple of 2p. The variation dV of the point characteristic between ideal
object-image point pairs has to vanish, which is in consistence with the definition of
eq. (20-28) affords equal path lengths modulo mk for all light rays. Equation (20-29)
has to be considered very carefully, since in general it allows phase singularities,
which are not consistent with the condition dV = 0. It can be derived that in the
plane of the diffractive optical element any closed Hilbert integral according eq. (20-
11) or rot~pp must vanish to obtain dV = 0. With the Hamilton–Jacobi-equations
applied in object and image space

~pp0 ¼ ~��V0 and ~pp1 ¼ ~��V1 ð20-30Þ

it follows for the grating vector and phase profile uDOE of the diffractive optical ele-
ment

~cc ¼~pp1 �~pp0 ¼ ~��VDOE ¼
k

2p
~��uDOE ð20-31Þ

Equation (20-31) is equivalent to the well known Laue-equation of grating diffrac-
tion. The local grating period is thus corresponding to the gradient of the phase
difference introduced by the diffractive element. Equation (20-31) describes the
implementation of diffractive elements in the optical system description by charac-
teristic functions. For known V0 and V1, eq. (20-31) further offers a convenient
method for the design of diffractive optical elements. In the plane of the element
the following condition must hold:
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2p

k
rot ~cc ¼ rot ~��uDOE

� �

¼ 0 : ð20-32Þ

Figure 20-8: Diffractive optical element according to

the definition of eq. (20-27)

Figure 20-8 illustrates the transition of the optical direction cosines at the inter-
face of a diffractive optical element according eq. (20-31). Diffractive elements, how-
ever, suffer from several disadvantages. First, in general the phase function of a dif-
fractive element according to eq. (20-31) depends on the angle of incidence of a light
ray and thus can not be realized for large angular divergences. It has further to be
considered that the description of diffractive elements given here is a simplification
within the scope of geometrical optics. In general, diffractive optical elements show
also higher diffraction orders with disturbing effects on the image quality.

20.3

The Ideal Wave-optical Image of a Point and Geometrical-optical Image Formation

20.3.1

The Scalar Luneburg Integral

From the principle of Malus and Fermat it follows that for the optical imaging not
only all light rays emitted by one object point have to meet in one image point but
also there has also to be the equality of all light paths between object and image
point. This is equivalent to the demand for the phase-synchronized superposition of
the elementary waves emitted from the object point in the image point. The reason
for this is the wave nature of electromagnetic radiation implying the interference
principle. In image points the geometrical-optical discussion fails for the calculation
of the amplitude and the intensity, respectively. Usually, the calculation of the ampli-
tude in an image point is obtained by solution of the Rayleigh-Sommerfeld diffrac-
tion integral (see paragraph 18). In a certain distance from the image plane a spheri-
cal wave is assumed, the so-called Gaussian reference sphere which converges towards
the ideal image point. All rays with direction cosines~pp intercept in the sphere’s center.
Aberrations of the wave front from the ideal spherical wave, given by deviations
according to a phase delay, are given by the wave front aberration W (figure 20-9).

The approach of the Gaussian reference sphere leads, for small wave-front errors,
to the correct result only [20-7]. With the Luneburg integral [20-1] a more general
approach can be found, as will be shown in the following. A similar approach was
given by [20-8].
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Figure 20-9: The ideal spherical wave or Gaussian

reference sphere (blue) converges in one image point.

Rays from the aberrated wave front with the same

direction p† or with the same ray height p¢ (red) do not

necessarily intercept at the image point.

For the calculation of the image amplitude at the image point x1 the Sommerfeld
Ansatz is applied with the scalar field amplitude given by a harmonic function:

U x1; y1ð Þ ¼ A* � eikV ~rr0 ;~rr1ð Þ ¼ A* � e
ik
Rr1

r0

~pp�d~rr
: ð20-33Þ

According to Sommerfeld’s Ansatz, the phase difference between two points is set
equal to the point characteristic V. With this assumption the amplitude and the
phase at a certain point are given for a light ray, although there might be, e.g., sever-
al solutions for the point characteristic V at the ideal image point. For this case the
parameterisation using object coordinates ~rr0= (x0,y0,z0) and image coordinates
~rr1 = (x1,y1,z1) is not useful. A parameterisation of eq. (20-33) is required which
involves the ray angles in the image space. Such a characteristic function is given by
the mixed characteristic W1(x0,y0;p1,q1). Inserting W1 in the Sommerfeld approach,
eq. (20-33), now delivers:

u p1; q1ð Þ ¼ A* � eik W1 x0 ;y0 ;p1 ;q1ð Þþp1x1þq1y1½ � : ð20-34Þ

In order to obtain the field amplitude at a point (x1, y1) we have to integrate over all
direction cosines, i.e., the field amplitudes of the single �rays’ are added coherently
or superimposed, respectively:

U x1; y1ð Þ ¼ 1

k

� �2
R R

p1 ;q1

A p1; q1ð Þ � eik W1 x0 ;y0 ;p1 ;q1ð Þþp1x1þq1y1½ �dp1dq1 : ð20-35Þ

It is quite easy to see that this step is a Fourier transformation. In general, by writing
the field distribution in the �exit pupil’ as:

u p1; q1ð Þ ¼ A p1; q1ð Þ � eikW1 x0 ;y0 ;p1 ;q1ð Þ ð20-36Þ

the scalar Luneburg integral is obtained as a Fourier transformation parameterised in
optical direction cosines [20-1]:

U x1; y1; z1ð Þ ¼ 1

k

� �2
R

p1

R

q1

u p1; q1; z1ð Þ � eik p1x1þq1y1ð Þdp1dq1 : ð20-37Þ
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After inserting~pp ¼ k �~mm the familiar expansion of plane waves follows:

U x; y; z1ð Þ ¼ R R
mx ;my

u mx; my; z1
	 


� ei2p mxxþmyyð Þdmxdmy ð20-38Þ

where u(mx,my;z1) is the transverse spectrum in the exit pupil. The phase of the spec-
trum in the image space is given by the angular characteristic, while the amplitude
can be obtained – assuming radiance in the object space – by the radiance in the
image space. The radiance in the object space can either be isotropic for an ideal
point source, or described by the diffraction spectrum of the object pattern. In addi-
tion to this, the aperture limitation can be taken into account by a pupil function

P(p,q) that can also contain reflection and absorption losses. With this, eq. (20-35)
can be converted into:

U x; y; z1ð Þ ¼ 1

k

� �2
R R

p;q

P p; qð ÞA p; qð Þ � eik0W1 x0 ;y0 ;p;qð Þ � eik0 pxþqyð Þdpdq : ð20-39Þ

Neglecting absorption and reflection losses the ideal pupil function is given by:

P p; qð Þ ¼ 1
0

for
p2 þ q2 < NA

else :

�

ð20-40Þ

So far, no imaging system was required and eqs (20-35)–(20-40) are applicable also
to non-imaging systems. For imaging systems, eq. (20-21) can be inserted for W1

(neglecting the constant phase function C(x0,y0)):

U x1; y1ð Þ ¼ 1

k

� �2
R R

p1 ;q1

A p1; q1ð Þ � P p1; q1ð Þeik W x0 ;y0 ;p1 ;q1ð Þþp1 x1�bx0ð Þþq1 y1�by0ð Þ½ �dp1dq1 :

ð20-41Þ

Equation (20-41) contains the change of coordinates from the object to the image
coordinates under consideration of the magnification and the wave front aberration
is considered for the calculation of the amplitude in image space.

Equations like eq. (20-38) and eq. (20-41) are equivalent to the so-called Debye
approximation: outside a certain angular range limited by the numerical aperture
the angular spectrum of the field is set equal to zero, inside it is set equal to the
undisturbed wave. Furthermore, evanescent waves are neglected. Since one is
usually at a large distance from diffracting apertures compared with the wavelength
k, the latter approximations do not involve any limitations for the calculation of
image formation.

At no step of the development so far has an image point been necessary. So eq.
(20-39) can be applied even when no imaging optical system, or when only a part of
it, respectively, is discussed. Furthermore, the choice of the reference plane is arbi-
trary since by taking the free-space propagation into account in eq. (20-38) the
amplitude in the image space can be calculated in any plane with
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U x; y; z1ð Þ ¼ R R
mx ;my

u mx; my; 0
	 


� ei2p mxxþmyyð Þei2pmzz1dmxdmy : ð20-42Þ

All integrals (20-37)–(20-42) are equivalent to the integral over the canonical exit
pupil (20-35). Occasionally it is preferable to use the solid angle integral over the
Gaussian reference sphere [20-9]. Both descriptions can, of course, be converted into
each other. After converting into spherical coordinates with mx= n/k � cosJ � sina,
my= n/k � sinJ � sina, mz= n/k � cosa, and

¶ mx; my
	 


¶ a; Wð Þ









 ¼

n

k

� �2

cosa sina ð20-43Þ

eventually, the surface integral over a sphere segment is obtained as

U x; y; zð Þ ¼ n

k

� �2 R2p

0

Rarcsin ðNAÞ

0

ua a; Wð Þ � eik0 x cos Wþy sin Wð Þ sinaþz cosað Þ cosa sina dadW :

ð20-44Þ

The integral J in eq. (20-44) is equivalent to the integral over the solid angle dX =
sinadad¶:

U x; y; zð Þ ¼ n

k

� �2 R2p

0

Rarcsin ðNAÞ

0

a a; Wð Þ � eik0 x cos Wþy sin Wð Þ sinaþz cosað ÞdX ð20-45Þ

with

ua a; Wð Þ ¼ a a; Wð Þ
cosa

¼ n

k

a a; Wð Þ
mz

: ð20-46Þ

One characteristic of a spherical wave is that the amplitude is constant over all
angles. By inserting a spherical wave with a(a,J) = k/n = const. we obtain

U x; y; zð Þ ¼ R R

m2xþm2y<
NA2

k2

1

mz
� ei2pmzz � ei2p mxxþmyyð Þdmxdmy ð20-47Þ

i.e., the illumination of the exit pupil has to increase towards the edge of the pupil
with 1/cosa for a spherical wave. Equation (20-47) is equivalent to the Weyl expan-
sion of the spherical wave into plane waves [20-10].

Both descriptions, namely the integral parameterised to solid angles and the inte-
gral over the canonical exit pupil, are identical. Which description should therefore
be selected for a discussion of image formation? According to the linear system the-
ory either the object has to be convoluted with the point response function or the
frequency spectrum of the object has to be multiplied by a transfer function. For
these operations the linearity must be fulfilled. For the object and image coordinates
a linear correlation x1 = bx0 is always valid, although the (ideal) optical imaging is
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only linear in the optical direction cosines but not in the angle itself, since for x0 = 0,
from eq. (20-26) it follows that:

p1 = p0 /b or m1 = m0 /b . (20-48)

So the most effective way is to choose the simple description in frequency space or
in optical direction cosines and canonical pupil coordinates, respectively. In general,
though, a calculation of the Luneburg integral by using, for example, a Fast Fourier
Transformation (FFT) in Cartesian coordinates is preferable.

If evanescent waves can be neglected, the scalar Luneburg integral is an exact
treatment of optical imaging for scalar fields. However, electromagnetic waves are
transverse vector waves and thus any scalar treatment is restricted to small aperture
angles and to cases where polarization effects can be neglected. With increasing
aperture angles, scalar treatment becomes more and more incorrect and vector the-
ory has to be applied instead. In general, three ranges of the description of optical
imaging can be defined as follows.

1. Scalar treatment is sufficient for small aperture angles.
2. In first order, the vector effects can be taken into account by scalar factors for the

pupil function for apertures in themedium range and for unpolarized imaging.
3. In the case of very large numerical apertures, it is necessary to apply the exact

vector treatment for optical imaging (see chapters 26–28).

The limits between the three ranges of the numerical aperture are a matter of the
required accuracy. Frequently, the values 25� (NA » 0.4) and 40� (NA » 0.6), respec-
tively, are used as limits. In optical lithography, for example, the detector medium is
a photo-resist of refractive index n » 1.7, and vector effects can be neglected up to
high numerical apertures.

Common to both the scalar and vector treatment of optical imaging, are photo-
metric factors which are considered to conserve energy. Energy conservation is dis-
cussed in the next chapter.

20.3.2

Energy Discussions for Optical Imaging

Consider an area of size A0 in the object plane, which is illuminated by a plane wave
under the angle a0 (figure 20-10). The radiant flux U (power) through the area A0 is
given by the scalar product of the Poynting vector~SS and the surface normal vector:

U ¼~SS0 �~AA0 ¼ A0 � u0j j2� cosa0 ¼~SS1 �~AA1 ¼ A1 � u1j j2� cosa1

¼ b
2A0 � u1j j2� cosa1 : ð20-49Þ

204 20 The Geometrical Optical Description and Incoherent Imaging



The projection of the propagation vector on the surface normal decreases with
increasing angle a and for the energy flow through the area A0 and A1, the cosine
factor has to be taken into account.

Figure 20-10: Energy conservation for optical imaging.

Equation (20-49) can be derived, in an analogous way, from the continuity equa-
tion for the irradiance (17-104):

~�� I �~ppð Þ ¼ H
A

I �~pp � d~aa ¼ I � A1 � n1 cosa1 � I � A0 � n0 cosa0 ¼ 0 : ð20-50Þ

Any closed surface vector integral over the irradiance times the direction cosine
must vanish.

Equations (20-49) and (20-50) illustrate a difficulty quite common in optics: angu-
lar information is required in the space domain. The radiant flux of a planar wave is
proportional to the z-component of the wave vector. So to calculate the radiant flux
in the object or image space, information about the propagation angles is necessary.
However, they are generally not uniquely given since there is a superposition of
many plane waves with different propagation directions. For the calculation of the
intensity in the image plane, the field has to be decomposed into its spatial frequen-
cies. In the frequency domain, the cosine factor can be taken into account and for
the flux U we finally obtain:

U x1; y1ð Þ ¼ R

p;q<NA

~SS1 �~AA1dp1dq1

~
R

p;q<NA

u1 p1; q1ð Þ � eik0 x1p1þy1q1ð Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2 � p21 � q21
4
p

� dp1dq1













2

: ð20-51Þ

Of course, this is not very practical, and therefore it is advantageous to consider the
cosine factor by using an additional factor directly in the pupil function of the optical
system. Then the intensity can be calculated simply by forming the value square
[20-11], [20-12], [20-13]. After insertion in eq. (20-41) and consideration of the
ffiffiffiffiffiffiffiffiffi
cos

p
-factors in the object and image space, we obtain:
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U x1; y1ð Þ ¼ 1

k

� �2
R R

p1 ;q1

A p1; q1ð Þ

� P p1; q1ð Þeik W x0 ;y0 ;p1 ;q1ð Þþp1 x1�bx0ð Þþq1 y1�by0ð Þ½ � �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1 cosa1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n0 cosa0

p � dp1dq1 ð20-52Þ

with

ni cosai ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2
i � p2i � q2i

p

: ð20-53Þ

The energy factor thus depends on the magnification and cancels for 1:1 imaging.

20.3.3

The Airy Disc

An ideal point image is the aberration-free image of an object point with Lambertian
emission characteristic illuminating the pupil homogeneously. In this case, in eq.
(20-41), the amplitude A(p,q) and the pupil function P(p,q) within the circular aper-
ture can be set as constant and equal to one. Choosing the coordinate of the geomet-
rical-optical image point as the origin of the coordinate system, one obtains after
converting eq. (20-41) into polar coordinates and scaling to the maximum aperture:

U r; hð Þ ¼ 1

k

� �2

e�ik pc �xþqc �yð Þ R
2p

0

R1

r¼0

eik0 �NA� r�r ¢ cos h�jð Þr¢dr¢dj: ð20-54Þ

In eq. (20-54) it is taken into account that, for non-telecentric imaging, the center
point of a pupil to a off-axis field point is decentered by the chief ray angle pc,qc
(figure 20-11). The chief ray with pc and qc leads only to an additional phase term
which vanishes during the intensity calculation.

For rotational-symmetric systems, the ideal amplitude distribution function is
obtained from eq. (20-54). With the coordinates normalized to the maximum aper-
ture angle described by the numerical aperture NA and neglecting the normaliza-
tion constants and constant phase terms, we obtain:

U rð Þ ¼ R
2p

0

R1

r¼0

ei2p rr cos h�jð Þrdrdj ¼ 2p
R1

r¼0

J0 2prrð Þrdr ¼ NA

r � k J1 2pr � NA
k

� �

ð20-55Þ
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field point in a non-telecentric system.



with the Bessel function J1(x). The intensity formation and normalization to the
maximum value 1 gives the Airy disc [20-14]:

IPSF rð Þ ¼ J1 2pwð Þ
pw

� �2

ð20-56Þ

with normalized coordinates w =NA/k � r. The ideal point image intensity is called
the point-spread function PSF (see chapter 21, Imaging with Partial Coherence). Fig-
ure 20-12 shows the normalized amplitude U(w) and the intensity distribution I(w)
of the Airy disc with the first two zeros and secondary maxima. The radii of the first
minima and the encircled energies are compiled in table 20-1, with the encircled
energy defined by

encE rð Þ ¼ 2p
Rr

0

I rð Þ rdr : ð20-57Þ

Figure 20-12: Cross-section through the Airy disc.

Table 20-1: Radii and encircled energy of first rings of the Airy intensity pattern

Central spot First ring Second ring

rn r0 = 0.611 k/NA r1 = 1.1165 k/NA r2 = 1.62 k/NA

Encircled energy 83.8% 7.2% 2.8%

In a perfect optical imaging system, each object point d(x–x0) is imaged at an
ideal image point blurred to an Airy disc, because of the finite wavelength k of light
and the limited aperture angle of the converging spherical wave, due to cutting back
at the aperture.
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The polychromatic point-spread function is generated by integration of the mono-
chromatic point-spread function according to the Airy formula (eq. (22-56)),
weighted by the power spectrum of the light source:

IpolyðrÞ ¼
R
S kð Þ � J1 2p � wð Þ

p � w

� �2

dk ¼ RS kð Þ �
J1 2p

NA

k
� r

� �

p
NA

k
� r

2

6
6
4

3

7
7
5

2

dk : ð20-58Þ

Figure 20-13 shows polychromatic PSF for band-limited homogeneous spectra.
With increasing relative spectral bandwidth Dk/k, the zeros of the Airy diffraction
pattern are smoothed by the integration and finally disappear. For the visible part of
the spectrum, the relative spectral bandwidth at which the zero disappears, is
approximately at Dk/k= 0.5. Here the first diffraction minimum drops to a value of
approximately 1% of the peak value.

Figure 20-13: Transverse intensity distribution of the polychromatic point-spread

function for different sizes of the spectral interval.

Particularly for imaging with high numerical aperture and large magnification,
the amplitude distribution in the exit pupil may be non-homogeneous due to the
energetic apodization factors of eq. (20-52). Figure 20-14 illustrates the effect of the
apodization factor for a collimating optical system (b » 0).

As shown in more detail below, the point-spread function limits the resolution of
imaging. The Airy disc according eq. (20-56) is valid only for conventional systems
with a circular pupil, while cylindrical systems or rectangular apertures, for exam-
ple, show different point-spread functions. Examples of point-spread functions for
annular pupils, pupil filters and apodization filters are given in chapter 25. The
three-dimensional shape of the point-spread function is discussed in chapter 23
under the generalized three-dimensional aperture.
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Figure 20-14: Comparison of the impact of energetic apodization factors

for different apertures (for small b » 0).

According to a simplified geometrical-optical interpretation of optical imaging,
each object point is imaged into an image point. The geometrical image point of a
perfect optical system is stigmatic, and the wave-optical description adds an addi-
tional wave-optical blurring to each image point. In the presence of aberrations, the
geometrical image point is additionally blurred by ray aberrations according to eq.
(20-21), and, as will be shown in paragraph 20.4, the corresponding wave-optical
point image is determined in accordance with the wave-front aberration W. In first
order the image intensity I1(x) in the image plane is thus given by of the intensity
distribution I0(x) in the object plane blurred by the point-spread function. Conse-
quently, the image intensity is given by a linear superposition of single point-spread
functions according to the single object points of intensity I0(x) in the object plane,
or, respectively, by a convolution of the object intensity I0(x) with the point-spread
function. Optical imaging may thus be considered as a linear system for linear
transformation of the intensity. As will be shown in chapter 21, this approximation
is only valid for the case of perfectly incoherent optical imaging, when the wave-opti-
cal image points of neighbouring object points do not interfere. Incoherent imaging
approximation is always applicable when an effective light source is used for an illu-
mination whose image fills the pupil of the imaging optical system completely, or
when self-luminous objects like stars are discussed.
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20.3.4

Incoherent Resolution

As we have shown above, for the case of rotational-symmetric imaging with a circu-
lar pupil according to eq. (20-56), the ideal image of an object point is given by the
Airy disc. Considering the incoherent imaging of two points, the image cannot be
distinguished from the imaging of a line element until the points are at a certain
distance. The resolution limit defined in this way is determined by the required con-
trast of the detector – and sometimes from the fantasy or preliminary information
of the observer. Figure 20-15 shows the cross-section through the intensity of the
image of two point-like objects with increasing normalized distance dw.

Figure 20-15: Superposition of two point images (normalized representation) at distances dw.

The point images of single points cannot be separated at distances dw = k/
NA�dr < 0.47, since only for dw> 0.47 does a minimum form between the two point
images. The borderline case with dw = 0.47 is also called the Sparrow criterion of
resolution. At this distance of two points, the second derivative of the intensity dis-
tribution vanishes at the maximum of the intensity distribution. For larger separa-
tions of two image points, a minimum Imin is formed between the two image points
resulting in contrast or visibility V = (Imax – Imin) / (Imax+ Imin). In figure 20-16 the
visibility of the double point image is plotted versus the point distance. The possible
maximum visibility of V = 100% is reached when the first minima (1. zero) of the
diffraction figures cover each other according to a distance dw ~ 1.2. According to
the Rayleigh resolution limit, two points can be separated from each other if the
maximum of one point image coincides with the minimum of the second point at
dx ¼ 0:611 � k=NA. This is equivalent to a visibility of V » 15%, when the minimum
between the two maxima then has a height of 74% of the maximum intensity.
Assuming a visibility requirement of 80% only points at a distance of at least
dw> 0.95 can be distinguished from each other [20-15], [20-16], [20-17].

For the observation of the starry sky, the spatial resolution delivers quite unwieldy
numbers. That is why the angular resolution is preferred. The telescope resolution

210 20 The Geometrical Optical Description and Incoherent Imaging



is given in sexagesimal minutes with h = r/z = k/2D with D the diameter of the tele-
scope. For the first minimum one then gets h0 = 1.22 � k/D. For younger persons the
accuracy of vision with the naked eye is about 10 mm corresponding to about one
sexagesimal minute. The standard diameter of the eye is 18 mm. According to this a
young person should be able to distinguish two points at a distance of 20 m that are
6 mm apart.

Figure 20-16: Visibility V versus point image distance dw.

20.4

Aberrations of Optical Systems

20.4.1

The Small-aberration Limit: The Strehl Ratio

In the case of wave-front aberrations, the image amplitude is given by eq. (20-41). In
image coordinates, we obtain

U x; yð Þ ¼ 1

k

� �2
R R

p1 ;q1

A p; qð Þ � P p; qð Þeik W x0 ;y0 ;p;qð Þþpxþqy½ �dpdq: ð20-59Þ

For small wave-front errors the phase term of eq. (20-59) can be expanded with

eiU ¼ 1þ iU� 1

2
U2 þ :::þ 1

n!
iUð Þnþ::: : ð20-60Þ

Thus the image intensity of an object point can be written as:

I x; yð Þ ¼ 1

k
2

� �
R R

p2þq2<NA2

1þ ik0W � 1

2
k20W

2

� �

� eik0 pxþqyð Þdpdq













2

ð20-61Þ
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with A(p,q) = 1 and P(p,q) given according (20-40). The normalized intensity for the
position of an ideal image point on the axis is thus reduced by the square of the
standard deviation DW of the wave-front error with

In 0ð Þ » 1þ ik0W � 1

2
k20W

2











2

» 1þ k20W
2 � k20W

2 ¼ 1� k20 DWð Þ2 : ð20-62Þ

The intensity at the center of mass of the point image is called Strehl’s definition.
According to eq. (20-62) the deviation of Strehl’s definition from 1 is given to a good
approximation by the root-mean-square deviation of the wave front DW =RMS. The
decrease of Strehl’s definition is equal to the contrast loss of the aberrated optical
image. So the contrast loss is proportional to the square of the RMS value of the
wave-front error.

From eq. (20-62) an estimation for the maximum allowed wave-front error can be
derived. Allowing a decrease of Strehl’s definition to about 80% of the ideal radiance
theMar�chal criterion for the maximum allowable wave-front error is obtained

RMS Wð Þ ¼ DW <
k

14
: ð20-63Þ

Particularly for modern high-resolution optical systems with deviations of the defini-
tion of less than 10–3 Strehl’s definition and the Mar�chal criterion are not sensible
criteria and thus are only useful in a limited way.

20.4.2

Expansion of the Wave-front Error into Zernike Polynomials

The mixed characteristic W1 contains a description of the wave-front error using the
optical direction cosines. Usually for the description of an optical system the wave-
front error and the spatial distribution of the wave-front error is expanded into poly-
nomials over the image field. From this the known power series expansion of the
characteristic polynomial follows [20-1]:

W1 x0; y0; p1; q1ð Þ ¼
X

n;m;k;l

Anmklx
n
0y

m
0 p

k
1q

l
1 : ð20-64Þ

The polynomial expansion is frequently ordered according to the sum of the powers
O = n+m+k+l, whereby the design aberrations are represented by the even powers,
and the odd powers are contributions due to fabrication errors such as decentering
of optical elements. For isotropic imaging properties the pupil assigned to each field
point has to be identical. For real imaging systems with eq. (20-64) only in small
areas is a constancy of the pupil given approximately, so that only in small areas can
the linear approach of the image formation, with a spatially invariant point response
function, be applied.
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For the description of rotational-symmetric systems, an orthogonal expansion in
polar coordinates is preferred to the expansion in Cartesian coordinates. One set of
orthogonal functions for a circular aperture are the Zernike polynomials. If the
image field is limited to circular area the wave-front error can be described by a dou-
ble power series expansion in polar coordinates [20-18], [20-19], [20-20], resulting in
a system of the aberrations over the image field which is important for the correc-
tion and adjustment of an optical system. In the following the discussion is limited
to a certain image field with locally constant wave-front errors. This condition is also
called the isoplanatic condition for optical systems.

From eq. (20-59) one obtains in coordinates normalized to the maximum aper-
ture:

U r; h; zð Þ ¼ NA

k

� �

e�ik pc �xþqc �yð Þ R
2p

0

R1

r¼0

A r;jð Þ � eik0W � eik0 �NA� r�r cos h�jð Þrdrdj : ð20-65Þ

Again the chief ray angle pc, qc leads only to an additional phase term which
vanishes during the intensity formation. However, it has be noticed that the chief
ray has to be chosen properly since its selection as center of expansion influences
the series expansion coefficients of the wave front aberrations, i.e. a wrong chief ray
aiming at the calculation leads to different wave-front errors.

According to Zernike the wave-front error for an image point can be expanded
into a set of circular orthogonal polynomials:

W x0; r;jð Þ ¼
X¥

n¼0

Xn

m¼0

Cn;m x0ð ÞRm
n rð Þeimj

¼
X¥

n¼0

Xn

m¼0

An;m x0ð ÞRm
n rð Þ cos mjð Þ þ

X¥

n¼0

Xn

m¼0

A¢n;m x0ð ÞRm
n rð Þ sin mjð Þ :

ð20-66Þ

According to common conventions the Zernike aberrations are usually ordered by a
single index j:

W x0; r;jð Þ ¼
X¥

j¼0

cj x0ð ÞZj r;jð Þ : ð20-67Þ

The radial polynomial R of maximum radial power order n is given by

Rm
n rð Þ ¼

X
n�m
2

s¼0

�1ð Þs n� sð Þ !
s!

nþm

2
� s

� �

!
n�m

2
� s

� �

!
rn�2s : ð20-68Þ

The radial polynomial always has the value 1 at the pupil edge. The norm of the
radial polynomials is given by
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R1

0

Rm
n R

m
l rdr ¼ 1

2 nþ 1ð Þ dnl : ð20-69Þ

With this the Zernike polynomials are normalized over

R2p

0

cos kxð Þ cos mxð Þdx ¼ pdkm m ¼ k ‡ 1;
2p m ¼ k ¼ 0:

�

ð20-70Þ

It can be shown that the average integral over radial polynomials vanishes for n > 0,
thus the averages over Zernike polynomials with m > 0 and n > 0 vanish:

R1

0

R2p

0

Zjrdrdj ¼ R
1

0

Rm
n rð Þrdr R

2p

0

cos mjð Þdj ¼ dm0dn0 : ð20-71Þ

The term with n=m = 0 is equivalent to a constant wave-front error which can be
neglected since a constant phase is insignificant – only phase differences play a role.
For the square of the RMS wave-front error, we have:

DW2 ¼ 1

2p

R1

0

R2p

0

W x0; r;jð Þ �W
� � 2

rdrdj

¼
X¥

n¼1

A2
n;0

nþ 1
þ 1

2

X¥

n¼1

Xn

m¼1

A2
n;m þ A¢

2
n;m

nþ 1
: ð20-72Þ

The most important Zernike polynomials are compiled in table 20-2 and in figure
20-17. It should be noted that other normalizations are used beside the normaliza-
tion of the Zernike polynomial Zj to a maximum value of one at the pupil edge.
According to Noll, the Zernike polynomials are normalized according to a RMS defi-
nition. The difference with respect to the definition above lies on the normalization
factor

ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
for the rotationally symmetric terms and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 nþ 1ð Þ
p

for the non-rota-
tionally symmetric terms.

The mathematical appendix contains a discussion of orthogonal expansions for
rectangular regions in section A.8.
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Table 20-2: The Fringe-Zernike aberrations from j = 1 to j = 36

j n m Polynomial term Image aberrations

1 0 0 1 Constant phase

2 1 1 r cosj Distortion in x

3 1 1 r sinj Distortion in y

4 2 0 2 r2 – 1 Defocus (parabolic part)

5 2 2 r2 cos(2j) Astigmatism 3rd order

6 2 2 r2 sin(2j) Astigmatism 3rd order

7 3 1 (3 r3 – 2 r) cos j Coma 3rd order

8 3 1 (3 r3 – 2 r) sin j Coma 3rd order

9 4 0 6r4 – 6r2 + 1 Spherical aberration 3rd order

10 3 3 r3 cos(3j) Trifoil

11 3 3 r3 sin(3j) Trifoil

12 4 2 (4 r4 – 3 r2) cos(2j) Astigmatism 5th order

13 4 2 (4 r4 – 3 r2) sin(2j) Astigmatism 5th order

14 5 1 (10 r5 – 12 r3 + 3r) cos j Coma 5th order

15 5 1 (10 r5 – 12 r3 + 3 r) sin j Coma 5th order

16 6 0 20r6 – 30 r4 + 12 r2 -1 Spherical aberration 5th order

17 4 4 r4 cos(4j) Four wave

18 4 4 r4 sin(4j) Four wave

19 5 3 (5 r5 – 4 r3) cos(3j) Three wave 7th order

20 5 3 (5 r5 – 4 r3) sin(3j) Three wave 7th order

21 6 2 (15 r6 – 20 r4 + 6 r2) cos(2j) Astigmatism 7th order

22 6 2 (15 r6 – 20 r4 + 6 r2) sin(2j) Astigmatism 7th order

23 7 1 (35 r7 – 60 r5 + 30 r3 – 4r) cos j Coma 7th order

24 7 1 (35 r7 – 60 r5 + 30 r3 – 4r) sin j Coma 7th order

25 8 0 70r8 – 140 r6 + 90 r4 -20 r2 + 1 Spherical aberration 7th order

26 5 5 r5cos(5j) Five wave

27 5 5 r5sin(5j) Five wave

28 6 4 (6 r6 – 5 r4) cos(4j) Four wave 9th order

29 6 4 (6 r6 – 5 r4) sin(4j) Four wave 9th order

30 7 3 (21 r7 – 30 r5 + 10 r3) cos(3j) Three wave 9th order

31 7 3 (21 r7 – 30 r5 + 10 r3) sin(3j) Three wave 9th order

32 8 2 (56 r8 – 105 r6 + 60 r4 – 10r) cos(2j) Astigmatism 9th order

33 8 2 (56 r8 – 105 r6 + 60 r4 – 10r) sin(2j) Astigmatism 9th order

34 9 1 (126 r9 – 280 r7 + 210 r5 – 60r3 + 5r) cos j Coma 9th order

35 9 1 (126 r9 – 280 r7 + 210 r5 – 60r3 + 5r) sin j Coma 9th order

36 10 0 252r10 – 630r8 + 560 r6 – 210 r4 + 30 r2 – 1 Spherical aberration 9th order
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Figure 20-17: Comparison of Zernike wave-front errors over the

power of the radial polynomial order n and azimuthal order m;

map across the pupil with a color coding of the amplitude. In each

line the powers n are reduced by 2m.
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20.4.3

Point Images for Different Aberrations

The following figures 20-18 – 20-23 illustrate point images for thewave-front aberrations
of lowest order. A detailed analysis of selected aberrations is given in 20.4.4– 20.4.6. Fig-
ure 20-18 illustrates the effect of defocus Z4 on the lateral intensity distribution.

Figure 20-18: Point images at Z4 = 0, k/5, k/2 and k.

After defocus, spherical aberrationZ9 is the next higher aberration of rotational sym-
metry. The intensity distribution is consequently rotationally symmetrically. Figure 20-
19 compares the intensity distributions in the focal plane for different amounts of Z9,
figure 20-20 compares the intensity distributions in the focal plane for different spheri-
cal aberrations of higher order. In contrast to spherical aberrations of lower order, the
central intensity peak vanishes for higher spherical aberrationZ36.

Figure 20-19: Point images in the ideal case and with spherical aberration

Z9 = 0, k/2, k and 2k (figure scale changed in comparison with figure 20-18!).

Figure 20-20: Point images with 1k spherical aberration Z9 in comparison

with spherical aberration of higher order Z16, Z25 and Z36.

Diffraction images of different amounts of astigmatism Z5 and Z12 are compared
to coma Z7 and Z14 in figure 20-21. Figure 20-22 illustrates the effect of three-wave
and four-wave aberrations of higher order on the intensity distribution.
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Figure 20-21: Diffraction-optical coma figures for Z7 and Z14 = k/2, k and 2k.

Figure 20-22: Point image at three-wave error Z10 = k and 2k and four-wave error Z17 = k and 2k.
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20.4.4

Distortion, Defocus and Astigmatism

After the trivial aberration Z1 the first two aberrations Z2 and Z3 are linear functions
in x and y, respectively. A linear phase causes �only’ a shift in an image plane accord-
ing to the shift theorem of the Fourier transformation:

U x; yð Þ ¼ NA

k

R R

a2þb2<1

eik0c2a � eik0 �NA� axþbyð Þdadb ¼ UW¼0 x þ c2
NA

; y
� �

ð20-73Þ

with the normalized pupil coordinates a and b introduced. So the distortion by a
wave-front error Z2 with the amplitude c2 is given by

dx ¼ � 1

NA
c2 : ð20-74Þ

The Zernike term Z4 is equivalent to defocusing. For the edge of the pupil with the
canonical equation a ray aberration of

dx ¼ � 4

NA
c4 ð20-75Þ

is obtained. The position of the axial intercept of a ray with maximum aperture thus
is at the defocus position dz with

dz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2 �NA2
p

NA
dx ¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2 �NA2
p

NA2
c4 : ð20-76Þ

An exact defocusing, however, is equivalent to a hyperbolic phase term and not to a
parabolic one. The development of the defocusing from Z4 using eq. (20-76) is there-
fore correct in the paraxial approximation only. In general the defocusing or change
of the reference plane is taken into account in the characteristic function with (for
n= 1):

Wdefocus ¼ dz �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�NA2r2
p

¼ dz

� 1� 1

2
NA2r2 � 1

8
NA4r4 � 1

16
NA6r6 � 5

128
NA8r8 � :::

� �

: ð20-77Þ

For the calculation of the defocusing from Z4 the hyperbolic series has to be
expanded to Zernike polynomials; so for the defocusing it follows approximately:

dz »
4

NA2
c4 : ð20-78Þ

The defocusing vanishes for c4 = 0. If one defocuses according to eq. (20-77) into a
new reference plane, so that Z4 vanishes, the hyperbolic difference phase has to be
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taken into account for all higher rotational-symmetric parts. So the coefficients of
the spherical aberrations Z9, Z16, Z25 have to be modified if the reference plane is
changed. The same is of course valid for the terms Z5 and Z6, which are equivalent
to the astigmatism only in paraxial approximation. For the astigmatic difference it
follows that

dzast ¼
4

NA2
c5 : ð20-79Þ

20.4.5

Spherical Aberrations Z9, Coma Z7 and Z8

Besides the phase term of 4th order the spherical aberration Z9 = c9 (6r
4 – 6r2 + 1)

contains a defocusing with the phase c9 6r
2. If first the z-position of the rays is cal-

culated using the spherical aberration without the defocusing term (c96r
2), i.e., with-

out the defocus of longitudinal spherical aberration one obtains for the transverse
ray aberration in polar coordinates

dr ¼ � 1

NA

¶Wð4th orderÞ
¶r

¼ � 24

NA
c9r

3 : ð20-80Þ

Conversion into longitudinal aberrations gives the longitudinal spherical aberration

l rð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2NA2

p

rNA
dr ¼ �24

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2NA2
p r2

NA2
c9 : ð20-81Þ

The defocusing term –c96r
2, however, yields

drdefocus ¼ � 1

NA

¶W O2ð Þ
¶r

¼ 12

NA
c9r ð20-82Þ

from which it follows that

dzdefocus rð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2NA2

p

rNA
drdefocus ¼ 12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2NA2

p

NA2
c9 : ð20-83Þ

The aerial image of spherical aberration is therefore longitudinally shifted. The
transverse and longitudinal aberrations dr and dz vanish for r=

ffiffiffiffiffiffiffi

0:5
p

. For r = 1 the
focus compensates half of the longitudinal spherical aberration l(r = 1). Figure
20-23 compares the negative and positive spherical aberration at different intensity
scans through the focus (x-z-plane).
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Figure 20-23: Typical distribution of the point- image intensity

through the focus for spherical aberration, left negative, right positive

spherical aberration (optical axis pointing to the right).

The average of all Zernike polynomials including that of coma W= c7 (3r
3 – 2r)

· cos j, vanishes over the aperture. Since Z7 contains a linear term, a distortion of
magnitude

dx ¼ 2

NA
c7 ð20-84Þ

occurs. So in the case of coma the center of mass of the point image is shifted by
2/NA · c7. This is remarkable because the wave-optical shift of the point image with
coma is not equivalent to the ray offset of dxgo= 3/NA � c7 from the ray aberration.
The reason for this can be found in the interference, which is neglected in the geo-
metrical-optical discussion. This effect will be considered in more detail in the next
section.

20.4.6

Line of Sight

The geometrical-optical consideration of the chief ray of an oblique ray bundle
defines its center of mass. In wave optics, the centroid of an intensity distribution is
the corresponding term, which is, however, not always equivalent to the chief ray. It
can be shown by an elementary calculation, that the centroid of a beam is propagat-
ing in free space along a straight line. This is the so-called line of sight [20-21]. With
an intensity distribution in image space I(x,y,z), the transverse centroid coordinates
in a plane z are given by the first moments according to

xsðzÞ ¼
1

I0
� RRx � Iðx; y; zÞ dx dy ; ð20-85aÞ

ysðzÞ ¼
1

I0
� RR y � Iðx; y; zÞ dx dy ; ð20-85bÞ
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with total power I0. In the case of asymmetrical wave-front aberrations or inhomoge-
neous intensity distribution across the exit pupil of an optical system, the line of
sight differs from the chief ray of the system. Therefore, in general, the chief ray,
the centroid and the lateral peak position of the beam, must be distinguished for
every value of z. The reason for the deviation is given by interference effects, which
are not considered by simple spot diagrams and parameters introduced in eq. (20-
23)–(20-25).

As shown above, the interference effect is particularly observable in systems with
coma. In polar coordinates, the wave-front error of order n given by

Wn r; hð Þ ¼ Anr
n cosh ð20-86Þ

with coefficient An generates a transverse offset of the centroid of size

xs »
2z

D
� An ð20-87Þ

where D is the diameter of the exit pupil. Figure 20-24 illustrates the principal beha-
viour of the centroid line in the case of coma aberrations.

Figure 20-24: a) Line of sight or centroid in a system with b) coma-type wave-front aberration.

Figure 20-25 shows the line of sight from numerical calculations for a system
with different amounts of coma according to the definitions of Zernike given above.
Additionally, the corresponding paths of the intensity peaks are shown. These are
propagating along curves of nearly parabolic form and the intensity maximum has a
shape similar to a banana through the focus and therefore this is also known as
bananicity. Figure 20-26 illustrates the corresponding transverse intensity profiles of
the caustic distributions.
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Figure 20-25: Line of sight in a system with coma-type wave aberrations of different size.

Figure 20-26: Lateral intensity profiles of the point-spread function

of the coma aberrations of figure 20-23.
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A significant difference in the chief ray and centroid can also be observed for sys-
tems with an asymmetric illumination distribution of the exit pupil. Figure 20-27
illustrates the principle and figure 20-28 the focal caustic and the line of sight.

Figure 20-27: a) Line of sight for a system with b) an asymmetric intensity profile in the exit pupil.

Figure 20-28: Line of sight for a system with an asymmetric intensity profile

in the exit pupil in the focal region showing the whole intensity distribution.

20.4.7

Wave Aberrations for Annular Pupils

The Zernike representation is an orthogonal description of the wave-front aberra-
tions only for circular pupils. For other shapes of pupil, adapted orthogonal sets of
expansion functions should be applied. As the most relevant example, the expansion
of wave-front errors for annular pupils is presented here. Annular pupils are given
by systems with central obscuration such as, e.g., mirror telescopes. This polynomial
expansion is given by the Tatian polynomials [20-20], [20-22], [20-23]. The azimuthal
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part of the Tatian polynomials is identical to the Zernike polynomials. The radial
polynomials �RRm

n depend on the obscuration parameter e of the annular pupils, given
by the ratio of the inner pupil radius NAin and the maximum numerical aperture,
with e=NA / NAin. For radial polynomials the orthogonality relation reads

R1

e

�RRn ¢
m r; eð Þ � �RRm

n r; eð Þ r dr ¼ 1� e2

2ðnþ 1Þ � dn ¢n ð20-88Þ

and the explicit form of the radial polynomials is given by the complicated expres-
sion

�RRm
n r; eð Þ ¼ »

n�m

2

� �

! � nþm

2

� �

!

1� e2ð Þn=2

�
X
n�m
2

j¼0

r2 � 1ð Þj� r2 � e2ð Þn=2�j

ðj!Þ2 � n�m

2
� j

� �

! � nþm

2
� j

� �

!
: ð20-89Þ

The first few Tatian polynomials are listed in table 20-3. In figure 20-29, the polynomials
of lowest order n =1...3 for different obscuration ratios e are compared. With the
obscuration parameter e a scaling of the radial polynomials on the free part of the aper-
ture ring is obtained. Figure 20-30 illustrates the Tatian polynomials of lowest order for
an obscuration parameter e=0.5with order numbers corresponding to table 20-3.

Figure 20-29: Representation of the first 3 Tatian polynomials for an annular

pupil with rotational symmetry and five different obscuration ratios e.



Table 20-3: Tatian Radial polynomials

n m Radial polynomial

0 0 1

1 1 r
. ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ e 2
p

2 2 r2
. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ e 2 þ e 4
p

2 0 2r2 � 1þ e2ð Þ½ �=1� e 2

3 3 r3
. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ e 2 þ e 4 þ e 6
p

3 1 3r3 � 1þ e 2ð Þ � 2r � 1þ e 2 þ e 4ð Þ½ �
�

1� e 2ð Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ e 2ð Þ 1þ 4e 2 þ e 4ð Þ
p� �

4 0 6r4 � 6r2 � 1þ e 2ð Þ þ 1þ 4e 2 þ e 4ð Þ½ �
.

1� e 2ð Þ2

4 2 4r4 � 1� e 2ð Þ � 3r2 � 1� e8

1� e6
� 1� e 2ð Þ

� �� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

16 � 1� e10ð Þ � 15 � 1� e8ð Þ2= 1� e6ð Þ
q

4 4 r4
. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ e 2 þ e 4 þ e 6 þ e8
p

5 1 10r5 � 1þ 4e 2 þ e 4ð Þ � 12r3 � 1þ 4e 2 þ 4e 4 þ e 6ð Þ þ 3r � 1þ 4e 2 þ 10e 4 þ 4e 6 þ e 8ð Þ
1� e 2ð Þ2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4e 2 þ e 4ð Þ � 1þ 9e 2 þ 9e 4 þ e 6ð Þ
p

5 3 5r5 � 1� e 2ð Þ � 4r3 � 1� e10

1� e8
� 1� e 2ð Þ

� �� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

25 � 1� e12ð Þ � 24 � 1� e10ð Þ2= 1� e8ð Þ
q

5 5 r5
. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ e 2 þ e 4 þ e 6 þ e8 þ e10
p

One of the drawbacks of the application of Tatian polynomials to the description
of aberrations is the dependence on the parameter e. It is therefore difficult to com-
pare the aberration coefficients of systems with different obscuration parameters e.
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Figure 20-30: Representation of the first 36 Tatian polynomials for an annular

pupil with an obscuration ratio of e= 0.5.

20.4.8

Extended Zernike Expansion

The calculation of the intensity is usually done by solution of the Kirchhoff diffrac-
tion integral (see chapter 18) or the corresponding Fourier approximations described
in this chapter. The intensity in the image plane is thus obtained by Fourier transfor-
mation, with aberrations of the optical system described by Zernike expansion. For
defocused positions, the corresponding intensity distribution is either obtained by
free-space propagation (see chapter 17), or by consideration of the generalized three-
dimensional aperture, as is described in chapter 23. In paraxial approximation, however,
the intensity distribution through the focus can be described by a series expansion, the
extendedZernike expansion [20-24]. According to the transport of the intensity equation
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(17-104), the phase surface in the exit pupil of an optical system approximately deter-
mines the intensity distribution in the focal region. After writing (17-100) with

~�� I � ~��W
� �

¼ ¶

¶z
I � ¶

¶z
W

� �

þ ~��? I � ~��?W
� �

»
¶

¶z
I þ ~��? I � ~��?W

� �

ð20-90Þ

the paraxial equation of intensity transport is obtained

¶

¶z
I ¼ �~��? I � ~��?W

� �

: ð20-91Þ

This direct dependence of the intensity on the wave-front error in paraxial approxi-
mation, motivated an expansion of the general three-dimensional field distribution
into Zernike terms with a Zernike representation in the transverse directions and a
Taylor expansion along the optical axis. The zero-order term is given by the ideal
Airy profile in the image plane with vanishing defocus. A defocus or a degradation
of the ideal spherical wave front by aberrations is considered as a disturbance and is
taken into account by corresponding correction terms in the expansion. This expan-
sion of the extended Zernike polynomials allows the direct determination of the inten-
sity in the focal region as a function of the Zernike coefficients in the exit pupil in the
limit of the paraxial approximation. This relationship is illustrated in figure 20-31.

Figure 20-31: Intensity profiles of the focus of an optical system as a function

of the wave front in the exit pupil.

For conventional systems with circular pupils, the extended Zernike representa-
tion below is formulated in cylindrical coordinates r and j. The field amplitude in
image space is represented by the expression

E r;j; zð Þ ¼ 2 � B00 r; zð Þ þ 4pi
X

n;m‡0

Anm � im � Bnm r; zð Þ � cos mjð Þ

þ 4pi
X

n;m<0

A¢nm � im � Bnm r; zð Þ � sin mjð Þ :
ð20-92Þ



The axial dependence is considered by the transverse expansion coefficients Bnm.
The coefficients Anm and A¢nm are identical to the Zernike coefficients, according to
eq. (20-66). In the case of vanishing aberrations, the expression reduces in the
image plane to the Airy distribution with

B00ðr; 0Þ ¼ 2J1ðrÞ=r ð20-93Þ

It has to be noted that, although the motivation for an expansion of the intensity
was restricted to paraxial approximation, a general expansion of the field amplitude
in image space is not restricted to paraxial approximations. The derivation given
below, however, is limited to the paraxial domain, since the defocus is described by
Z4 [20-24]. The range of validity, especially in the z-direction depends on the number
of terms taken into account. The extended Zernike polynomial expansion was gener-
alized for pupils with apodization, large defocus values [20-25] and vectorial effects
[20-26]. In particular the apodization can be very easily taken into account. For this
purpose, it is only necessary to allow the Zernike coefficients to have complex val-
ues. The imaginary part of the coefficients then describes a variation of the ampli-
tude over the pupil area.

For simplification, in the following, the new coordinates (old coordinates have
primes) are scaled according to

x ¼ x ¢ � 2p � n � sin u
k

; ð20-94aÞ

y ¼ y¢ � 2p � n � sin u
k

; ð20-94bÞ

z ¼ p � z¢ � n2 � sin 2u

k
¼ p � z¢

RE

: ð20-94cÞ

After a lengthy derivation, we obtain [20-24]:

E r;jðzð Þ ¼ 2 � 2J1ðrÞ
r

þ 4pi �
X

n;m‡0

Bnm � im � cos mjð Þ � eiz

�
X¥

l¼1

�2izð Þl�1
Xp

j¼0

bnmlj � Jmþlþ2jðrÞ
l � r l ð20-95Þ

with the factors

bnmlj ¼ ð�1Þp � m þ l þ 2jð Þ � m þ jþ l � 1
l � 1

� �

� jþ l � 1
l � 1

� �

�

l � 1
p� j

� �

qþ l þ j
l

� � ð20-96Þ

and with p ¼ n�mð Þ=2 and q ¼ nþmð Þ=2. In practice, the axial expansion is car-
ried out up to a maximum index lmax. It is, however, difficult to estimate the re-
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quired number of terms for the z-expansion in order to achieve a desired accuracy
[20-27]. The maximum number lmax depends on the radial order nmax and the defo-
cus z. The behaviour and the contribution of the terms for the sum is illustrated in
figure 20-32a. The left picture shows the size of the individual terms and the sum
over all terms for increasing l. The right picture shows the resulting error when
truncating the series expansion at the corresponding number of terms. In the spe-
cial case shown here, approximately 90 terms are necessary to get a relative accuracy
of 10-5. As shown in figure 20-32b, the dependence of the required number of series
terms as a function of the defocus z is nearly linear and can be approximated by the
empirical equation

lmax ¼ 8:5 � zmaxj j þ 15 ð20-97Þ

with the scaling according to eq. (20-94c). Figure 20-33 illustrates the point-spread
function obtained by the solution of eq. (20-95) for spherical aberration, coma and
astigmatism for different focus positions.

Figure 20-32: a) Size of the individual terms and the complete sum

for truncating the l-sum and resulting error of the expansion.

Figure 20-32: b) Required number lmax as a function of the defocus range z.
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Figure 20-33: Point-spread functions calculated by the extended Zernike expansion

for three different aberrations and different focus positions z.

20.5

Helmholtz–Lagrange Invariant and Phase-space Description

20.5.1

The Phase Space

The phase space description of geometrical optics is a convenient method for the
illustration of ray curves and properties of optical systems. As shown in this chapter,
the phase-space volume corresponds to the Helmholtz–Lagrange invariant of optical
systems, which is a useful quantity to describe the complexity of optical systems as
well as for light flux calculations, for example. As will be shown, incoherent optical
imaging can be transferred to the phase space in a simple way.

The phase space is given by the representation of the optical direction cosines px
versus the position x and py versus y, respectively. It is equivalent to the Wigner dis-
tribution function description, if

~pp ¼ k �~mm ð20-98Þ

is taken into account. A Fourier transformation exchanges the roles of position and
frequency coordinates. Therefore the phase space representation in the pupil plane
as the Fourier plane to the object plane follows from the phase space representation
in the object plane by a rotation of 90� and a scaling with focal length f [20-28],
[20-29]. Figure 20-34 illustrates the rotation property of the field distribution given
in the front and back focal planes of a lens in phase space for the example of a single
oblique bundle of parallel rays focused to xp.
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Abb. 20-34: Rotation of a ray bundle in phase space.

Figure 20-35 illustrates the phase-space transformation for an imaging set-up.
From each object point a bundle of rays, according to the numerical aperture, is
received by the objective. The phase space for the object plane is given by a rectangle
of width L and the height 2NA. In the pupil plane the bundle of rays to an object
point completely fills the pupil with width D = 2f1�NA , with the bundle assuming
the angle sin c= L/2f1 to the field edge point. The extension in the direction of the
axis of the direction cosine is thus F=L/f1. By repeating the rotation and scaling
with the focal length f2, once again a rectangle is obtained of width L¢= bL and
height 2NA¢= 2NA/b in the image plane.

Figure 20-35: Phase space representation of optical imaging.
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As it can be easily shown, in each plane the area and the phase-space volume,
respectively, are equal:

G1D ¼ 2NA � L ¼ D � F ¼ D � L
f

: ð20-99Þ

The one-dimensional phase-space volume above is also known as the Helmholtz–
Lagrange Invariant. In many textbooks of optics the Helmholtz–Lagrange Invariant
is derived as a paraxial principle; for rotational-symmetric systems, though, the prin-
ciple is generally valid. It is equivalent to an invariant Wigner distribution function
density.

In any imaging optical system, the phase-space volume is an invariant quantity
comparable to the energy conservation of conservative systems. In general, the
phase-space volume is given by:

G zð Þ ¼ R gdC ¼ RR RR g x; y; p; q; zð Þ dxdy dpxdpy ¼
R R

A;X

dA cosadX ¼ const

ð20-100Þ

with infinitesimal surface area dA and infinitesimal direction cosines dpx, dpy,
expressed by the solid angle element dX. The integral has to be carried out over the
area of the object plane and the area of the pupil or aperture. This can be expressed
in a more general way by the phase-space function g(x,y,p,q;z) as a function of the
z-coordinate [20-30]. For this it is g(z) = 1, if a ray with these phase-space coordinates
can occur, otherwise it is g = 0. Because of the resolution limits the smallest phase-
space cell or a phase-space point in the image plane, is given by the volume
dg = dx�dm. This is approximately equivalent to a single geometrical light ray. The
invariance of eq. (20-99) has already been assumed by Straubel [20-31]. Between the
object and the image plane of an aplanatically corrected system, Straubels theorem
is always trivially fulfilled, and it can in general be shown that it holds for any sys-
tem and any area in between object and image planes [20-32]:

dA0 cosa0dX0 ¼ dA1 cosa1dX1 : ð20-101Þ

A direct consequence of the conservation of the phase-space volume for magnifying
microscopic imaging was described by Abbe [20-33]:

�Under no conditions can the radiance of the microscopic image exceed

that one with which the object would appear to the naked eye.’

Either the free aperture of the lens or the illuminating conic bundle of light, lim-
its the brightness of the image. In general, the brightness depends on the magnifi-
cation b with ~ 1/b2.

While Helmholtz–Lagrange Invariant or space–bandwidth products are used in
imaging optical systems, the equivalent terminus geometrical flux or �tendue is
employed in the characterization, design and simulation of light sources and illumi-
nation of optical systems [20-34], [20-35], [20-36], [20-37], [20-38]. As a consequence
of the conservation of �tendue, it cannot be reduced with light losses. This has par-
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ticular meaning for the illumination and design of illumination systems. In the
Abbe explanation of image formation it is assumed that all light-source points can
be considered as incoherent. For incoherent illumination the geometrical flux of a
light source filling the entrance pupil of an optical system is thus identical to the
phase-space volume of the optical system. If the effective source is too large, light
will be lost, if it is too small, it may have a severe impact on the imaging. These
impacts and more will be treated in the next paragraph in more detail.

20.5.2

The Resolution Limit in the Space Domain and in the Spatial Frequency Domain

The resolution limit, written as a product from canonical conjugates has often been
compared with the Heisenberg principle of uncertainty. Writing dx for the smallest
resolvable structure we obtain

dx � Dp ‡ k ð20-102Þ

with Dp equivalent to the maximum difference of the optical direction cosines or
quasi-momenta which can be related to the spatial frequency by eq. (20-97), and it
follows that dxDm ‡ 1. The difference from the Heisenberg principle of uncertainty
lies in the Heisenberg constant, which is to be replaced by the wavelength.

In optics, the position and spatial frequency or direction cosine, respectively, are
Fourier-inverse quantities. From this, eq. (20-102) becomes clear immediately. By
inserting, e.g., a Gaussian function of the width dx as the minimum object, one
obtains again a Gaussian function of width 1/dx as the spectrum (figure 20-36):

u mð Þ ¼ R e
�
px2

dx2 e�2pixmdx ¼ dxj je�dx2pDm2 : ð20-103Þ

Figure 20-36: The product of the peak-widths of two Fourier-inverse

Gaussian functions is equal to 1.

With 1/dx =Dm one obtains eq. (20-102) immediately. For optical imaging sys-
tems with a finite aperture and with pupil diameter D one obtains

Dm ¼ 1

dx
¼ 2NA

k
¼ D

kf
ð20-104Þ

with the equivalent point images instead of the Gaussian function, and in the one-
dimensional case, the sinc function of the width 2NA (figure 20-37).
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Figure 20-37: Aperture limitation and point image for one-dimensional imaging.

On the other hand, the direction of a wave can only be determined with limited
accuracy. Starting with an incident finite planar wave limited by a field stop of extent
L, one obtains a blurred focus in the rear focal plane. By writing �true’ coordinates in
the object plane as x and in the pupil plane as xp instead of spatial frequencies, one
obtains from eq. (20-104), the optical invariant

dx � D ¼ L � dxp ¼ kf : ð20-105Þ

The resolution limits are

dx ¼ kf

D
¼ k

2NA
ð20-106Þ

and

dxp ¼
kf

L
: ð20-107Þ

The minimum frequency resolution dm of a Fourier-transforming optical system is
given by

dm ¼ dp

k
¼ dxp

kf
¼ 1

L
: ð20-108Þ

From eq. (20-108) from which the analogy to equation (20-102) follows:

L � dp ‡ k : ð20-109Þ

Thus, the spatial resolution of an imaging optical system is limited first, and then
the frequency resolution of a Fourier-transforming optical system. Since the pupil
coordinates xp scale with focal length f, the spatial frequency resolution is limited by
the extension L of the field only. This consideration is of particular relevance for
grating spectrometers, where incident waves of different wavelengths are split, e.g.,
by a grating of length L, into waves with different propagation angles (figure 20-38).
For a given grating period, the frequency resolution is determined only by the grat-
ing length.
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Figure 20-38: Illustration of the restricted spectral resolution for a Fourier-

spectrometer. The spectral resolution is limited by the length L of the object plane.

20.5.3

The Space–Bandwidth Product

The possible minimum phase-space volume for an image point is given by the prod-
uct of the minimum spatial resolution and the aperture, i.e., in the one-dimensional
case according to eq. (20-102) by

dx � Dm= k . (20-110)

From the ratio of the phase-space volume and the minimum phase-space step or
information cell, the number of resolvable image points N follows

N ¼ G1D

k
¼ L

dx
¼ L � Dm ¼ LD

kf
» 2 � L � NA

k
: ð20-111Þ

For two-dimensional imaging, of course, the image area A and the pupil area have
to be taken into account. With the minimum phase-space area pk2 the phase-space
volume follows:

G2D ¼ pNA2 � A : ð20-112Þ

The phase-space volume as a measure of resolvable image points is equivalent to the
space–bandwidth product SBP of information theory and gives a rough number for
the complexity of an optical system [20-39]:

SBP ¼ G2

pk
2 ¼ A � NA

k

� �2

¼ A

dxð Þ2
: ð20-113Þ

According to eq. (20-111) and (20-112) the number of resolvable image points is
thus given by the product of the field area A times the pupil area divided by k2. The
larger the space–bandwidth product, the better corrected is the optical system, the
more effort has to be made to fabricate the optical system, and finally the higher the
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price. The space–bandwidth product ranges from 1 for fiber coupling or beam-shap-
ing optical systems, to the high-end lithography optical systems in the order of 1011,
corresponding to 1011 independently imaged single-image points! Due to this large
space–bandwidth product, free-space imaging optics has frequently been recom-
mended for interconnections in computing and telecommunication.
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21 The Abbe Theory of Imaging

21.1

Introduction

The question of the nature of light and image formation has stimulated the thoughts
and speculation ofmany philosophers and scientists for a long time. During the time of
Ernst Abbe there were two different theories of imaging. Until the end of the 19th
century, image formation was frequently described by central projection, with the
Camera Obscura as the most simple optical imaging instrument (figure 21-1).

Figure 21-1: The central projection allows every imaging scale.

Within the scope of geometrical optics, both refraction and reflection of light rays at
interfaces were considered, and the geometrical ray aberrations were also taken into
account. For example, in photographic imaging, optical imaging follows the rules of the
Camera Obscura, i.e., the rules of central projection, to a good approximation. This
means that any arbitrary magnification of an object should be achievable:

b ¼ y¢

y
¼ z¢

z
: ð21-1Þ

However, this does not mean that an object, however small, can be imaged. As was
shown eventually by Abbe in his explanation of optical imaging, the minimum
object size is determined by the resolution limit. Although, in principle, the image
can be formed with arbitrarily high magnification, e.g., by the appropriate selection
of the focal length of the eyepiece, it does not contain any more information about
the object. That is why many of the early users of microscopes failed to gain any
additional image details simply by increasing the magnification. Resolution and
magnification do not have anything in common and the resolution is determined
solely by the numerical aperture! Therefore, microscopes have a �useful magnifica-
tion’, beyond which the imaging of object details cannot be improved.

Diffraction was at first thought to play a role only in astronomical imaging since,
in Airy’s approach, the diffracting influence of the pupil, i.e., the physical limit of a
lens, is considered. The imaging of self-luminous objects like stars was described by
Airy who discovered that an object wave is truncated at the aperture of a telescope
with diameter D and thus fades to a diffraction image or point-spread function. The
point-spread function is equivalent to the Fourier transform of the diffracting aper-
ture of the system and determines the well-known resolution limit with the diame-
ter d [21-1], [21-2]:
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d ¼ 1:22 � k

NA
¼ 2:44

kf

D
: ð21-2Þ

Figure 21-2: Image formation of self-luminous objects.

The geometric-optical image point is consequently additionally blurred by the dif-
fraction spot. The latter is determined by the aperture angle, the wavelength of the
light, and the aberrations of the system. So, unlike geometric-optical imaging, each
image point is blurred according to the point-spread function of the imaging sys-
tem. For ideal, perfectly incoherent imaging, Airy’s procedure already constitutes an
exact calculation of the image intensity. As will be shown in this chapter, for the
incoherent case, Airy’s approach is indeed equivalent to Abbe’s explanation of image
formation. The diffraction image, also known as the Airy disc, is described in more
detail in chapter 20.

In the 1820s, Joseph Fraunhofer observed that periodic objects, like gratings, diffract
light to form separate diffraction orders in the far field, i.e., far from the grating object.
Thereby the individual diffraction orders have the same shape and size in accordance
with the divergence of the incident light at the grating. Ernst Abbe concluded from
Fraunhofer’s observation of diffraction, that microscopic imaging does not follow
either the rules of central projection, as in photographic imaging, or the rules of
astronomical observation. The image formed by interference reproduces the charac-
teristic features of the object according to the diffraction orders passed by the lens.

It was therefore Ernst Abbe, who finally gave the first comprehensive description
of image formation in 1873 [21-3], [21-4]. The complete and exact description of par-
tially coherent optical imaging is given by a discussion of the diffraction at the object
and image formation by interference (figure 21-3). The exact mathematical descrip-
tion, which Abbe had announced several times, was never published by him. How-
ever, once the cornerstone was in place, the whole theory became clear and was
worked out in detail by Abbe’s co-workers and students, such as Czapski, Koehler
and Siedentopf. From this it turned out that the basis of the Abbe theory of image
formation was Fourier optics. Fourier optics can in general be described by the ap-
plication of the expansion of the electromagnetic field into planar waves by Fourier
transformation. After Abbe and his co-workers, the description of optical imaging
by Fourier methods was then presented by Hopkins in the middle of the last cen-
tury, following investigations on the coherence of light by Van Cittert and Zernike
[21-5], [21-6], [21-7].
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Figure 21-3: Abbe Theory of image formation by diffraction and interference.

After the invention of the laser as a coherent light source, Fourier optics was used
more widely and now has new fields of application. For instance, the laser has opened
up the possibility of Fourier holography and optical data processing. Several general
descriptions of Fourier optics have been published, the first being the book by Good-
mann �Introduction to FourierOptics’ [21-8] which has becomea standard text book.How-
ever, the introduction of Fourier methods is often carried out in the paraxial or far-field
approximation. This has often led to the mistaken assumption that the application of
Fourier methods in optics is limited to the paraxial field. Here we attempt to cover
Fourier optics, and thus the Abbe theory of image formation, more generally.

Ernst Abbe’s and August Koehler’s work received much attention although many
misunderstandings also occurred. For example, Abbe’s experimental set-up in the
experiments confirming his theory led to the mistaken assumption that the ideal
illumination has to be spatially coherent, i.e., one must illuminate with small angu-
lar spectra in order for the diffraction orders to be separated in the pupil. The appli-
cation of oblique illumination with a �small’ divergence of the light source is of
course only useful to obtain maximum contrast at the resolution limit. This idea-
lized imaging condition was often found not to be useful in practical applications.

Edward Nelson apparently understood the actual meaning of Abbe’s theory and
tried to convince the Royal Society of Microscopy of the usefulness of illumination
with a large angular spectrum [21-9]. Nelson called this illumination the critical illu-
mination when the illumination aperture fills at least 3/4 of the objective pupil
(r > 0.75). In order to realize this large illumination aperture, Nelson imaged the
light source onto the object with a strong diminution. The term critical illumination
is today used in this sense, i.e., when an image of the light source is formed on the
object plane. Using light bulbs, for example, critical illumination is disadvantageous
because the object plane is not illuminated homogenously. That is why there has
been a common misunderstanding that critical illumination in which the light
source is imaged onto the object plane is unhelpful and that Koehler illumination
would therefore be preferable. However, if the light source is sufficiently large and
homogenous there is no difference between image formation with Koehler or with
critical illumination [21-10].

Nelson further argued that his wide-angle cone of illumination – incoherent illu-
mination – is a superior means of suppressing aberrations of microscopic lenses.
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He found, as is still valid today, that, in general, the aberration level of imaging
instruments depends on the illumination, so that the best focus position for some
microscopes depends on the illumination setting and is now automatically corrected.

For quite a long time after his death, the understanding of image formation as an
interference phenomenon, as stated in Abbe’s theory, remained difficult to accept.
Even in 1966, L. C. Martin wrote in his comprehensive textbook �...however, the inter-
ference phenomenon in the image plane is not a true image’ [21-11, p. 262]. In his article
series Coherence and Consonance in 1926, Max Berek put forward the hypothesis that
only self-luminous objects would be imaged �correctly’ according to Airy’s theory
(primary image), i.e., with the light source in the incident pupil, while the interfer-
ence pattern would be, at best, similar to the object (secondary image) [21-12]. The
distinction between the images of self-luminous and illuminated objects and the
corresponding primary and secondary images is now only of historical interest
thanks to the discoveries of Mandelstam, Laue, Van Cittert and Zernike but it Illus-
trates how facts which are taken for granted today were regarded as obstacles during
the development of the theory [21-13], [21-14], [21-15], [21-5], [21-6].

Berek’s refusal to accept Abbe’s theory was strengthened by the observation of
the afocal nature of the interference pattern, particularly for coherent illumination
(i.e., a small light source). In particular, when only two diffraction orders contribute
to the image formation, �there is no preferred image plane’ [21-12]. Even for multiple
interferences there are many image planes where a similar pattern is formed, i.e., a
�periodic repetition of equivalent image planes’ – the Talbot planes. Berek therefore con-
cluded that the concept of depth resolution does not exist for the imaging of non-
self-luminous objects due to the afocal nature of the secondary interference pattern.
Coherent oblique illumination compromises resolution, degrades depth discrimination

and introduces a disturbing apparent movement with change of focus [21-16]. H.H. Hop-
kins also noticed the afocal nature of the interference phenomenon, especially for
the imaging of fine gratings beyond the coherent resolution limit, with only two dif-
fraction orders contributing to the image formation, when he attempted to deter-
mine the transfer function of an optical system with test gratings and different illu-
mination scenarios. He then realized that the imaging of gratings beyond the reso-
lution limit at coherent illumination is independent of the aberrations (like defocus-
ing) of the optical system [21-17]. Martin recognized �indeed there can be no change

with changing focus, so that any focusing of the image is out of the question’. After a cer-
tain grating period it is no longer possible to tune the image plane sharply. Everyone
who wishes to observe a grating in a high-aperture microscope knows the phenome-
non of the Talbot effect and one can recognize the �correct’ image plane only from
scratches, dust particles and edges or other deviations from the periodicity of the
object (see figure 21-4) [21-18], [21-19].

It was also the problem of the afocal nature of interference phenomenon that
inspired the investigation of three-dimensional image formation. Three-dimen-
sional image formation is of course relevant whenever three-dimensional objects,
such as biological objects, are under investigation, or when the three-dimensional
image is under question, as in lithography. The expansion of Abbe’s description of im-
aging to three dimensions was finally presented in the 1980s [21-20]. This three-dimen-
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sional theory of optical imaging according to diffraction and interference provides the
most comprehensive understanding of optical imaging and resolution. However,
the first approach of Abbe is still the usual method for calculating the optical image.

The subject of this chapter is the description of optical image formation according
to Abbe imaging theory. In section 21.1 it will be shown that the fundamentals of
optical imaging can be visually interpreted without a complex mathematical descrip-
tion. In section 21.2 the mathematical description of optical imaging in Fourier
steps will be given. Section 21.3 illustrates, for selected examples, the differences
between perfectly incoherent and perfectly coherent imaging. In section 21.4, the
role of partial coherent illumination is discussed.

The discussion is limited to the imaging of an object in an object plane into an
image plane, and is restricted to the scalar treatment of the electromagnetic field.
The three-dimensional description of image formation will follow in chapter 23.

21.2

Phenomenological Description of Imaging

21.2.1

The Explanation of Image Formation According to Abbe and the Abbe Resolution

Ernst Abbe found, during the development of his imaging theory, that the spectrum
of the object is formed in the rear focal plane of a microscope’s objective. In particu-
lar, if the object, e.g., a grating, is illuminated by a planar wave the diffraction spec-
trum of the object can be observed there. The single focus points in the rear focal
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Figure 21-4: View through the focus aerial

image plots, z-direction of optical axis is verti-

cal: a) two-beam interference of waves of finite

width, producing 21 interference fringes, depth

of focus restricted only by the width of the

waves (NA= 1, d = 0.8k, r= 0.7);

b) three-beam interference, showing periodic

pattern repetition (Talbot effect) in the vertical

direction of the optical axis (NA= 1, d = 1.2k,

r = 0.1).
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plane of the objective are converted by the following optical system, in this case the
eyepiece and the eye, into planar waves, which superimpose in the image plane
forming a striped interference pattern similar to the object. Therefore optical imag-
ing of non-self-luminous objects is described by the diffraction at the object, cutting
back the diffraction orders at the aperture and the image-forming interference of
the diffraction orders. By arranging two Fourier transforming systems in a row the
so-called 4f-system is obtained. Each imaging system can be represented by a 4f-sys-
tem, consisting of a first 2f1 and a second 2f2-system (figure 21-5).

Figure 21-5: Interpretation of optical imaging by a 4f-system by diffraction and interference.

Ernst Abbe discovered in 1873 that, in order to obtain the object spectrum in the
rear focal plane of an imaging lens, the microscope objective has to be corrected
aplanatically. Subsequently this discovery was described in optics text books as the
Abbe sine condition. According to the definition given by Abbe the aplanatic correc-
tion is achieved when the position of the diffraction orders xp in the rear objective
focal plane is related to the sine of the diffraction angle a (see figure 21-6). Only
under this condition is the transverse spatial frequency proportional to the trans-
verse position of the focal point xp

xp ¼ f1 � n sina ¼ f1 � k � mx : ð21-3Þ

This is the only way in which the proportionality between the pupil coordinate and
the transverse spatial frequency is given. The pupil coordinate xp is then propor-
tional to the canonical optical direction cosine px, scaled by the focal length f1:

xp
f1

¼ k � mx ¼ px ¼ n sina : ð21-4Þ

The Fourier plane of an aplanatically corrected optical system set-up is therefore
equivalent to the canonical pupil (see chapter 20.2.4). Differently scaled pupil coor-
dinates are used, either – as above – in genuine transverse co-ordinates xp, as optical
direction cosines px, py, or – the most common way – normalized to the maximum
aperture NA of the optical system.

In an analogous way a point-like object in the front focal plane – given by the ori-
gin of a spherical wave – generates a planar wave behind the lens. The propagation
direction c of the planar wave is given by the transverse coordinate x of the object
point (figure 21-6) or
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x ¼ f2 � n sin c : ð21-5Þ

Figure 21-6: An incident plane wave with propagation angle a is focussed

at the rear focal plane at xp; a point object at the front focal plane produces

a plane wave with propagation angle c behind the ideal lens.

Using eq. (21-4) the positions of the mth diffraction orders xp,m in the pupil plane
are then given according to the diffraction equation by

xp;m

f1
¼ n sinam ¼ m

k

d
þ n sinai

� �

ð21-6Þ

with am as the diffraction angle of the mth diffraction order and ai=a0 as the angle
of the incident plane wave. In the image plane the planar waves with the angles a¢m
or the transverse spatial frequencies m¢m are given according to eq. (21-5) by

n sina¢m ¼ km¢m ¼ xp;m
f2

¼ f1
f2

m
k

d
þ n sinai

� �

: ð21-7Þ

The minimum frequency distance Dm, and thus the basic pattern of the diffraction
image, is given by interference of, e.g., the zeroth diffraction order with the fre-
quency m¢0 with one of the first diffraction orders with the frequency m¢–1. For the
period d¢ of the interference pattern it follows with eq. (21-7) that

d¢ ¼ 1

m¢1 � m¢0
¼ k

n sina¢1 � n sina¢0
¼ f2

f1
� d ¼ b � d : ð21-8Þ

The image scale b of the 4f-system is thus given by the ratio of the two focal lengths
f2 and f1.

Considering Abbe’s way of describing the optical imaging as a two-fold Fourier
transformation, it becomes clear, by considering diffraction and interference, why a
Fourier transforming optical system has to be corrected to obey the aplanatic condi-
tion. After all, the diffraction at the object grating follows the physical laws of diffrac-
tion stating that the sine of the diffraction angle is inversely proportional to the grat-
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ing period (sina ~ 1/d). Also, for the interference of two waves, the period of the
generated interference pattern is proportional to the difference of the sine values of
the propagation angles of the two interfering waves. Therefore, the sine of the dif-
fraction angles rather than the diffraction angles themselves, have to be image line-
ar. Since f2 is very large in microscopes with large magnification b, the angles in the
image space are very small with sina » a, and the aplanatic correction is of special
importance for the microscope lens with f1. In general, the aplanatic correction is of
increasing importance and is achieved with increasing difficulty, the smaller the focal
length f of the Fourier-step of an imaging system or the larger the angle a becomes.

The minimum structure size that can still be resolved by optical imaging can be
concluded from eq. (21-8). The smaller the object period, the larger is the diffraction
angle. Because of the layout of the optical system, with a finite aperture diameter D
it is, however:

xp <
D

2
: ð21-9Þ

The maximum diffraction angle relative to the optical axis accepted from an optical
imaging system, as a property of the imaging system, is called the numerical aper-
ture NA with

NA ¼ n sinamax ¼
D

2f1
: ð21-10Þ

After inserting and converting eq. (21-8) for the minimum object period dmin, which
can still be resolved at illumination under the angle ai the Abbe fundamental equation

of the optical resolution follows:

dmin ¼
k

NAþ n sinai

¼ k

NA 1þ rð Þ : ð21-11Þ

To summarize, according to eq. (21-11) the resolution of the optical image is influ-
enced by the four following factors.

. The aperture angle amax of the imaging system: the larger the aperture angle
the smaller the object details that can be resolved. The sine of the aperture
angle, however, cannot be greater than 1.

. The wavelength: for a shorter wavelength there are smaller diffraction angles
which can be collected by the imaging system with a finite aperture angle.
Already Abbe had suggested therefore to carry out high-resolution imaging
with ultraviolet light, for instance, in microscopy [21-3], [21-21].

. The index of refraction of the environment: a higher index of refraction n

reduces the diffraction angles as well, since the effective wavelength is
reduced by n. The numerical aperture NA can – in contrast to the sine of the
aperture angle – be greater than 1 with n > 1 (liquid or solid immersion
[21-22]).

. the illumination: the resolution can be increased by oblique illumination with
large illumination angles up to the aperture angle amax (figure 21-7).



21 The Abbe Theory of Imaging

Figure 21-7: The maximum resolution is achieved at oblique illumination

when two interfering diffraction orders pass the pupil at opposite edges.

According to Abbe, at the resolution limit for r= 1 the normalized intensity is giv-
en by the interference pattern of two planar waves with the maximum frequency
difference Dm= 2NA/k (with normalized coordinates w =NA/k · x):

Igrid wð Þ ¼ 0:5þ 0:5 cos 2pDm � xð Þ ¼ 0:5þ 0:5 cos 4pwð Þ : ð21-12Þ

Figure 21-8 illustrates the difference between the imaging of a single point and a
grating at the resolution limit. The half-width of the ideal point image for rotational-
symmetric imaging is approx. w = 0.516, while the peak-width of a structure of the
interference pattern is only w = 0.25. The intensity fringe pattern, however, is not
localized, i.e., it is distributed over the complete image plane. Nevertheless, the
interpretation of optical imaging by diffraction and interference explains the (more
than a factor of two) increased optical resolution compared with the Rayleigh limit.

Figure 21-8: a) Ideal Airy Point image; b) 2-beam interference pattern.

In eq. (21-11) the obliquity factor r=n sinai /NA for the description of themaximum
illumination angle is introduced [21-12], [21-23]. The resolution limit depends on the
illumination and the imaging system, but also on the visibility resolution of the detec-
tors or the light-sensitive medium, respectively. This is expressed in a generalized way
by the k-factor of optical imaging introduced byM. Berek [21-12], [21-24], [21-7]. Accord-
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ing to this the smallest structure size, in optical lithography called the critical dimen-

sion CD, and thus the resolution, are determined by the k-factor:

CD ¼ k
k

NA
ð21-13Þ

with

k ¼ 0:5

1þ r
: ð21-14Þ

The smaller the k-factor, the nearer the CD lies to the resolution limit. For k < 0.5 the
limit of the coherent resolution is exceeded and single pairs of object points cannot
be resolved separately. The minimum k-factor for the imaging of periodical objects
lies at the resolution limit at k = 0.25.

Even for illumination apertures n sin ai>NA the obliquity factor is r £ 1. With
illumination set-ups beyond the aperture angle sin ai >NA (r > 1) no further
increase in the resolution can be achieved. After all at least two homologous light-
source images have always to pass the pupil in order to form an interference pattern.
For r> 1 the zeroth-order of the light source is cut back by the aperture of the optical
system so that an interference has to be formed by higher diffraction orders, e.g.,
first and second diffraction orders. This is the case at dark field illumination, e.g.,
only illumination directions larger than the numerical aperture are selected in order
to make small, possibly transparent, objects visible and not to swamp them by large
background light, although no higher resolution is achieved by this.

Finally, all constituents for the description of the optical imaging by Fourier steps
are available:

1) the object distribution is Fourier transformed to obtain the transverse spatial
frequency spectrum;

2) the transverse spatial frequency spectrum, shifted by the illumination direc-
tion, is low-pass filtered by the pupil aperture;

3) the image results from the interference of the transmitted diffraction orders,
i.e., the Fourier transformation of the frequency-limited object spectrum;

4) the process is repeated for all illumination directions.

That is why Abbe remarked in 1873: it is possible to calculate the image of an arbi-

trary object with certain illumination in every detail. The detailed exposition of the
mathematical theory of optical imaging follows in section 21.3.

21.2.2

The Information About an Object Contained in an Image

Optical imaging is – in the most simple approximation – a linear operation, and an
optical system can be interpreted as a low-pass filter. The intensity distribution gen-
erated by optical imaging is the interference pattern consisting of the diffraction
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orders, which are able to pass the objective pupil. In this context Abbe had already
discussed the question of the similarity of the image and object. In an experiment,
Abbe filtered single diffraction orders by means of an aperture in the rear focal
plane of the objective and observed the resulting effect on the image. He not only
found a complete confirmation of his theory but had to realize again that, using
optical imaging, only those details of an object can become visible to which at least
two diffraction orders can pass the objective pupil. This means we can only know as
much about an object as it has to have those object details, which correspond to the
observable interference effects. The real object is, however, not observable.

Figure 21-9: A reproduction of the imaging experiment according to

Abbe from H. Siedentopf (1915). The circles represent the diffraction orders

as they appear in the rear focal plane. Different diffraction orders of the

hexagonal object structure contribute to different image details.

The experiment, which today is a popular part of practical training in science
studies, was documented by Abbe’s student H. Siedentopf for the example of the
alga (diatom) Pleurosigma angulatum (figure 21-9, [21-25], [21-26]). Until the mid
20th century, diatoms were among the test objects which manufacturers of micro-
scopes used for benchmarking the resolution of their products (see e.g. [21-9], [21-
27]). For the experiment, Siedentopf selected a light source with the radius r » 1/3,
so that with the appropriately chosen aperture just three diffraction orders can pass
the pupil without overlapping. From figure 21-9 it can be seen how the single dif-
fraction orders in one line contribute to the formation of object details. Two diffrac-
tion orders always formonly one grating in the direction perpendicular to the diffraction
orders, whose Fourier transform is equal to a cosine function (figure 21-9, examples on
the left side). The hexagonal structure is not formed until three diffraction orders,
which are not arranged in a row, contribute (figure 21-9, example bottom right).

The optical image as an interference phenomenon is always different from the
object according to the finite number of diffraction orders transferred by the imag-
ing optical system. It is interesting to illustrate the number of transferred diffraction
orders, depending on the size of the structure and the illumination directions. Fig-
ure 21-10 depicts imaging with a light source of radius r = 1. The thick blue circles
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represent the pupil with radius f·NA= f·n sinamax. The red points represent the dif-
fraction orders corresponding to a certain axial point of the light source. The zeroth
diffraction order, equivalent to the axial light source point, passes the pupil in the
centre. The overlap regions of the diffraction orders with the pupil are shown in dif-
ferent colours. In the marked areas the number of diffraction orders contributing to
the image formation is given. Certain illumination directions are marked in yellow.
For each of these, only two diffraction orders consisting of the zeroth diffraction order,
i.e., the illumination direction, and one of the first two diffraction orders in each illumi-
nation direction can pass the pupil as a border case of image formation. In figure 21-10b
a case is shown in which the pupil allows just three diffraction orders to pass, i.e. no
four-fold interference is possible. This corresponds to the object period

d3 ¼
3

2

k

NA
: ð21-15Þ

a) Large feature sizes: for axial illumination,

five diffraction orders pass the lens pupil;

most interference patterns are those pro-

duced by three or four beams

b) Medium feature sizes: the feature size is

such that only 2-beam and 3-beam inter-

ferences pass the lens

c) Medium feature sizes: 2-beam interference

is usual here

d) Coherent resolution limit: only for a cen-

tered illumination beam, will exactly

3 beams pass the pupil and form a three-

beam interference. Two-beam interference

dominates

e) Small feature sizes beyond the coherent resolu-

tion limit: in every case only twomutually

interfering diffraction orders can pass the

lens pupil; the image contains only two-

beam interferences

f) Beyond the resolution limit: no interfering

pairs of diffraction orders pass the lens

pupil; i.e., no image is formed

Figure 21-10: Image forming diffraction orders for different feature sizes.
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At the coherent resolution limit just three diffraction orders can pass the pupil
(figure 21-10d). The conditions are then fulfilled for an axial illumination with a
perpendicular incident planar wave to just result in an image. For r = 0 from eq.
(21-11) the coherent resolution limit follows as:

d2 ¼
k

NA
: ð21-16Þ

For object periods smaller than the coherent resolution limit only two-beam interfer-
ences contribute to image formation. An image resolving these details can only be
achieved using oblique illumination, i.e., with r > 0 (figure 21-10e). Finally, the reso-
lution limit is reached at r = 1 when two diffraction orders pass the pupil at opposite
edges (figure 21-10f).

It can be seen from figure 21-10, that the formation of image details as an inter-
ference phenomenon depends on the illumination direction. Different illumination
directions cause interference phenomena with different numbers of interfering dif-
fraction orders. So the resulting image and thus the similarity to the object depend
on the choice of illumination! As will be shown below in more detail, the diffraction
orders forming the image can be selected by the illumination directions. Therefore
it is necessary to give considerable thought to the illumination when the image is
investigated [21-26].

21.2.3

Koehler Illumination and the Visibility

The discussion above has shown that optical imaging can be described very easily if
the illumination is considered as consisting of plane waves. Points in the Fourier
plane and the objective pupil, respectively, correspond to the plane waves in the
object plane. August Koehler, student and co-worker of Ernst Abbe, therefore sug-
gested to image the physical light source (sun, light bulb or electrical arc) into the
pupil. For this an additional Fourier step, the Abbe condenser, has been added in
front of the object plane. Then, in the front focal plane of the condenser, there is
usually an image of the light source, the extension and form of which can be influ-
enced by a condenser aperture. Figure 21-11 illustrates the typical layout of a micro-
scope with Koehler illumination.

In modern illumination systems the light source is seldom imaged directly into the
condenser pupil. Rather, an effective light source is generated in a Fourier plane relative
to the object plane by mixing systems like integrators (e.g. fly’s-eye integrators or rod-
integrators). Only the image of the effective light source lies in the pupil. So Koehler
illumination in reality describes the imaginary reduction of the illumination to planar
waves, with the angular spectrum of the illuminating plane waves given by the form
and the extension of the effective light source. For this it is assumed that all points in the
light source are perfectly incoherent to each other and thus the intensities of the
assigned single images can be added to each other. From the effective light source to the
image plane, any imaging system can thus be illustrated as a 6f-system, with the illumi-
nation condensor as the first 2f-step (figure 21-12).
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Figure 21-11: Classical layout of a microscope with Koehler illumination;

left: the imaging beam path, right: the illumination beam path.

Figure 21-12: Koehler illumination with the Abbe condenser of focal

length fc giving a 6f-imaging system.

From the diffraction at the object, homologous source images are generated from
an effective source in the pupil of the objective. The position of the source images is
determined in accordance with the diffraction orders (figure 21-12). As is already
known from Fresnel’s interference experiments, light bunches from different light
source points of a thermal light source, cannot interfere with each other since they
do not have a constant phase relation with each other (see chapter 19). So imaging
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interferences are only formed by diffraction orders which are generated by illumina-
tion of the object from the same source point. In figure 21-13, following [21-21],
three light source images are shown in the pupil in the direction of view perpendic-
ular to the optical axis. The light source images have a radius r·NA and are posi-
tioned in such a way that the first diffraction orders C – 1 for the central light source
point C (illumination direction parallel to optical axis, r= 0) can just pass the pupil
in order to form an interference pattern in the image. For each of the source points
A and D there are only two diffraction orders in the pupil (A0 and A1, as well as D0

and D–1). For the light source point B only the zeroth diffraction order B0 can pass
the pupil so that there is no interference partner for this light source point. Light
source points for which only one diffraction order can pass the pupil reduce the visi-
bility by superposition of the non-structured intensity (false light).

Figure 21-13: Illustration of image formation according to Koehler (figure 942 of [21-21]).

The visibility is of course also reduced by diffraction and by aberrations. More
about this will follow. According to Michelson the visibility V is defined by

V ¼ Imax � Imin

Imax þ Imin

: ð21-17Þ

Neglecting the three-beam interference of figure 21-13 due to the diffraction orders
C–1, C1 and C0, the image is composed only of two-beam interferences, and the
image intensity can be described by

I xð Þ ¼ aþ b � cos 2p

d
x

� �

: ð21-18Þ

The visibility V or contrast C according to eq. (21-17) is thus given by

V ¼ b

a
: ð21-19Þ

The contrast loss, on the other hand, is given by DV = 1 – V, i.e.

DV ¼ 1� V ¼ a� b

a
: ð21-20Þ
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Figure 21-14 gives some schematic examples with increasing amounts of offset light
Imin= a – b.

Figure 21-14: Contrast loss according the amount of offset light Imin.

In figure 21-15 the visibility is shown for a light source with radius r= 1 for differ-
ent grating periods. This description of the imaging system is also called the modu-
lation transfer function MTF. The diffraction angle, and thus the distance of the
light source images in the pupil increases with decreasing object detail size or object
periods, leading to an increase in the share of the false light and, as a result of this,
the visibility is reduced. So the visibility is mainly determined by the share of the
light which can pass the objective pupil without an interference partner. Unfortu-
nately, this simple interpretation has often been missing in the Fourier-theoretical
description of imaging.

Figure 21-15: Modulation transfer function MTF: Contrast loss is proportional

to the zero- order light passing the lens aperture without an interference partner,

which only contributes to a constant offset.

21.2.4

The Siedentopf Illumination Principle

This insight into the reason for the reduced visibility for finer structures, i.e., a rec-
ognition of the relevance of the false light share, led H.Siedentopf to a simple gen-
eral rule for ideal illumination [21-25]. He varied the objective aperture at the con-
stant light source diameter and marked the homologous, i.e., interferable shares of
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the diffraction orders of the hexagonal structure of Pleurosigma angulatum in differ-
ent colours (see figure 21-16 from the original work by H. Siedentopf). In figure 21-
16, c,d and e there are six groups of four homologous light source images, each of
which form a four-fold interference (coloured blue; one of the groups is marked in
dark blue). For a small aperture, i.e., at the resolution limit, however, there is a cen-
tral share of the light source for which there is no interference partner:

In the Figures 1a and 1b no homologous parts of the side images (of the light source)

exist in the central part of the aperture image of the lens. These blank parts therefore

cannot produce an image, and act like false light, which shines upon the images produced

by the groups of two and three orders. In such cases it would therefore be very advantageous

to apply a central obscuration to the condenser aperture to make the central part inopera-

tive [21-25].

Figure 21-16: Reproduction of figure 1 from Siedentopfs original paper from 1915.

In a generalized manner, the Siedentopf principle of ideal illumination can be for-
mulated as follows: Illuminate only from those directions which contribute to the
image formation of the desired image detail. This principle has been used fre-
quently in microscopy by using the exchangeable Abbe condenser aperture or other
optical means to produce structured illumination, e.g., annular illumination, off-
axis, monopole and dipole illumination [21-11], [21-26], [21-28]. However, since in
many cases microscopic objects are not known in advance, often the selection has to
be done by trial-and-error until the optimum visibility has been found. In general,
one sorts out the overlap regions of the diffraction orders with the pupil and adjusts
the illumination to those diffraction orders whose assigned image details are to be
imaged with a high contrast, and suppresses the illumination from those directions
which would lead to contrast loss or formation of undesired image details.
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On the other hand, for the imaging of known periodical objects like gratings, the
use of the Siedentopf principle works particularly well. Considering figure 21-16, it
can be seen that the overlap regions of the diffraction orders and thus the areas for a
structured illumination to emphasize image details, are particularly simple for grat-
ings. The one-side off-axis illumination and dipole illumination were also suggested
in order to emphasize certain structure orientations of an image using a higher im-
aging contrast [21-29], [21-30]. The Siedentopf principle has also been used by
H. H. Hopkins for the imaging of gratings beyond the coherent resolution limit
with periods of d< k/NA, when he realized that only a part of the selected annular
light source contributes to the image formation and thus this ought to be cut back
by a double-side pair of condenser apertures for ideal visibility (figure 21-17; see also
[21-17], Figure 3 and eq. (50)). For a certain object period, both plus and minus first
diffraction orders only partially pass the pupil, such that there is an increasing share
of false light from the zeroth diffraction with decreasing object period. This amount
of false light is reduced by a condenser stop in order to shape the light source to
form two segments of a circle.

Figure 21-17a: Hopkins-Dipol illumination with my< mh as an application

of the Siedentopf principle to the imaging of a grating with period d (after [21-17]).

Figure 21-17b: Hopkins shutter frequency mh as a function of w for different

illumination apertures r NA.
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In figure 21-17b the Hopkins shutter frequency mh is shown in units of the
numerical aperture NA over the normalized object frequency w with w = k/(d·NA)
for different r. The frequency mh is obtained by a simple calculation of the intercept
of both circles shown in figure 21-17a. The Hopkins aperture, however, can no
longer be used below the normalized object period of w ¼ 1

� ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2
p

. From figure
21-17b it can be seen that for large r-values the Hopkins dipole illumination offers
an advantage to imaging even at frequencies below the coherent resolution limit
(w< 1). With this effective dipole illumination the visibility is increased resulting at
the same time in the formation of an afocal interference pattern by the two-beam
interference [21-17]. For fine gratings beyond the coherent resolution limit, for
which only two-beam interferences contribute to image formation, the dipole illumi-
nation is thus the direct consequence of applying the Siedentopf principle (figure
21-18).

Figure 21-18: a) Linear grating; b) maximum possible overlap of the

diffraction orders for grating periods beyond the coherent resolution

limit; c) ideal illumination directions according to Siedentopf.

For objects consisting of gratings with different orientations, the Siedentopf prin-
ciple can also be applied if the diffraction orders of the differently oriented grating
structures overlap. An example is shown in figure 21-19. However, the Siedentopf
principle cannot always be fulfilled for all existing object orientations. In figure
21-20 the case is shown where the diffraction orders for different object details do
not overlap. Thus no common illumination directions can be found. Nevertheless,
even for this case, the structured illumination according to Siedentopf is the best
compromise for a high contrast image since the false light share is reduced to a
minimum.

Figure 21-19: a) Differently oriented structures with overlapping diffraction

orders (b); and c) illumination directions according to the Siedentopf principle.

Maximum contrast is achieved when there is illumination only from the overlap

regions of the diffraction orders for different object details and orientation, respectively.
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Figure 21-20: a) Differently oriented structures whose diffraction orders

do not overlap (b); and c) illumination directions according to the Siedentopf

principle. Maximum contrast cannot be achieved since the diffraction

orders for different object details and orientations do not overlap.

The Siedentopf principle for structured illumination is applicable to all types of
imaging, from microscopy of biological samples to microscopic inspection and
micro-lithographic manufacturing of semiconductor structures. For the latter appli-
cations, it can be used in a particularly simple way since the objects to be imaged
and the desired images are known in advance [21-31], [21-32], [21-33], [21-34]. Semi-
conductor structures comprise gratings in both horizontal and vertical directions.
Figures 21-20 and 21-21 show examples of the illumination of objects consisting
only of horizontal and vertical structures. In the case of no overlap of the diffraction
orders, as shown in figure 21-20, ideal contrast cannot be achieved for both orienta-
tions, therefore a double exposure technique has been proposed [21-35].

Figure 21-21: a) Horizontal and vertical structure of a semiconductor mask;

b) overlapping diffraction orders; and c) ideal illumination directions according

to the Siedentopf principle.

21.2.5

Imaging with Different Colours

The angles of the diffraction orders are given by the diffraction equation with
sinc= k/d. In the rear focal plane of a lens with focal length f the diffraction orders
are at the coordinates xp according to eq. (21-6)

xp;m
f1

¼ n sinam ¼ m
k

d
þ n sinai : ð21-21Þ

With perpendicular incidence (ai= 0) the diffraction order position xp,m is simply
proportional to the wavelength k:
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xp;m

f1
¼ k �m

d
: ð21-22Þ

Figure 21-22: Generation of white interference fringes using a diffraction grating.

As illustrated in figure 21-22 and figure 21-23, with increasing wavelength, the
diffraction order coordinate at the pupil plane increases. Therefore the resolution
decreases with increasing wavelength. However, the image period d¢ according eq.
(21-8) is independent of the wavelength. With decreasing object period, the larger
wavelengths cannot contribute to the interference pattern of the image and the ulti-
mate image is obtained from the shortest wavelength. For conventional illumination
with white light, the finest image details are blue in color.

Figure 21-23: Diffraction order position in the pupil

plane depends on wavelength.

21.2.6

Aplanatic Correction and Geometrical Optics

Assuming a lens in the sense of mathematical imaging, according to axial-sym-
metric collineation (see figure 21-24) with planar principal planes, the following
relation is obtained

x ¢p ¼ f � tana : ð21-23Þ

The paraxial correlation eq. (21-23) is given in several text books without detailed
explanation, which can lead to misunderstanding. It means that a lens with a planar
principal or unit planes carries out a Fourier transformation only in the paraxial re-
gime where tan a » sin a (figure 21-24). Furthermore, it is frequently shown in an
arithmetic way, with the help of the (paraxial) Fresnel transformation, that there is a
Fourier correlation between both focal planes of a single thin lens (see, e.g., chapter
12, Vol. 1 or [21-8], [21-36]).
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Figure 21-24: Mathematical mapping and ideal optical imaging with spherical

principal plane: the aplanatic plane.

However, the aplanatic correction is equivalent to a system with a spherical prin-
cipal plane, the aplanatic surface. The intersecting point of a light ray going out
from an axial point with the aplanatic plane is thus equivalent to the pupil coordi-
nate xp according to eq. (21-3), which differs from the Ewald-sphere coordinate in
the spatial frequency space only by the scaling factor f·k. The principal plane as a
system feature depends on the correction of the optical system. That is why the apla-
natic correction can be exactly fulfilled just for one point – the axial point; in real
systems with finite object field it can be fulfilled only approximately.

Figure 21-25: Example of a lithography lens with a rear aperture NA= 0.7;

at the top, a schematic description as a 4f-system is given.

The description of optical systems for carrying out a Fourier transformation with just
one lens of focal length f is an extreme simplification. For real systems there has to be
an arrangement of multiple lenses to achieve a sufficient correction, particularly the
aplanatic correction. The example of a projection lens for optical lithography in figure
21-25 illustrates the complexity of an almost aberration-free optical system when large
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fields and high apertures are involved [21-37]. Due to the position of the principal planes
of the two Fourier steps, the distance ratios do not match those of the simplified 4f set-
up.

In addition to the aplanatic correction, it is also necessary for the application of
the linear system theory (that will be described in the following chapters) that the
imaging conditions are invariant at least over small regions of the object or field
plane (isoplanatic condition). The isoplanatic condition is usually fulfilled for micro-
scope objectives with a higher aperture for a small image field only, but – as shown
in figure 21-25 – it can be achieved even for large image fields with more than
30 mm diameter by using many lenses and, for example, aspherical surfaces.

The inequality of equations (21-3) and (21-23) is based on the fundamental differ-
ences and the incompatibility of mathematical mapping and physical imaging. In
practice it can be accomplished by using several lenses to achieve a sufficiently apla-
natic correction for a finite object field even with aspherical surfaces or diffractive
optical elements, for example. The terms which are valid in the paraxial area of the
mathematical mapping, as well as Listing’s construction, however, lose their validity
in this case. For Listing’s construction and the terms of geometric optics the reader
is referred to the text books about geometric optics, e.g. [21-38] or volumes 1 and 3
of this series.

Finally we comment on the spherical principal plane, the aplanatic surface of a
Fourier optical system. At the beginning of the 19th century H. Siedentopf had
already used the aplanatic surface as a spherical surface to illustrate the case of im-
aging with oblique illumination [21-39]. Later the model of the Ewald sphere, which
had been developed for the description of crystal diffraction, had been transferred to
optics and so the analogy between an aplanatic surface and the Ewald sphere was
established for infinity corrected systems.

21.3

The Mathematical Description of Fourier Optical Imaging

21.3.1

Imaging with Uncorrelated Light Sources

In this section, optical imaging is described by Fourier steps: the theory of image
formation of a planar object in an image plane is described by Fourier-transforma-
tions and a linear filter operation in the pupil plane. The result of the incoherent
image formation is in general complex, non-linear dependency of the image inten-
sity on the object and light source, which is to be solved numerically. Meanwhile,
due to the advance in computers, the numerical solution of the partial coherent
image formation is standard for many commercial optics designs and analysis soft-
ware, and also is an easy task to implement. Before computers were available, a for-
mal mathematical theory of partial coherent image formation was developed, which
is interesting for the comprehension and interpretation of optical imaging. This
mathematical theory of optical imaging is described in chapter 22.
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Here the conventional Fourier-optical description of optical imaging will be illus-
trated for the Fourier-transforming property of a lens. Optical imaging systems are
frequently described by 4f-systems, comprising first a 2f-system from object plane to
pupil plane, and second a 2f-system from pupil plane to image plane. Some text-
books derive the Fourier-transforming property of a lens within the scope of the
paraxial approximation, but optical imaging is not limited to the paraxial region.
The description of optical imaging by the 4f-system is only a simplified symbolic
illustration and should not be overemphasized. Optical imaging is a linear opera-
tion, which is – as for many operations in optics – better described in the frequency
domain. Therefore, the field distribution in the object space is expanded in its spa-
tial frequency spectrum. The spatial frequency spectrum in image space is given by
multiplication of the frequency spectrum in object space by a complex transmission
function – which is, in the most simple case, given by a low-pass filter. This general-
ized description of optical imaging as a filter operation in frequency space will be
discussed further in chapter 23.

The description here is given for telecentric imaging. For non-telecentric imaging,
an equivalent method can be found. In the following, the formal description of the
imaging is further limited to a one-dimensional representation with the imaging
scale 1:1. An extension to two-dimensional objects and arbitrary magnifications is
straightforward.

In partial coherent imaging, it is necessary to give a higher importance to the
light source because the form and size of the light source have a significant influ-
ence on the imaging. For a consequent Fourier-optical description it is advantageous
to assume an effective light source, which is in a Fourier plane in reference to the
object plane (K
hler illumination). In addition to the 4f set-up for the imaging, a
Fourier step is achieved again and thus a 6f set-up (figure 21-26). This approach of
the so-called K
hler illumination can be applied to almost all relevant cases, even if
the physical light source does not necessarily lay in a Fourier-inverse plane in front
of the field plane. Because of this the light source is also called the effective light
source s(ms). Only for special cases of coherent illumination is the approach of the
effective light source no longer an appropriate description.

Figure 21-26: Description of optical imaging in Fourier steps.

Starting from the effective light source s(ms) in the object plane, an illumination
wave is obtained as the Fourier transform of the light source
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S xð Þ ¼ R s msð Þ � e2pimsxdms : ð21-24Þ

The object arranged in the object plane is described for the most simple case of the
approximation of a thin element (thin element approximation TEA) by its complex
transfer function

T xð Þ ¼ A xð Þ � eij xð Þ ð21-25Þ

and multiplied with the incident illumination field distribution S(x) in order to
obtain the object wave or the field distribution directly behind the object:

U0 xð Þ ¼ T xð Þ � S xð Þ : ð21-26Þ

In the pupil plane there is then the Fourier transform of U0(x). Since the Fourier
transform of a product of two functions is given by the convolution of the spectra of
the functions, the field distribution u0 in the pupil plane is given by a convolution of
the effective light source with the object spectrum:

u0 mð Þ ¼ F U0 xð Þf g ¼ t mð Þ � s mð Þ : ð21-27Þ

Now, in the pupil plane the filtering effect of the aperture stop and the optical sys-
tem aberrations, generally described by a complex transmission function, takes
place. This is called the coherent transfer function CTF:

h mð Þ ¼ P mð Þ � ei2pk W mð Þ ð21-28Þ

with the pupil function P(m) and the wave front aberration W(m). Corresponding to the
finite wavelength and the limited aperture of an optical system, the optical imaging
is always low-pass filtering. This is expressed by the pupil function P which differs
from zero only in a finite range. In the most simple case the pupil function is equal
to a rect- or circ-function, respectively (the definition of these functions is given in
the mathematical appendix). In addition to this, imaging aberrations may influence
the optical imaging. This is expressed by the wave front aberration W. As shown in
chapter 20, the wave front error W(m) in eq. (21-28) corresponds to Hamilton’s
mixed characteristic functionW(x0,p1) and can be determined, e.g., by ray-tracing.

Thus the field distribution behind the aperture is the product of the field distribu-
tion according to eq. (21-27) times the filter function h(m):

u1 mð Þ ¼ h mð Þ � u0 mð Þ ¼ h mð Þ � t mð Þ � s mð Þ½ � : ð21-29Þ

The field distribution in the image plane is obtained by a repeated Fourier transfor-
mation:

U1 xð Þ ¼ F h mð Þf g � T xð Þ � S xð Þ½ � ¼ H xð Þ �U0 xð Þ : ð21-30Þ

As can be seen, now the object wave U0 is convoluted with the Fourier transform of
the filter function h(m). The Fourier transform of the filter function is also called the
amplitude distribution function H(x):
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H xð Þ ¼ Rh mð Þ � e2pimxdm ¼ RP mð Þ � ei2pk W mð Þe2pimxdm : ð21-31Þ

With the coherent optical imaging the complex amplitude is therefore linearly trans-
ferred. The effect of the filter h(m) in the frequency space is expressed in the image
plane by a convolution of the object wave U0(x) with the amplitude distribution
function H(x), which can be written as

U1 xð Þ ¼ RU0 x ¢ð Þ �H x � x ¢ð Þ dx ¢ : ð21-32Þ

However, the detection process can only measure the image intensity. In the most
simple approximation this is given by the squared value of the amplitude:

I1 xð Þ ¼ U1 xð Þj j2¼ H xð Þ �U0 xð Þj j2 : ð21-33Þ

For coherent imaging there is no linear correlation between the image intensity I1
and the object intensity |U0(x)|

2 !
In order to further investigate the influence of the light source on the image

intensity, a single delta-like light source point p at coordinate mp is considered, and
S(x) in eq. (21-26) is given by a plane wave. After insertion into (21-32) we obtain

Up x; mp
	 


¼ RT x ¢ð Þ �H x � x ¢ð Þ � ei2pmpx ¢dx ¢ ð21-34Þ

for the normalized image amplitude Up for a light source point p. The image inten-
sity is given by the squared value of the integral over all image amplitudes to all
light source points:

I xð Þ ¼ R
s mp
	 


�Up x; mp
	 


dmp









2

: ð21-35Þ

After insertion of eq. (21-34) one formally gets a quadruple integral for the image
intensity consisting of a two-fold convolution and the double integral over all light
source points:

I xð Þ ¼ R s mp
	 


� RT x1ð Þ �H x � x1ð Þ � ei2pmpx1dx1dmp �
R
s* mq
	 


�RT* x2ð Þ �H* x � x2ð Þ � e�i2pmqx2dx2dmq : ð21-36Þ

In the double light source integral in eq. (21-36) the mutual coherence function of

the light source CS at the position of the object can be found, which is also called the
mutual intensity of the illumination distribution:

CS x1; x2ð Þ ¼ RR s mp
	 


� s* mq
	 


ei2p mpx1�mqx2ð Þdmpdmq ¼ S x1ð Þ � S* x2ð Þ : ð21-37Þ

After insertion of the mutual coherence function of the light source one obtains for
the image intensity from eq. (21-36):
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I1 xð Þ ¼ RRCS x1; x2ð Þ � T x1ð Þ � T* x2ð Þ �H x � x1ð ÞH* x � x2ð Þdx1dx2 : ð21-38Þ

In the normal case, effective light sources are considered which are completely
uncorrelated, similar to thermal light sources. For uncorrelated light sources inter-
ference contributions of different light source points vanish due to the averaging in
time of the intensity formation. Only those interference terms that come from one
and the same homologous source point, and thus have a rigid phase correlation to
each other, will remain. Under this assumption it follows for eq. (21-37) that the
coherence function is given by the Fourier transform of the intensity distribution of
the effective light source:

CS x1; x2ð Þ ¼ RR s mp
	 


� s* mq
	 


� d mp � mq
	 


� ei2p mpx1�mqx2ð Þdmpdmq
¼ R s mq

	 





2 � ei2pmq x1�x2ð Þdmq :

ð21-39Þ

The calculation of the intensity consequently becomes more simple and is described
now by a double integral only:

I xð Þ ¼ R s mq
	 





2� RT x ¢ð Þ �H x � x ¢ð Þ � ei2pmqx ¢dx ¢








2

dmq : ð21-40Þ

The image formation for the optical imaging with K
hler illumination can be visual-
ized as an incoherent superposition of all intensities to the coherent partial images
to all light source points. Figure 21-27 illustrates this approach.

Figure 21-27: Image formation in Fourier steps of a light source point for a grating.

Depending on the extension of the light source, the imaging is called incoherent,
coherent or partially coherent. If the direct image of the light source in the pupil
plane is larger than the diameter of the aperture, it is always an incoherent image.
For a point-like light source, the object is illuminated only by a plane wave. It is then
always called a coherent image. For light source dimensions in between, it is called
a partially coherent image. The two special cases of completely coherent imaging
and completely incoherent imaging, as well as the general case of partially coherent
imaging, are discussed in the next sections and chapter 24. Partial coherent imag-
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ing, according to eq. (21-40), is frequently solved numerically by a sum over a finite
number of light source points. Simulation results will be shown in chapter 24. The
scalar description of the image formation derived so far contains some approxima-
tions, which in a numerical simulation can be replaced by exact calculations:

. The approximate consideration of the object by a transfer function can be
replaced by so-called rigorous methods. For this the spectrum t(m) has to be
replaced by a diffraction spectrum t¢(m,ms) correspondingly calculated, which
can be a function of the illumination angle and the polarization.

. Besides wave front errors, in h(m) apodization effects and deviations of the
pupil function P(m) from the ideal transmission caused by, e.g., anti-reflec-
tion coatings and absorption in bulk material can also be taken into account.
The filter function can depend on the polarization.

. Some energy normalization factors can be taken into account in the pupil
function.

. Polarization can be considered. Dealing with the change in polarization is
more difficult. It is discussed in chapter 26 and the following section about
polarization-optical imaging.

. Finally, modern software for the simulation of image formation also takes
into account the effects of the light-sensitive medium, e.g., for lithography,
the multi-reflections at the resist layers (e.g. [21-40]).

Finally, the reason for the choice of the effective light source in a conjugated plane
to the pupil plane now becomes clear: because of the description of the illumination
by plane waves incoherent to each other eq. (21-40) takes the simple form. For illu-
mination with a multi-mode laser, however, a significantly more complex expansion
in eq. (21-40) has to be accepted, as will be shown in chapter 21.4.6.

21.3.2

Consideration of Magnification

So far only imaging with a 1:1 magnification has been discussed. Magnification
means only a linear scaling in the space domain from the object to the image plane
as well as in the frequency domain, i.e., from the entrance to the exit pupil. In most
cases magnification is thus considered in a proper image coordinate scaling. It is
common to carry out all calculations only in, e.g., the image space, so that every-
thing is scaled in image coordinates.

For consideration of the magnification, the field distribution behind the object is
described by the object amplitude function U0(x0) in coordinates of the object space
x0 and the field distribution of the image by the image amplitude function U1(x1) in
image space coordinates x1. The image function U1(x1) should emerge from the
object function U0(x0) using a linear mapping, it is:

x1 = bx0 . (21-41)
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From the scaling properties of the Fourier transformation, the linear image of
both spectra follows automatically. These are given by

u0 m0ð Þ ¼ R¥

�¥

U0 x0ð Þe�2pix0m0dx0 ð21-42Þ

and

u1 m1ð Þ ¼ R¥

�¥

U1 x1ð Þ e�2pix1m1dx1 : ð21-43Þ

For the scaling of the spectra, the following relationship therefore has to be valid:

m1 ¼
1

b
m0 : ð21-44Þ

After a conversion from eq. (21-44) the Abbe sine condition is obtained:

b ¼ m0
m1

¼ sina0

sina1

: ð21-45Þ

Equations (21-41) and (21-45) now offer different possibilities of taking the magnifi-
cation into account for the Fourier-optical description of the image (figure 21-28).

Figure 21-28: Two possibilities for taking the magnification into

account: using the focal lengths for the unit planes or using a linear

mapping in the frequency domain.

In the first case the pupil coordinate xp is set proportionally to the focal length f1
with xp= f1sina0. The angle a1 in the image space then follows from sina1 = xp/f2.
For the mathematical treatment the second method is preferable. Here the magnifi-
cation is taken into account in the transverse frequency domain by a linear mapping
according to the Abbe sine condition (aplanatic correction). The magnification then
causes a re-scaling during the inverse transformation of the filtered spectrum from
the frequency domain. Here it should be mentioned that performing the Fourier
transformation twice delivers an inverse image from the beginning, according to the
negative magnification for common imaging without intermediate image.
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In addition to a proper scaling of the pupil coordinates, energy apodization factors
as derived in chapter 20.3.2 may be considered for imaging with b „ 1. Throughout
the scalar treatment of chapters 21–25, however, energy factors are neglected.

21.4

Coherence in Imaging

21.4.1

The Coherent Image

For illumination with a planar wave, e.g., by a collimated laser beam, the effective
light source can be simplified by a delta-like point:

s mð Þ ¼ S0 � d m� mið Þ : ð21-46Þ

It follows for the coherence function (with S0= 1):

CS x1; x2ð Þ ¼ ei2p mi x1�x2ð Þð Þ : ð21-47Þ

Especially under perpendicular illumination, i.e., mi = 0 the coherence function with
CL(x1,x2) = 1 degenerates to a constant. With (21-46), the amplitude distribution
behind the object is given by

U0 xð Þ ¼ T xð Þ � S xð Þ ¼ A xð Þ � eij xð Þei2pmi �x : ð21-48Þ

In the pupil plane one obtains the frequency spectrum of the object shifted in accor-
dance with the illumination direction and multiplied by the transfer function h(m):

u1 mð Þ ¼ h mð Þ � t m� mið Þ : ð21-49Þ

After Fourier transformation it follows that the intensity in the image plane is:

I xð Þ ¼ R
T x ¢ð Þ �H x � x ¢ð Þ � ei2pmix ¢dx ¢









2

: ð21-50Þ

For coherent illumination there is thus a linear transfer of the amplitude,
described by the transfer function T(x). The coherent transfer function h(m) as a low-
pass filter, determines the maximum transferred object frequency. In figure 21-29,
coherent image formation is illustrated for the example of a linear grating. During
image formation the so-called Gibbs phenomenon occurs and the image amplitude
is more or less similar according to the incomplete spectrum of the object ampli-
tude. The object transmission function T(x) of an amplitude grating is described as
the binary Ronchi Grating (see chapter 25) with

T x0ð Þ ¼ ronchi
x0
d

� �

: ð21-51Þ
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Figure 21-29: Low-pass filtering for optical imaging by the pupil function.

After illumination by a plane wave with the transverse frequency mi and after multi-
plying it by the aperture function P(m) in the pupil plane, the spectrum in the exit
pupil is obtained:

u1 mð Þ ¼ d2

2
sinc

d

2
m� mið Þ

� �

� comb d � m� mið Þð Þ
� �

� circ m

NA=k

� �

: ð21-52Þ

Of the diffraction orders only those, which pass the pupil function determined by
the radius NA/k contribute to the image formation:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m

d
� vix

� �2

þv2iy

r

£
NA

k
ð21-53Þ

with the illumination direction mix,miy. Figure 21-30a illustrated the position of the
diffraction order in the pupil for miy = 0. With eq. (21-53) the resolution limit is given
in accordance. In figure 21-30b it is shown how a y-component of the illumination
direction shifts the diffraction orders by miy [21-21]. The number of diffraction orders
passing the pupil is now less that for miy = 0. The number of the diffraction orders
forming the image grating is limited by the aperture and depends generally on the
illumination direction as shown in figure 21-30a and b. The ultimate resolution is
obtained when only two diffraction orders pass the lens pupil, as shown at an exam-
ple in figure 21-31.
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Figure 21-30: a) Diffraction orders in the pupil at oblique coherent illumination;

b) for the two-dimensional discussion of generally oblique illumination, the obliquity

in the y-direction has to be taken into account.

Figure 21-31: Transfer function at the resolution limit for coherent imaging

with oblique illumination mi.

Figure 21-32: Coherent grating images formed by different diffraction

orders (numbers for diffraction orders given in brackets) a) (–3,–1,0,1,3);

b) (–1,0,1,3); c) (–1,0,1); d) (0,1,3).
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Figure 21-32 compares the coherent grating images for different numbers of dif-
fraction orders contributing to the image according to eq. (21-53). The different grat-
ing image intensities deviate significantly from the object transmission function
T(x) and from each other. Occasionally, the similarity between object and image is
expressed by the so-called fidelity which is given by the mean-squared deviation of
the image from the object with [21-41]

F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R

I xð Þ � T xð Þj j2
� �2

dx

q

: ð21-54Þ

Besides the Gaussian norm in eq. (21-50) other norms and weighted norms, respec-
tively, are common [21-42]. The fidelity according to (21-54) of the examples in figure
21-32 is Fa= 8.9%, Fb = 10%, Fc= 16.4% and Fd = 9.5%. From a comparison of figure
21-32 c and d it follows that, for similarity of image to object, a higher diffraction
order gathered by oblique illumination is preferable to symmetrical image condi-
tions. However, this is at the expense of intensity.

21.4.2

Incoherent Imaging

For an infinitely extended constant effective light source the coherence function is
given by a d-function:

CS x1; x2ð Þ ¼ RC � ei2pmq x1�x2ð Þdmq ¼ C � d x1 � x2ð Þ : ð21-55Þ

After inserting into (21-37) one obtains (with C = 1):

I1 xð Þ ¼ RRd x1 � x2ð Þ � T x1ð ÞT* x2ð Þ �H x ¢� x1ð ÞH* x ¢� x2ð Þdx1dx2

¼ T xð Þj j2� H xð Þj j2 : ð21-56Þ

The last term of eq. (21-56) can be identified with the point-spread function PSF of
the optical system, given by the square value of the amplitude distribution function
H(x):

IPSF xð Þ ¼ H xð Þj j2 : ð21-57Þ

In the case of an incoherent image, the intensity is transferred linearly, i.e., the
intensity in the image plane results from a convolution of the intensity in the object
plane I0 = |S(x)·T(x)|

2 with the point- spread function of the optical system:

I1 xð Þ ¼ I0 xð Þ � IPSF xð Þ : ð21-58Þ

Incoherent imaging is therefore very similar to geometrical-optical image formation
as discussed in chapter 20.
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Equation (21-55), however, is a simplification. Since for monochromatic imaging
there are no optical frequencies larger than n/k, an infinitely extended light source
does not exist. However, it can be shown that the result of eq. (21-56) is a very good
approximation, if the image of the effective light source fills the pupil of the system
completely (r ‡ 1), with the coherence function given by the point-spread function
according to (21-57), in the case of an optical system with rotational symmetry, by
the airy pattern:

CS x1; x2ð Þ ¼ R

mqj j<NA=k

ei2pmq x1�x2ð Þdmq ¼
J1 2p w1 � w2ð Þ½ �
p w1 � w2ð Þ

� �2

ð21-59Þ

with normalized coordinates w =NA/k · r.
According to linear system theory, the Fourier transform of the point-spread function

or point response corresponds to a transfer function of the linear system. From this it
follows that the incoherent optical transfer function – OTF – g(m) of the optical system
is given by the autocorrelation of the coherent transfer function – CTF – h(m):

g mð Þ ¼ F IPSF xð Þ½ � ¼ h mð Þ � h* mð Þ ¼ Rh m¢ð Þ � h* m¢þ mð Þ dm¢ : ð21-60Þ

Equation (21-60) is sometimes called Duffieux integral. In frequency domain, the
autocorrelation of the spectrum of the transfer function is multiplied to the optical
transfer function g(m). In the image plane the image filtered by the OTF is gener-
ated:

i1 mð Þ ¼ F T xð Þj j2
� �

� g mð Þ ¼ t mð Þ � t* mð Þ½ � � g mð Þ : ð21-61Þ

It is finally obtained:

I1 xð Þ ¼ R T x ¢ð Þj j2�G x � x ¢ð Þdx ¢ : ð21-62Þ

In the next paragraphs incoherent imaging is further discussed at the examples of
one-dimensional image formation and systems with rotational symmetry.

21.4.3

One-Dimensional Incoherent Imaging

As an example first the point response of a one-dimensional ideal image (W(m) = 0)
is discussed. In correspondence to the finite wavelength and the limited aperture of
an optical system the optical imaging is a low-pass filtering expressed by the pupil
function P which only in a finite range is different from zero. The pupil function
may thus be described by the rect-function:

h mð Þ ¼ P mð Þ ¼ rect
m

NA=k

� �

: ð21-63Þ
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According eq. (21-60) the optical transfer function OTF is given by:

g mð Þ ¼ rect
m

NA=k

� �

� rect*
m

NA=k

� �

¼ rect
m

2NA=k

� �

� 1� k

NA
sign mð Þ � m

� �

: ð21-64Þ

The normalized point-spread function (PSF) is given by the squared value of the
amplitude distribution function with

I1DPSF xð Þ ¼ H xð Þj j2¼ sinc2
NA

k
x

� �

: ð21-65Þ

CTF and OTF for a one-dimensional system are illustrated in Figure 21-33. The OTF
as the transfer function, describes the amplitude a certain object frequency with
which m is transferred and thus the contrast of the object details formed by that fre-
quency m. The resolution limit for the incoherent imaging is given by the maximum
frequency of the OTF, i.e., by 2NA/k, according to the maximum resolution of the
coherent imaging with oblique illumination, but with vanishing contrast in the inco-
herent image. The amplitude distribution function and the one-dimensional line
image intensity are illustrated in figure 21-34 in normalized coordinates w= x·NA/k.
The intensity vanishes at distances m·k/NA.

Figure 21-33: Coherent Transfer function CTF and optical transfer function OTF.

Figure 21-34: Amplitude distribution functionU(w) (blue) and point-spread function IPSF(w) (red).
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21.4.4

Systems with Rotational Symmetry

For rotation-symmetric imaging systems the amplitude distribution can be written
in cylindrical coordinates:

H r; hð Þ ¼ R
2p

0

R

r

hr r; Wð Þ � ei2p rr cos h�Wð ÞrdrdW : ð21-66Þ

For rotation-symmetric systems the W-integration can be carried out and it is
obtained with h= 0

H rð Þ ¼ 2p
R

r

hr rð Þ � J0 2prrð Þrdr : ð21-67Þ

For ideal systems the CTF is now described by the circ-function:

h rð Þ ¼ P rð Þ ¼ circ
r

NA=k

� �

: ð21-68Þ

For a constant function hr(r) = 1 it follows for the amplitude distribution function
H(r)

H rð Þ ¼ 2p
R
circ

r

NA=k

� �

� J0 2prrð Þrdr ¼ 2p
R

r<NA=k

J0 2prrð Þrdr

¼ NA

rk
J1 2pr � NA

k

� �

: ð21-69Þ

It should be mentioned here that it is not trivial to obtain a homogenous illumina-
tion in the exit pupil! In particular, a homogeneous illumination is not achieved by
an ideal spherical wave, rather a Lambertian radiator is necessary, because the cano-
nical pupil coordinate is linear to the sine of the angle, not to the angle itself. In
Fourier theory, however, a delta-like spot with constant spectrum exhibits a Lamber-
tian characteristic.

The intensity formation of eq. (21-69) gives the Airy disc (see chapter 20)

I2DPSF rð Þ ¼ H rð Þj j2¼ p � NA
k

� �2
J1 2pwð Þ

pw

� �2

: ð21-70Þ

with normalized coordinates w=NA/k · r. Figure 21-35 shows the normalized ampli-
tude H(w) and the intensity distribution I(w) of the Airy disc with the first zeros and
side maxima. The first minimum of the diffraction image or Airy disk is at
r0 ¼ 0:611 � k=NA.
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Figure 21-35: Cross-section through Airy disc.

The optical transfer function OTF can be determined from the (two-dimensional)
autocorrelation of the circ-function. From a geometrical construction we obtain

g rð Þ ¼ 2

p
arccos

k � r
2NA

� �

� r �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2NA

k

� �2

�r2

s2

4

3

5 : ð21-71Þ

Figure 21-36 illustrates the geometrical construction and the optical transmission
function OTF of a circular aperture in comparison with the one-dimensional OTF.
As can be seen, the optical transmission function and thus the image contrast for a
circular aperture is significantly lower compared with the linear response of a one-
dimensional system (or square aperture). At the coherent resolution limit with
r =NA/k the difference is 10.9%, corresponding to a relative contrast loss of 21.8%.
The maximum difference is at r= 1.24 · NA/k with 11.5% difference in OTF, and
30.1% relative contrast loss. The maximum relative contrast loss is in the limit at
r = 2NA/k.

Figure 21-36a: Construction of the transfer function of a rotation-symmetric

system: CTF in the coherent case and OTF in the incoherent case.
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Figure 21-36b: Transfer function of a rotation-symmetric system in comparison

with a one-dimensional system (linear g) in normalized coordinates w= r · k/NA.

For the rotation-symmetric incoherent image, the contrast of object details with
high frequencies vanishes even faster than for the one-dimensional image. The limit
frequency, however, is again at mmax = 2NA/k. Thus, theoretically, object details with
a period of 0.5k/NA can be transferred. Two examples of image simulation results
for incoherent images of a grating are illustrated in figure 21-37.

Figure 21-37: Incoherent grating images with NA= 0.5, k= 1;

a) with grating period d= 4k; b) with grating period d= 2k.

21.4.5

Conditions for Incoherent, Partially Coherent and Coherent Imaging

Only incoherent optical imaging can be considered as a linear system for the trans-
fer of the intensity. Every object point d(x – x0) is imaged in an image point. Due to
the wave-optical diffraction, the delta-like object point is “blurred”. Each object point
d(x – x0) is transferred by the optical system characterized by a transfer function
into the point response, given by the Airy disk. In ideal systems, the condition that
the diffraction image given by the Airy disk does not depend on the position of the
object point and shift invariance is strictly fulfilled. The image I1(x) of an object dis-
tribution I0(x) is therefore given by the linear superposition of the single point
responses according to the object points in I0(x), i.e., by a convolution of the object
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I0(x) with the point response. Only for the case of incoherent imaging does the opti-
cal image follow the Raleigh description of image formation. Incoherent imaging is
always applicable when an effective light source is used for illumination whose
image fills completely the pupil of the imaging optics or if self-luminous objects like
stars are considered. However, as will be shown in this section, the coherence prop-
erties of optical imaging also depend on the object.

First the imaging of a pinhole diaphragm is considered. The imaging of a pinhole
diaphragm is always coherent. The intensity is the squared value of the amplitude
distribution function or point-spread function. It does not matter which light source
is used. The pupil or filter plane is completely illuminated by the delta peak since
the Fourier transform of the object wave is a plane wave (figure 21-38). After illumi-
nation with a light source point mq the object spectrum is shifted by mq. However,
since the object spectrum (plane wave) is infinitely extended, the convolution with
the light source has no significant effect apart from an unimportant constant phase.
For all illumination angles, the pupil illumination is identical and all images to all
light source points are equal. Approximately this is of course valid as well for small
slits and openings whose diffraction spectrum is much larger than the opening
angle of the optical set-up.

Figure 21-38: Imaging of a delta point.

Figure 21-39: Coherent imaging of a double slit.

If a second slit is added, i.e., for a double slit, interference effects can occur
depending on the illumination. Considering first a single source point, both slits
become secondary sources coherent to each other, which are emitting cylindrical
waves with a locked-phase correlation (figure 21-39). Therefore in the pupil plane
the interference pattern of the double slit diffraction in the far-field is formed. For
slit openings assumed small, this is given by cosine-shaped interference fringes
with a phase position according to the illumination direction. In the image plane
the two cylindrical wave amplitudes are added – filtered by a low pass – and interfere
with each other. Here the phase position of the two interfering line images is given
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by the position of the source point and the corresponding phase shift of the interfer-
ence fringe pattern in the filter plane. Coherent imaging means therefore that the
phase differences of the wave trains are rigidly locked. At an image position in the
limiting case either destructive or constructive interference can occur depending on
the illumination angle.

For complete incoherence (incoherent imaging), as illustrated in figure 21-40, the
discussion is again very simple: it is achieved when all relative phase differences
and thus all possible phase positions of the interference patterns occur. In the filter
plane there are no longer any interference fringes visible according to the arbitrary
phase position of the cosine fringes pattern. In the image this shows itself in adja-
cent point responses of object points not interfering with each other, since the mean
value over time is equal to the sum of the intensities of the single images. The coher-
ence function in this case degenerates to a delta function, an infinitely extended
source is assumed. In general, a source whose angle extension is equal to or larger
than the NA of the imaging optical system is sufficient.

Figure 21-40: Incoherent image of a double slit.

For partially incoherent imaging with a light source having a radius proportional to
r·NA the spectra of the object are incoherent to each other are shifted just by the
angle divergence of the light source in the filter plane. The averaging effect now
depends on how far the spectra are shifted. The contrast of the “interference fringes”
in the pupil grows correspondingly worse (figure 21-41).

Figure 21-41: Different phase positions of the Fourier spectrum of the

object depending on the illumination angle for the same light source size

but different slit distances.

For closely adjacent slits, the modulation period in the frequency domain is large.
The averaging by the angle divergence of the light source thus becomes smaller with
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decreasing slit distance. With a slit distance D it follows for a period p of the interfer-
ence fringes in the filter plane (in units f = 1)

p ¼ k

D
: ð21-72Þ

The slit distance D at which the interference effects just vanish, it is given by

D ¼ k

2r � NA : ð21-73Þ

Inverting the derivation above as a condition for an incoherent imaging, it follows
for the minimum illumination divergence in dependence on the slit with (or object
period) D that:

r � NA >
k

2D
: ð21-74Þ

From this it can be concluded that an image has in general increasing incoherent
properties with increasing slit distances and with increasing angular divergence
r·NA of the source.

In the case of coherent and incoherent imaging, for selected examples, analytical
solutions exist, while for partial coherent imaging usually numerical simulation is
required.

21.4.6

Imaging with Correlated Light Sources

Lamps like discharge sources or plasma sources usually have a large volume in the
order of a few millimeters and emit incoherent light in all directions. The product of
a projected cross-section of the source volume and collected aperture angle defines
the �tendue or geometrical flux of a light source. The �tendue or geometrical flux of
lamps or discharge sources is thus very large, sometimes even larger than the geo-
metrical flux for the largest imaging setting of the imaging optical system. Since the
invention of lasers in the 1960s, there has been a widespread application of laser to
microscopic imaging, including optical filtering techniques like phase contrast im-
aging, in holography, in scanning systems and in various others. In applications
with laser light as the illumination source, however, deleterious effects in the image
can be observed, such as the presence of speckle noise and interference fringes.

For the use of lasers as light sources the distinction between K
hler and critical
illumination is invalid since, for laser radiation a sensible definition of the object
and image plane cannot be given, and incoherent “light source points” do not exist.
In other words, in imaging systems with laser radiation the single light source
points assumed in the condenser pupil are no longer uncorrelated with each other.
In the general case, the effective light source consists of a mixture of M modes
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which are incoherent to each other. The image amplitude for each mode m can thus
be calculated according to eq. (21-34)

Um xð Þ ¼ R R sm mq
	 


T x ¢ð Þ �H x � x ¢ð Þ � ei2pmpx ¢dxmq : ð21-75Þ

Then the image intensity is given by the sum of the intensities over all modes m

incoherent to each other:

I xð Þ ¼
XM

m¼0

Um xð Þj j2 : ð21-76Þ

The calculation of the image intensity according to eq. (21-75)–(21-76) is much more
complex for correlated light sources and therefore often avoided. The correlation of
the light source is often destroyed by e.g. rotating diffusing disks or a spinning
wedge, both in order to change the phase of the illumination light, which destroys
the coherence and thus reduces the speckle pattern [21-43], [21-44], [21-45], [21-46],
[21-47]. In the remainder of this book the discussion will be restricted to uncorre-
lated light sources.
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22.1

Introduction

A phenomenological description of image formation according to Abbe already pro-
vides a complete interpretation of the aerial images. According to Abbe, every point
of the effective light source is to be regarded as independently forming coherent
images of the object with varying obliquity of the illumination and the intensity of
all the coherent images is summed in the image plane. For the layout of an imaging
system and the correct selection of the illumination distribution, the phenomenolo-
gical approach according to the Siedentopf principle is sufficient in most cases. For
confirmation, the partially coherent image can be calculated by simulation routines
now available in simulation software. Several commercial optical design and special
analysis software packages include appropriate routines for this. The commercial
software used to calculate the partially coherent image, enables the computer to take
over the complex theoretical description of the partially coherent image formation
from the user.

In order to comprehend the events which take place during optical imaging, an
advanced discussion of partially coherent image formation is very useful. In this
chapter, the Hopkins formalism, the coherence function and the Wigner function
are explained in order to achieve this. The role of partially coherent, oblique and
structured illumination will be visualized for several examples. In section 22.2 the
analytical description of Fourier optics is described, and in particular the Hopkins
transmission cross coefficient, TCC, is derived. Section 22.3 summarizes the coher-
ence theory of optical imaging and the transfer of the coherence function. Section
22.4 describes the interpretation of optical imaging by use of the Wigner function.
Section 22.5 considers imaging aberrations and gives a classification of these.

22.2

Theoretical Description of Partially Coherent Image Formation

22.2.1

Hopkins Transmission Cross Coefficient

In chapter 21, partial coherent image formation was derived as a superposition of all
the individual intensity patterns for each effective light source point. This interpreta-
tion of partially coherent optical image formation is easy to be implemented in com-
puter software routines (e.g., [22-1], [22-2]). As well as this method of computing the
optical image it is, however, possible to give a formal description even for partially
coherent image formation and to calculate a linear transfer function, at least
approximately.

Starting with eq. (21-36) the intensity in the image space is described by a Fourier
integral
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I xð Þ ¼ RRR s mq
	 





2� t m1ð Þ � t� m2ð Þ � h m1 þ mq

	 

� h� m2 þ mq
	 


� ei2px� m1�m2ð Þdm1dm2dmq :

ð22-1Þ

Introducing theHopkins transmission cross coefficient TCC(m1,m2) [22-3]:

TCC m1; m2ð Þ ¼ R s mq
	 





2�h m1 þ mq
	 


� h� m2 þ mq
	 


� dmq; ð22-2Þ

we now obtain the transfer function for partially coherent image formation:

I xð Þ ¼ RRTCC m1; m2ð Þ � t m1ð Þ � t� m2ð Þ � ei2px� m1�m2ð Þ dm1dm2: ð22-3Þ

The image intensity is therefore computed by the linear superposition of the inter-
ference patterns of plane waves with spatial frequency m1 and m2 and amplitude
given by the Hopkins transmission cross coefficient TCC(m1,m2) and the spatial
object spectrum contribution at m1 and m2. As a consequence, the image intensity in
eq. (22-3) depends bilinearly on the object transmission spectrum. Since the trans-
mission cross coefficient depends according eq. (22-2) on the optical system as well
as on the illumination, it is again a quite unwieldy measure.

In the following the normalized TCC will be used, i.e., the maximum value of the
TCC is normalized to 1:

TCC m1; m2ð Þ ¼ 1

TCCmax

R
s mq
	 





2
h m1 þ mq
	 


� h� m2 þ mq
	 


dmq: ð22-4Þ

For conventional illumination by circular effective sources centred on the optical axis,
the maximum value TCCmax is equivalent to TCC(0,0) and is given by the intensity of
the source integrated over the pupil. As a consequence, TCCmax is equivalent to the total
source power IS, if the effective source is smaller or of identical size when compared
with the pupil. For structured effective light sources larger compared to the pupil or
darkfield illumination, TCCmax is more difficult to be obtained.

Frequently the use of the transmission cross coefficient is limited to the so-called
linear part with m2 = 0 [22-4]:

TCC m; 0ð Þ ¼ 1

TCCmax

R
s mq
	 





2
h mþ mq
	 


� h� mq
	 


dmq: ð22-5Þ

The linear part of the transmission cross coefficient TCC is equal to 1 if the source
is totally enclosed in the region where the pupil, shifted by the frequency m, overlaps
with the unshifted pupil. The transmission cross coefficient goes over into the inco-
herent contrast transfer function g(m) if the effective light source has an equal or
larger extension compared with the pupil:

g mð Þ ¼ TCC m; 0ð Þ ¼ Rh mþ mð Þ � h� mð Þ dm: ð22-6Þ

For ideal imaging without aberrations the integration over the light source region
can be converted into:
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TCC m; 0ð Þ ¼ R P mþ mq
	 


� s� mq
	 




 dmq: ð22-7Þ

The linear TCC according eq. (22-7) is interpreted as the integral over the image of
the effective light source, projected into the pupil. In figure 22-1, the linear normal-
ized transmission cross coefficients |TCC(m1,0)/TCC(0,0)| for three different cases
for ideal systems are visualized: 1) for incoherent imaging (light source spectrum
larger than or equal to the pupil), 2) for partially coherent imaging (light source
spectrum smaller than the pupil) and 3) partially coherent oblique illumination. Al-
though the perfectly incoherent image has a higher limit frequency and a higher
resolution limit is obtained for it than for the partially incoherent image, the image
details at a higher frequency are imaged with low contrast. On the other hand, for
partially incoherent imaging, a higher image contrast is achieved due to the better
transfer at the low frequencies. For normal imaging, it has transpired to be a good
compromise when the light source image fills approximately half of the pupil
(r ~ 0.7; not shown). For an annular pupil or annular illumination, the transmission
cross coefficient can be derived in a similar manner [22-5], [22-6].

Figure 22-1: Normalized linear part of the Hopkins transmission cross coefficient.

The linear part of the transmission cross coefficient illustrates how a frequency is
dampened by the low-pass filter effect of the optical imaging and thus the limiting
case for the imaging of infinitely extended sine gratings. For real objects with finite
extension and a form deviating from the sine grating, the image contrast deviates
significantly from the linear part due to the contributions of the higher diffraction
orders and the envelope (see section 5 of chapter 24). Figure 22-2 compares the line-
ar normalized transmission cross coefficient TCC for different light source diame-
ters r, with the image contrast V, for an amplitude grating with aspect ratio 1:1 with
seven periods (simulation results).
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Figure 22-2: Linear part of the Hopkins transmission cross coefficients

for different light source radius r in comparison with simulation result.

The interpretation of the image contrast by the overlap region of the diffraction
orders with the pupil, according to the transmission coefficient, might be mislead-
ing. As emphasized in chapter 21, the loss in contrast depends rather on that share
of the light which is not contributing to the image formation so, e.g., that part of the
zero order without interference partner (false light). Due to the smaller overlap,
under appropriate illumination the image grows darker at most without the false
light share because a larger share of the diffracted light is lost at the pupil. Theoreti-
cally, however, the contrast can in principle remain unchanged at V = 100% up to
the incoherent resolution limit. In order to increase the contrast at high object fre-
quencies, oblique illumination must be used. As shown in figure 22-1 the transfer
function is then shifted by the incident angle of the main beam of the illumination.
In this way a grating is no longer transferred under axial illumination (only the zero
order passes the pupil).

22.2.2

Image Fidelity

Since the object spectrum is low-pass filtered by the TCC, the image intensity devi-
ates significantly from the intensity distribution in the object plane. The similarity
between the object and the image is expressed by the so-called fidelity which is
given, e.g., by the mean-squared deviation of the image from the object [22-7] with

F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R

I xð Þ � T xð Þj j2
� �2

dx

q

: ð22-8Þ

Besides the Gaussian norm in eq. (22-8) other norms and also weighted norms, are
common [22-8]. The Hopkins formalism allows for an elegant fidelity analysis of the
optical image. The ideal image is represented by the square of the object transmis-
sion function:
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Iideal xð Þ ¼ T xð Þj j2; ð22-9Þ

or, the ideal image spatial frequency spectrum is given by

iideal mð Þ ¼ t mð Þ � t� mð Þ ¼ R t m¢ð Þ � t� m� m¢ð Þdm¢ : ð22-10Þ

The real image according to eq. (22-3) is, however, given by

i mð Þ ¼ RTCC m¢; m� m¢ð Þ � t m¢ð Þ � t� m� m¢ð Þ dm¢: ð22-11Þ

The image fidelity F can thus be written as

F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R
IIdeal xð Þ � I xð Þ½ �2dx

q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R

1� TCC m¢; m� m¢ð Þ½ � � t m¢ð Þ � t� m� m¢ð Þ½ �2dm¢
q

: ð22-12Þ

Due to the low-pass filtering of optical systems and the wave nature of light, the
optical image is formed only by a band-limited spatial frequency spectrum, where
the damping function of the image frequency spectrum is described by the differ-
ence of the normalized TCC’s from one.

22.2.3

Hopkins Formalism for Periodic Objects

The description of optical image formation by the transmission cross coefficient is
suited in particular for strictly periodical objects with discrete spectra. If the period-
ical objects with periods dx and dy are illuminated by a plane wave of frequency mq,
then the object wave is described by a Fourier series expansion with

U0 x; y; mxq ; m
y
q

� �

¼
X

m;n

gm;ne
i2p m

dx
�mxq

� �

�xþ n
dy
�m

y
q

� �

�y
h i

: ð22-13Þ

In the pupil the shifted discrete grating spectrum is obtained and multiplied by the
coherent transfer function:

u1 m; n; mxq ; m
y
q

� �

¼ gmn � h
m

dx
� mxq ;

n

dy
� myq

� �

: ð22-14Þ

Considering different light source points, which are not interfering, one obtains for
the transmission cross coefficient of the grating frequencies m, n, t and s with inten-
sity Iðmxq ; myqÞ of the effective light source distribution (see figure 22-3):

TCC m; n; t; sð Þ ¼ R I mxq ; m
y
q

� �

h
m

dx
� mxq ;

n

dy
� myq

� �

h� t

dx
� mxq ;

s

dy
� myq

� �

dmxqdm
y
q :

ð22-15Þ
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Figure 22-3: A contribution to the transmission cross coefficient of a periodical object.

Thus the intensity in the image plane is given by:

I x; yð Þ ¼
X

m;n

X

t;s

gm;ng
�
t;s � TCC m; n; t; sð Þ� ei2p

m�tð Þ
dx

xþ n�sð Þ
dy

y

h i

: ð22-16Þ

Every multi-beam interference pattern is considered as composed of several two-
beam interferences. This special interpretation of partial coherent image formation
according to Hopkins becomes more apparent for periodic objects and the discrete
formulation of eq. (22-16), compared with the continuous formulation for general
objects according to eq. (22-3).

Figure 22-4 illustrates the different shapes of transmission cross coefficients TCC
of order (m,n,t,s) for a two-dimensional grating for different light source sizes. For
partial coherent illumination with r= 0.7, the TCC’s are limited by the red circle
(which is the effective light source with r = 0.7). For r= 1, the limit of the effective
light source is identical to the pupil, indicated by the blue circle. In the case of an
effective light source image which is larger than the entrance pupil, the light source
in integral eq. (22-15) may not be the limiting factor, as the case for TCC’s with
either m „ 0 or n „ 0. In the case of dark-field illumination with effective light-source
contributions with r > 1, the image is formed only by interference between higher
diffraction orders such as, e.g., the TCC(1,1,1,2). Care has to be taken, however, that
the numerical aperture of the light source does not extend the refractive index into
the object space therefore limiting the effective light source size.

In figure 22-5 the TCC of lowest order m,n < 1 and t,s = –3,...,3 for a two-dimen-
sional grating with dx/dy = 4/5 and an effective light source diameter r = 0.85 are
complied. The example illustrates that, due to the large number of TCC’s, even in
the case of periodical objects the solution of eq. (22-16) is in general rather impracti-
cal and time consuming for the simulation of partial coherent image formation. In
particular, when optical systems with aberrations are considered, symmetry argu-
ments may not be applied and each of the numerous TCCs has to be computed
separately.
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Figure 22-4: Graphical illustration of transmission cross coefficients of order (m,n,t,s)

for an infinitely extended light source, incoherent illumination (inside blue circle: r= 1)

and partial coherent illumination (inside red circle: r= 0.7).

Despite the computational effort required, the partial coherent image formation
according to Hopkins, eq. (22-16), nevertheless offers a convenient way of optimiz-
ing the ideal effective light source intensity distribution according to the Siedentopf
principle. As has been shown in chapter 21, section 2.4, by using a suitable shape
for the light source, the diffraction orders contributing to the image can be selected.
Certain sections of the light source allow for the transmission of a different number
of diffraction orders, and therefore, for different light source sections, different
interference patterns will contribute to the image. The different sections of the light
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Figure 22-5: TCC(m,n,t = –3...3,s= –3...3) with dx/dy= 4/5 and r = 0.85.

source can be identified from the disjoint overlapping regions of the diffraction
orders at the entrance pupil. The image intensity can thus be written as a sum over
the disjoint light source sections of intensity Ih by

I x; yð Þ ¼
X

h

lh � TCCh �
X

m;n

X

t;s

gm;ng
�
t;s � e

i2p m�tð Þ
dx

þ n�sð Þ
dy

h i( 




TCCh�TCCðm;n;t;sÞ

g: ð22-17Þ

By means of tailored illumination, emphasis can be added to certain object details,
e.g., by an effective light source comprising only selected sections h contributing to
the desired image [22-9], [22-10], [22-11], [22-12]. For inspection, the amplitude of a
certain interference pattern can be tuned by the appropriate selection of Ih for the
different light source sections h. In optical lithography, the amplitudes of certain
interference patterns contributing to the image are additionally influenced by the
mask with assist features, phase shifters or serifs [22-13].

In the following, the image formation according to eq. (22-17) will be described in
more detail using the example of an incoherent light source with r= 1 as a starting
point. In figure 22-6 the diffraction orders for a two-dimensional grating with inco-
herent illumination with r= 1 are illustrated, where – reduced by symmetry argu-
ments – 11 different sections of the effective light source can be separated. Each sec-
tion of the effective light source contributes a different set of interference patterns to



the image, formed by the diffraction orders (m,n) and (t,s) (Table 22-1). If, for exam-
ple, only the effective light source section h = 2 is selected, a vertical linear grating
image consisting of two-beam interferences is formed. The source section h = 8, on
the other hand, forms a horizontal linear grating image comprising only two-beam
interferences. A source shape with Ih „ 0 only for h = 2 and h = 8, produces therefore
a two-dimensional grating image with high contrast and large depth of focus. If two-
beam interferences between m = n = 0 and s = 0, t = 1 should be avoided, permitted
illumination directions are thus h = 8, 10 and 11. For a correct balance of horizontal
and vertical interference patterns, Ih has to be selected in accordance with TCCh and
the contributing diffraction orders gm,n and gt,s.

Table 22-1: Two-beam interference patterns contributing to source section h of figure 22-6.

m,n 0,0 0,0 0,0 0,0 0,0 0,0 1,0 1,0 1,0 1,0 –1,0 2,0 0,1 0,1

t,s 1,0 0,1 1,1 2,0 –1,0 –1,1 0,1 –1,0 1,1 2,0 0,1 1,1 1,1 –1,1

  1 x x x

  2 x

  3 x x x

  4 x x x x x x

  5 x x x x x x

  6 x x x

  7 x x x

  8 x

  9 x x x x x x

10 x x x

11 x x x x x
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Figure 22-6: Illustration of the

source sections h = 0 ...11 forming

the transmission cross coefficient

TCCh for a periodical object with

incoherent illumination (r = 1).



22.2.4

Aberrations in the Linear Grating Image

For the example of a linear grating, the role of the TCC is further discussed. For
ease of illustration, the TCC is again derived on the basis of Fourier theory in this
section. The set-up under consideration is illustrated in figure 22-7. Directly behind
the grating in the object plane one obtains:

U0 x; yð Þ ¼ UL x; yð Þ �
X

m

gm � ei2pmdx : ð22-18Þ

Figure 22-7: Partial coherent imaging of a linear grating with coma.

The transmitted spectrum in the exit pupil is multiplied by the transmission func-
tion h(mx,my):

u mx; my
	 


¼
X

m

gm � uL mx �
m

d
; my

� �

� h mx; my
	 


: ð22-19Þ

For the amplitude in the image plane it follows that:

U1 x; yð Þ ¼
X

m

gm � Bm � ei2pmdx : ð22-20Þ

with the complex factor Bm defined by

Bm ¼ Rh mx þ
m

d
; my

� �

� uL mx; my
	 


ei2p mxxþmyyð Þdmxdmy : ð22-21Þ

Each frequency of the amplitude distribution in image space is thus modulated by
an additional complex factor Bm. The factors Bm depend on (22-21) from the light
source and the transmission function. The intensity can now be written by a series
expansion:

I xð Þ ¼
X

m

X

t

gmg
�
t � Bm � B�

t � e
i2pm�t

d
x ¼

X

n

in � ei2p
n
d
x ð22-22Þ
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with the complex coefficients in given by

in ¼
X

m

gmg
�
m�n � Bm � B�

m�n : ð22-23Þ

The image is thus again a periodic object of period d, but with coefficients modu-
lated and dampened by Bm�B*

m–k. It has to be noted that description of eq. (22-22) is
complex. Since the intensity is real, the imaginary parts of the individual series
expansion coefficients must cancel after addition. With an uncorrelated light source,
the product Bm�B*

t can easily be identified as the transmission cross coefficient
TCC(m,t), which reduces for one-dimensional objects to a two-dimensional function
on the remaining frequency coordinate:

TCC m; tð Þ ¼ Bm � B�
t ¼

R
I mxq ; m

y
q

� �

h
m

d
� mxq ; m

y
q

� �

h� t

d
� mxq ; m

y
q

� �

dmxqdm
y
q: ð22-24Þ

After insertion we obtain from eq. (22-22):

I x; yð Þ ¼
X

m

X

n

gmg
�
m�n � TCC m;m � nð Þ � ei2pndx : ð22-25Þ

It can be recognized, that the TCC(t,m) is equal to the complex conjugate of
TCC(m,t):

TCC t;mð Þ ¼ Bt � B�
m ¼ TCC� m; tð Þ : ð22-26Þ

For a symmetrical grating with respect to the origin, the expansion coefficients are
real, i.e., g�m ¼ gm. Thus the summation of eq. (22-25) can be reduced to a single
series with

bn ¼ 2
X

m

gmgm�n � Re TCC m;m � nð Þ½ � : ð22-27aÞ

cn ¼ 2
X

m

gmgm�n � Im TCC m;m � nð Þ½ � : ð22-27bÞ

and for the intensity we obtain:

I x; yð Þ ¼ b0
2
þ
X

n>0

bn � cos 2p
n

d
x

� �

� cn � sin 2p
n

d
x

� �n o

: ð22-28Þ

The image intensity is thus – like the object – composed by symmetrical cosine-
interference patterns, but additionally superposed by a sinusoidal interference pat-
tern due to the imaginary part of the TCC. Imaginary parts of the TCC arise espe-
cially from asymmetrical aberrations, as illustrated in figure 22-7. In general, the
coherent TCCcoh with wave-front aberrations and illumination direction mx,my is
given by
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TCCcoh m; t; mx; my
	 


¼ P mx þ
m

d
; my

� �

P mx þ
t

d
; my

� �

ei
2p
k

W mxþm
d
;myð Þ�W mxþ t

d
;myð Þ½ � : ð22-29Þ

The TCCcoh(m,n;mx,my) depends thus on the difference between the wave-front aber-
rations for the two frequencies m/d and t/d. For partial coherent imaging conditions,
the wave-front error differences are averaged over the effective light source intensity
distribution:

TCC m; nð Þ ¼ C
RR

uL mx; my
	 





2
P mx þ

m

d
; my

� �

P mx þ
n

d
; my

� �

� ei2pk W mxþm
d
;myð Þ�W mxþn

d
;myð Þ½ �dmxdmy : ð22-30Þ

Figure 22-8 compares the effect of aberrations on the grating image with the ideal
image for the example of symmetrical and asymmetrical aberrations. All grating im-
ages with period d = 3.6k/NA show deformed image periods. In the case of aberra-
tion-free imaging, the imaginary part of the TCCcoh vanishes and the image is given
by a cosine-series expansion like the object, but with dampened series expansion
coefficients. For symmetrical image conditions, i.e., symmetrical aberrations and
symmetrical diffraction pattern, the complex part of the TCC cancels out to a good
approximation and the image is given by a superposition of cosine functions (figure
22-8a). In the case of asymmetrical aberrations like coma, individual interference
patterns of frequency k/d in general suffer from phase shifts. The image intensity is
again given by a periodic pattern, but with the asymmetrical shape of each period
due to imaginary parts of the TCC (figure 22-8b). The phase shifts for the different
series terms for Z7 cause a shift in the centre of gravity of the expected period. In
the example, the centre of gravity is approximately at ~ 0.11/d. Since this effect is
observed particularly by asymmetric wave-front errors like coma, the effect is called
coma-induced distortion. Coma-induced distortion depends on imaging conditions
such as illumination, aberration level, object period and orientation.

Figure 22-8: a) Effect of spherical aberration and b) coma-induced

distortion for the example of a linear grating with d= 3.6k/NA.
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22.3

The Coherence Function and the Coherence Transfer Function

The partially coherent image in eq. (22-3) or eq. (22-16) turns out to be the sum over
the transmission cross coefficients, which are quite awkward to calculate. The calcu-
lation of the transmission cross coefficients is particularly inefficient for finite grat-
ings of irregular objects whose spectrum does not consist of single points. Therefore,
in general, the simulation of the image formation using transmission coefficients has
not caught on and instead the partial coherent image formation using integration
over coherent images to source points according to eq. (21-40) is preferred.

The reason for the difficulty with partial coherent image formation is that, for par-
tially coherent imaging, neither the intensity nor the amplitude is transferred linear-
ly. For partial image formation, however, the coherence function is linearly trans-
ferred but that is usually four-dimensional. Although modern computers allow the
calculation of large amounts of data in a short time, the visualization of four-dimen-
sional functions is not possible. So in the following, the illustration for the discus-
sion is limited to the x dimension.

With the coherence function CS of the light source at the position of the object the
intensity in the image plane is given by (see eq. (21-38))

I1 xð Þ ¼ RRCS x1; x2ð Þ � T x1ð ÞT� x2ð Þ �H x � x1ð ÞH� x � x2ð Þdx1dx2 : ð22-31Þ

For the (usually considered) uncorrelated light source, the coherence function is
given by the Fourier transform of the intensity distribution for the effective light
source (figure 22-9a):

CS x1; x2ð Þ ¼ CS x2 � x1j jð Þ ¼ R s mq
	 





2 � ei2pmq x1�x2ð Þdmq : ð22-32Þ

Considering the object as a new source, the coherence function at the position of
the object must first be multiplied twice by the object transfer function:

COS x1; x2ð Þ ¼ CS x1; x2ð Þ � T x1ð Þ � T� x2ð Þ : ð22-33Þ

The coherence function now depends on the object transmission T(x1) and T(x2)
and the coherence function of the illumination. The intensity I(x) behind the object
is given by the values “on the diagonal” of the coherence function with
I(x) =COS(x,x). After the Fourier transformation, the coherence function in the
entrance pupil is obtained and this is finally multiplied twice by the transfer func-
tion h(m). In the image space it follows by inverse transformation for the coherence
function CIOS in image space

CIOS x1; x2ð Þ ¼ R R ~CCOS m1; m2ð Þ � k m1; m2ð Þ�e2pi m1x1þm2x2ð Þdm1dm2 ð22-34Þ

with the coherence transfer function k(m1,m2) given by

k m1; m2ð Þ ¼ h m1ð Þ � h� m2ð Þ : ð22-35Þ
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The image intensity again corresponds to the coherence function in the image space “on
the diagonal” with I(x)=CIOS(x,x). Thus, for the partially coherent imaging the coher-
ence function C is transferred linearly with the coherence transfer function k(m1,m2).

The transfer of the coherence function through an imaging optical system is illus-
trated in figure 22-9, starting with the coherence function CS(x1,x2) of the light
source in object plane in figure 22-9a. In the case of incoherent illumination with an
uncorrelated light source, following eq. (22-31), modulations can only be observed
perpendicular to the diagonal CS(x,x), which corresponds to the coherence function
C(x= x2–x1) as the Fourier transform of a light source. In figure 22-9b, the coherence
function COS(x1,x2) in the object plane behind of the grating can be seen. All grating
openings are homogenously illuminated (grating with a period d =1.2k/NA, NA= 1).
Figure 22-9c and e illustrates the coherence function in the entrance and exit pupil,
respectively. For an ideal imaging system, the coherence transfer function k(m1,m2) is
simply given by a two-dimensional rect-function with

k m1; m2ð Þ ¼ rect k � m1=NAð Þ � rect k � m2=NAð Þ: ð22-36Þ

The coherence transfer function is illustrated in figure 22-9d. Figure 22-9f finally
shows the coherence function in the image plane.

Figure 22-9: Cross-sections through the coherence function

(x1-axis to the right, x2-axis upwards) a) of a conventional light source with r= 0.05;

b) of a grating illuminated by it; c) after Fourier-transformation in the entrance pupil;

d) coherence transfer function k of the ideal image;

e) after filtering in the exit pupil and f) in the image plane.

From eq. (22-34) the coherence function in the image space CIOS can be written
as a two-fold convolution of the complex two-dimensional object coherence function
COS with the Fourier transform of the coherence transfer function, K(x1,x2):

C IOS x1; x2ð Þ ¼ R RCOS x ¢1; x ¢2ð Þ � K x1 � x ¢1; x2 � x ¢2ð Þdx ¢1dx ¢2 ð22-37Þ

with K(x1,x2) given by
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K x1; x2ð Þ ¼ H x1ð Þ �H� x2ð Þ : ð22-38Þ

The coherence function in image space CIOS(x1,x2) is thus blurred by the amplitude
distribution function H(x) in both coordinates x1 and x2.

In addition to the coherence properties of the source, the correlation function of
the amplitude distribution K(x1,x2) also influences the minimum region of coher-
ence in an optical image. With the coherence function of the source and no object
(i.e., T(x) = 1), the coherence function CIS in the image plane is given by

C IS x1; x2ð Þ ¼ R RCS x ¢1; x ¢2ð Þ � K x1 � x ¢1; x2 � x ¢2ð Þdx ¢1dx ¢2 : ð22-39Þ

The coherence function CIS(x1,x2) determines those regions in which interference
effects can occur during the imaging. Two object points, x1 and x2, can be imaged
free from disturbing interferences only when CIS vanishes for the point distance
x2 – x1. If the image of the effective light source in the entrance pupil is larger than
the entrance pupil, then it is limited by the aperture. The coherence properties are
thus invariant for any effective light source diameter with r > 1. For r ‡ 1, the coher-
ence properties in the image plane are dominated by the aperture of the optical sys-
tem. In any incoherent imaging, for illuminated objects with r ‡ 1 as well as for
self-luminous objects, the minimum region of coherence in the image plane is
given by the point-spread function IPSF(r) = |H(r)|2. In ideal systems of rotational
symmetry the point-spread function is given by the Airy disc for the ideal rotation-
symmetric imaging system, with its first minimum at r1 = 0.611 k/NA. If the light
source is smaller however, the coherence radius accordingly increases to

rc ¼ 0:611 � k

r � NA ¼ r1
r
: ð22-40Þ

As a consequence, the coherence properties of imaging, i.e. the image point dis-
tances, for which coherence effects vanish, can be influenced with special struc-
tures, sizes and shapes of the effective light source.

In the presence of aberrations, the mutual coherence function in the image plane
is additionally changed in accordance with the aberrated point-spread function.
Thus the range of the coherence function might be significantly increased, dimin-
ishing the imaging quality even for separated image points. Figures 22-10 and 22-11
compare the coherence transfer functions k(m1,m2) (real parts) and the correlation
functions of the amplitude distribution function K(x1,x2) obtained by Fourier trans-
formation for the ideal system and for different aberrations. As for the coherence
functions, the point-spread function, as the image intensity of a single object point,
is given by the diagonal of K with IPSF(x) = |H(x)|2 =K(x,x). An anti-symmetric wave-
front aberration coma leads to an asymmetric amplitude distribution function.
Therefore, coherence effects with neighbouring points appear only in one direction.
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Figure 22-10: a) Real part of the coherence transfer function k(m1, m2) and
b) the corresponding correlation functions of the amplitude distribution

function K(x1, x2) for ideal imaging (left),with spherical aberration Z9 = k/5 (centre),

and with spherical aberration Z9 = k (right).

Figure 22-11: a) Real part of the coherence transfer function

k(m1,m2) and b) the corresponding correlation functions of the

amplitude distribution function K(x1,x2) with Coma Z7= k/5 (left)

and Z7 = k (right).

Figure 22-12 compares the coherence function in the image plane for the imaging of
a wide slit for a coherent (22-12a) and incoherent (22-12b) illumination. The diagonals
of the real part of the coherence functions represent the intensities in the image plane
(figure 22-13).While for incoherent imaging a rounding of the edge occurs, for coherent
imaging, increasing modulations are generated towards the edge, according to the
Gibbs phenomenon for low-pass filtering. For an asymmetric wave-front error such as,
e.g., coma, the coherence function is faded only on one side, according to the point-
spread function of a coma. In the coherence function this is expressed by secondary
maxima to the diagonal amplified only on one side (figure 22-12c).
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Figure 22-12: Coherence function C(x1,x2) in the image plane for the imaging

of a slit of 10k width; a) coherent imaging with r = 0.05; b) incoherent imaging

with r = 1 and c) in coherent imaging with coma Z7 ~ k/5.

Figure 22-13: The diagonal of the coherence function delivers the image

intensity I(x1) =C(x1,x1).

The calculation of the partial coherent image by the coherence transfer function
offers the capability of considering subsequent imaging, also with subsequent filter
operations for linear system theory [22-14]. Due to the large numerical effort re-
quired it is, however, impractical and therefore not widely used, although it may be
used for illustration. Some examples of imaging calculations with the coherence
function can be found in [22-15], [22-16], [22-17], [22-18].

22.4

The Phase Space Description

22.4.1

Transformation of Coherence and Wigner Distribution Function

The coherence function as a two-dimensional function is defined by two position or
frequency coordinates, respectively. Coherence functions in the position space and
in the frequency space are correlated by a two-fold Fourier transformation. As intro-
duced in chapter 19, phase space representations are mixed representations in space
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and the spatial frequency domain. Phase space functions are, e.g., the Wigner distri-
bution function, the luminance (in physical units: radiance) or the geometrical flux
(see chapter 20.5). In the following, the Wigner distribution function WDF is
applied to partially coherent imaging [22-19], [22-20]. The Wigner distribution func-
tion is given by

W x; mð Þ ¼ RU x þ Dx

2

� �

U� x � Dx

2

� �

� e�2piDx�mdDx : ð22-41Þ

The projection of the Wigner distribution function in the direction of the frequency
axis gives the intensity:

I mð Þ ¼ RW x; mð Þ dm : ð22-42Þ

As shown in chapter 19, the Wigner distribution function W(x,m) follows from the
coherence function C(x1,x2) after coordinate transformation to J(x,Dx) with the dif-
ference coordinate Dx, the centre-of-mass coordinate x, and a one-dimensional Fou-
rier transformation with respect to the difference coordinates [22-21]:

W x; mð Þ ¼ R J x;Dxð Þ � e�2piDx�mdDx : ð22-43Þ

Unlike the geometrical-optical phase space distribution functions, such as lumi-
nance or geometrical flux, the Wigner distribution function can assume negative
values since, as a wave-optical density function, it takes the influence of diffraction
into account. Figure 22-14 shows the geometrical-optical phase space density and
the Wigner distribution function in the object and image plane for the imaging of a
10k-slit under coherent and incoherent illumination. The x-axis is pointing to the
right, the frequency axis upwards. The geometrical-optical phase space densities in
figure 22-14a are limited in the direction of the x-axis by the width of the slit, and in
the direction of the m-axis by the illumination aperture with m = rNA/k. For incoher-
ent illumination (figure 22-14c and e) with r = 1 the frequency spectrum is limited
at the end by the aperture NA = 1. The Wigner distribution function, however,
shows diffraction effects in the object plane due to the diffraction at the edge of the
slit opening which is more distinct with coherent illumination (figure 22-14b and d)
[22-22]. The effect of low-pass filtering of the optical system becomes noticeable
when cutting back the higher propagation angles. At the same time, this leads to
fading at the edge of the diffracting structures in the x-direction (22-14d and e).
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Figure 22-14: a) Illustration of the phase space coordinates

for the example of a 10k-slit under coherent illumination with r = 0.05

and under incoherent illumination with r = 1. Wigner distribution function

of a 10k-slit for b) coherent illumination and c) incoherent illumination;

d) and e) WDF in the image plane.

Figure 22-15: Wigner distribution function of a 10k-slit in the

image plane for incoherent illumination a) with coma of Z7 = k/5 and

b) spherical aberration Z9 = k/5.

Figure 22-15 illustrates the influence of the aberrations coma (Z7) and spherical
aberration (Z9) on the Wigner distribution function. The role of aberration becomes
clearer when considering the Wigner distribution function of the point image
[22-23], [22-24]. Figure 22-16 shows this for an imaging system with the aperture
NA= 1. The low-pass filtering of the spectrum in the vertical frequency direction
causes the formation of the secondary maxima next to the central maximum.

22 Coherence Theory of Optical Imaging302



Figure 22-16: Wigner function W(x,m) of the ideal point image.

The Wigner function of a single image point can be determined either from the
amplitude distribution function or from the coherence transfer function k(m1,m2) after
coordinate transformation, k(Dm, m). As illustrated in figure 22-17, Fourier transforma-
tion of k(Dm,m) in the direction of Dm gives the Wigner function of the point image
W(x,m). The Fourier inverse function to the Wigner function is the ambiguity function,
thus the ambiguity function of the point image is given by a Fourier transformation
of the coherence transfer function in the direction of the centre frequency m:

A Dm;Dxð Þ ¼ Rk Dm; mð Þ � e2piDx�mdm : ð22-44Þ

Figure 22-17: Ambiguity function A(Dm, Dx) of an imaging system

from the coherence transfer function after coordinate transformation

(Dm-axis pointing to the right, Dx-axis upwards).

The ambiguity function for ideal imaging thus corresponds to theWigner function of
the point image rotated through 90� and re-scaled. Figure 22-17 illustrates the coordi-
nate transformation to centre-of-mass coordinates m and difference coordinates Dm

applied to the coherence transfer function k(m1,m2). The Fourier transformation along
the vertical m-axis gives the ambiguity function A(Dx,Dm), which is equal to the two-fold
Fourier transformation of the Wigner distribution function for the point image.

22.4.2

Propagation of the Wigner Distribution Function in Free Space

Using the Wigner distribution function, the effects of propagation in free space can
be illustrated in a simple way. Figure 22-18 illustrates the free-space propagation of
the Wigner distribution function for the point image in the ideal image plane and in
different planes defocused to it.
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In the two-dimensional discussion, the next higher aberration after defocusing is
the spherical aberration. The longitudinal spherical aberration as a deviation of the
ideal plane of reference over the aperture angle, describes a so-called zonal aberra-
tion of the lowest order. Therefore, the Wigner distribution function of the point
image with spherical aberration looks similar to the one at defocusing but cannot be
brought over the centre of the point image either for small or large angles by propa-
gating the distribution function (figure 22-19). The S-shape of the Wigner distribu-
tion function for the projection leads always to a broadening of the intensity distri-
bution of the point image function.

Figure 22-18: Wigner distribution functions of a slit image by free-space

propagation from z = 0 lm to 2 lm.

Figure 22-19: Free-space propagated Wigner distribution functions of the

point image with spherical aberration Z9= k/5 of z = –1, –0.5, 0, 0.5, 1 and z= 2 lm.
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Each projection of the Wigner distribution function delivers the intensity distribu-
tion in its observation plane. Some of them are shown in figure 2-20 as examples.
Because of the free-space propagation, the point image is blurred.

Figure 22-20: Point spread functions at a) ideal imaging and

b) spherical aberration for different defocus positions.

For non-rotational-symmetric wave-front errors, the coherence transfer function
is no longer rotation-invariant (see figure 22-11), therefore, the Wigner distribution
function and ambiguity function of the point image are different (figure 22-21).

Figure 22-22 illustrates some Wigner distribution functions for coma of Z7 = k/5
and different amounts of defocus. Since the Wigner distribution function of the
point image with reference to the x-axis is mirror-symmetric, with m = 0, the point
image reacts symmetrically to defocusing, i.e., for negative or positive defocusing by
a certain amount there are identical defocused point-spread functions for coma in
contrast to the behavior for spherical aberration (figure 22-23).
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Figure 22-21: a) Wigner distribution functionW(x,m) and

b) ambiguity function A(Dm,Dx) of the point image at coma of Z7 = k/5.

Figure 22-22: Free-space propagated Wigner distribution functions of the

point image for coma of Z7 = k/5 from z = –0.5, –0.2, 0, 0.2, 0.5 and z = 1 lm.

Figure 22-23: Point spread functions for coma of Z7= k/5 for different defocus positions.



22.4.3

Compilation of the Transformations

Figure 22-24 shows the coherence transfer function, followed by the coherence
transfer function after coordinate transformation, and the ambiguity function for a
conventional imaging system and for a system with central vignetting. Figure 22-25
shows the coherence function and the Wigner distribution function for optical imag-
ing of a grating with coherent illumination of r = 0.2 (NA = 1, d = 1.2k). The correla-
tion of the functions is shown in table 22-2.

Table 22-2: Functions and their correlation in figure 22-25

Position space – Frequency space Center-of-mass coordinates Wigner distribution function

(x1,x2)–(m1, m2) (x,Dx)–(m,Dm) (x,m)–(Dm,Dx)

Coherence function of the light source in the object plane

CS x1; x2ð Þ ¼ S x1ð Þ 	 S� x2ð Þ jS(x,Dx) WS(x,m)

Coherence function of the illuminated objects

COS x1; x2ð Þ ¼ CS x1; x2ð Þ � T x1ð Þ � T� x2ð Þ jOS(x,Dx) WOS(x,m)

� Fourier transformation

Coherence function of the illuminated objects in the incident pupil
~CCOS m1; m2ð Þ ¼ ~CCS m1; m2ð Þ � t m1ð Þ � t� m2ð Þ jOS(Dm,m) AOS(Dm,Dx)

�Multiplication with the coherence transfer function

Coherence function in the exit pupil
~CCB m1; m2ð Þ ¼ ~CCOS m1; m2ð Þ � k m1; m2ð Þ jk OS(Dm,m) Ak OS(Dm,Dx)

� Fourier transformation

Coherence function in the image plane
CB x1; x2ð Þ jB(x,Dx) WB(x,m)
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Figure 22-24: Coherence transfer function, after coordinate transformation

and ambiguity function for a conventional system (top) and a system with

central vignetting of 1/3 NA (bottom).



Fig 22-25: Compilation for the functions from the object plane to the image

plane for the imaging of a grating with 7 periods and r = 0.2 (d= 1.2k, NA = 1).
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22.5

Optical Imaging in the Presence of Aberrations

22.5.1

Linear Systems and Classification of Aberrations

As introduced in chapter 20, the wave-front error of an optical system can be
expanded into a power series according to

W1 x0; y0; p1; q1ð Þ ¼
X

n;m;k;l

Anmklx
n
0y

m
0 p

k
1q

l
1 : ð22-45Þ

The expansion covers the systematic aberrations of an optical system due to design
and adjustment errors. As well as these systematic errors, the optical performance is
diminished by fabrication imperfections such as surface errors or inhomogeneities
of the refractive index. Furthermore, in addition to the static aberrations, temporal
effects such as thermal drifts, aging and fluctuations might alter the performance of
optical systems over different time-scales.

While the systematic design and adjustment aberrations of optical systems are of
low spatial frequency, the isoplanatic state of a position-independent transmission
function is frequently affected by rapidly-varying errors such as roughness errors.
The followingparagraph discusses the difference between the aberrations and the differ-
ent methods of consideration in the modelling and simulation of image formation.

Starting with eq. (21-38), the intensity of the optical image is given by the two-
fold convolution integral:

I1 xð Þ ¼ RRT x1ð Þ �H x � x1ð Þ � C x1; x2ð Þ �H� x � x2ð Þ � T� x2ð Þ dx1dx2 : ð22-46Þ

In the special case of an infinite incoherent light source, the mutual coherence func-
tion in the object plane degenerates to a delta-function with C(x1,x2) = d(x1–x2), and
the image intensity is given by a linear transfer of the intensities. Equation (22-46)
can thus be written as a convolution between the intensity in object space and the
intensity of the point-spread function:

I1 xð Þ ¼ R T x1ð Þj j2 H x � x1ð Þj j2dx1 ¼ I xð Þ � H xð Þj j2 : ð22-47Þ

For perfectly coherent illumination, the mutual coherence function is constant,
C(x1,x2) = 1, for all pairs of object points x1 and x2, and the image intensity is simply
given by the square of the convolution of the amplitude in the object plane with the
transmission function:

I1 xð Þ ¼ T xð Þ �H xð Þj j2 : ð22-48Þ

The amplitude distribution H(x) is given by the Fourier transform of the complex
transfer function h(m), with the pupil function P(m) as a real part and the wave-front
aberrationW(m) as the phase error:

22.5 Optical Imaging in the Presence of Aberrations 309



22 Coherence Theory of Optical Imaging310

H xð Þ ¼ Rh mð Þ � e2pimxdm ¼ RP mð Þ � ei2pk W mð Þe2pimxdm : ð22-49Þ

A necessary condition for the computation of the optical image according to eq.
(22-46), (22-47) or (22-48) is the invariance of the transfer function h(m) over a finite
area. With a varying transfer function the necessary shift invariance of the linear
system theory is violated and its exact calculation is no longer possible. However,
aberrations can be separated and slowly varying aberrations of low frequency, which
are constant at least over small regions of the field, can be treated by partially coher-
ent imaging theory, according eq. (22-48).

Since the transfer of the amplitudes is linear, the transfer function h(m) can be sepa-
rated into several transfer functions, e.g., corresponding to different origins. A simple
example is an imaging system comprising several sub-systems with intermediate
images. The total system may be free from aberrations, while sub-systems may suf-
fer from severe imaging aberrations, which cancel each other out (figure 22-26).

Figure 22-26: Linearity of the transfer of amplitudes, visualized

for the example of a system which is composed of several sub-systems.

Figure 22-27: Different types of aberration and corresponding point-spread

functions. a) local stationary aberrations of low frequency due to design

and assembly, b) mid-spatial frequent aberrations due to, e.g., atmospheric

turbulence, c) random highly frequent aberrations due to, e.g., polishing errors.



Another example is the separation of aberrations of different kinds, e.g., aberra-
tions due to design errors and aberrations due to fabrication and assembly of the
imaging system (see figure 22-27). The amplitude transfer function is in general
written as a product of the transfer functions of the sub-systems:

h mð Þ ¼ P mð Þ � ei2pk W mð Þ ¼
Y

i

hi mð Þ ¼
Y

i

Pi mð Þei2pk Wi mð Þ ð22-50Þ

with

P mð Þ ¼
Y

i

Pi mð Þ; ð22-51aÞ

W mð Þ ¼
X

i

Wi mð Þ: ð22-51bÞ

The amplitudes are transferred linearly and therefore the amplitude transfer can be
split into several transfer functions. The intensity transfer, however, is non-linear
and the transfer function in general can no longer be separated. For example, for
incoherent imaging according to eq. (22-47), the image quality may only be dimin-
ished by subsequent convolutions of the image intensity with point-spread functions
of parts of optical systems or detectors. However, as will be shown below, some
types of aberration may be adequately considered by the convolution of the intensi-
ties according eq. (22-47).

Figure 22-28: Wave-front correction with adaptive optics.

Figure 22-28 illustrates schematically an application of the linearity of amplitudes
for the example of adaptive wave-front corrections, e.g., for terrestrial telescopes.
The average value of the turbulence of the atmosphere leads to a randomly distribut-
ed point image. Terrestrial astronomy therefore suffered for a long time from the
limited resolution. However, since the aberrations Watmosphere are almost indepen-
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dent of the field, they can be compensated for in the pupil plane by a single inverse
filter function with Wfilter= –Watmosphere. The effect is an almost perfect point-spread
function. Due to the temporal drift of the �aberrations’, however, it is necessary that
the correction filter is temporally variable, i.e., by means of an active device, such as
an adaptive mirror.

The theoretical limit of the aberration compensation is given, finally, by the dif-
fraction effects due to the free-space propagation between the source of the aberra-
tion (i.e., the turbulence) and the compensation filter. Although practically more dif-
ficult, the principle of compensation for aberrations is extendable to complex sys-
tems with field-dependent aberrations, as long as the aberrations may be compen-
sated unequivocally. Complex optical systems such as, e.g., projection imaging sys-
tems or microscopes, comprise several lenses and optical surfaces. The ray bundle
corresponding to different field points intersects the optical surfaces at different
positions and – depending on the distance to the pupil position – with different di-
ameter (figure 22-29). The intersection of a surface with the ray bundle to a field
point is here called the effective pupil to a field point. Every surface error, caused by
deformation or fabrication, in the beam path between the object and the field point
will add to the resulting wave-front aberration.

Figure 22-29: Influence of surface errors on the field dependence of aberrations.

The transfer function of the total system can be evaluated by the addition of all
contributions to the wave-front error according

h m; xð Þ ¼ R �hh m; x; zð Þdz ð22-52Þ

with

�hh m; x; zð Þ ¼ circ
xs � xu x; zð Þ

r zð Þ

� �

� e2pik W xs ;zð Þ ð22-53Þ
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and with the scaling

m ¼ xs � xu x; zð Þ
r zð Þ � NA

k
ð22-54Þ

with the contribution to the wave-front aberration W(xs;z) generally dependent on a
lateral coordinate xs of the optical element at z and limited by the z-dependent effec-
tive pupil diameter r(z), decentred by the unit ray position xu. The degree of invar-
iance of the transfer function can be described by the correlation function for the
transfer function:

C xð Þ ¼
R
h m; x ¢ð Þ h� m; x ¢þ xð Þ dm

R
h m; x ¢ð Þj j2dm

: ð22-55Þ

For small wave-front aberrations, eq. (22-55) can be simplified for each single optical
element to

C x; zð Þ ~R circ xs

r zð Þ

� �

�W xs � xu x ¢; zð Þ ; zð Þ �W xs � xu x ¢þ x; zð Þ ; zð Þdxs : ð22-56Þ

The correlation of the wave-front aberration depends, however, on the range of fre-
quencies considered in eq. (22-56). As shown in Figure 22-27, in general, the fre-
quencies of the wave front aberration is separated into low frequency, mid-spatial
frequency range and high spatial frequency range. For the discussion, an object
field size of Dx is considered. The frequency range for which C ~ 1 is known as the
low frequency aberration range, and includes errors due to design and alignment.
The correlation of wave front error and consequently the correlation of the transfer
function is very high and the isoplanatic condition is observed over Dx. In other
words, the extension of the coherence function given by

C IS x1; x2ð Þ ¼ R RCS x ¢1; x ¢2ð Þ �HLSFR x1 � x ¢1ð Þ �HLSFR x2 � x ¢2ð Þdx ¢1dx ¢2 ð22-57Þ

is invariant over Dx.
For wave-front aberrations of mid-spatial frequency, the correlation of the transfer

function is lower, and the coherent image can only be calculated for a reduced object
field size Dx. If finally the coherence function according eq. (22-57) varies over the
region of interest, the partial image has to be calculated according eq. (22-46) with
space-dependent point spread functionsH(x) or, as shown below, by statistical meth-
ods. This is observed at wavefront errors of high spatial frequency. The correlation
of the wave front errors vanishes usually for high spatial frequency errors. High spa-
tial frequency errors are induced e.g. by surface roughness errors of optical elements
and may not be considered in the coherent image.

To summarize, since the diameter, position and overlapping regions of the effec-
tive pupils in optical systems change with the position z in an optical system (see
figure 22-29), errors such as surface errors on the optical surfaces cause different
types of aberration:

22.5 Optical Imaging in the Presence of Aberrations 313



. The size and overlapping regions of the effective pupils increase close to the
pupil position of the optical system. For the ideal pupil, all effective pupils to
different field points overlap perfectly. Surface errors at corresponding posi-
tions will cause almost field-independent or slowly-varying aberrations. Aber-
rations, which are constant over the field may be compensated for by coher-
ent filters in the pupil plane.

. The size and overlapping regions of the effective pupils decrease at positions
apart from the system-pupil positions, causing field-dependent aberrations.
Compensation filters for aberrations depending on the field position must be
properly placed at corresponding positions z.

. Close to the field position, even low frequency surface errors cause rapid vari-
ation of imaging aberrations over the field, especially at the position where
the numerical aperture NA is the smallest (in figure 22-29 this is in the object
plane).

. High frequency surface errors at any position must be described by statistical
methods.

22.5.2

Random Non-stationary Aberrations: Stray Light and Flare

For the high frequency aberrations, which may change from field point to field
point, an exact treatment is not possible, but fortunately is also unnecessary. For
high frequency aberrations, the impact of the coherence properties of the source can
be neglected and the imaging is therefore computed by the incoherent imaging
according to eq. (22-47). High frequency aberrations can be considered with suffi-
cient accuracy by their incoherent point-spread function given by the expectation
values of the high-frequency transfer functions. High frequency aberrations are
thus considered by statistical methods. The image intensity is therefore given by the
partial coherent image ILF considering low and mid-spatial frequencies, convoluted
with the scattering point-spread function ÆIsæ:

I xð Þ ¼ ILF xð Þ � IS xð Þh i

¼ RR
T x1ð Þ �HLF x � x1ð Þ � C x1; x2ð Þ � T� x2ð Þ �H�

LF x � x2ð Þ dx1dx2

n o

� IS xð Þh i

ð22-58Þ

with

IS xð Þh i ¼ RRR s mq
	 





2� ei U m1þmqð Þ�U m2þmqð Þ½ �
D E

� ei2px� m1�m2ð Þdm1dm2dmq ð22-59Þ

and the phase error given by the high frequency wave-front error U(m) = 2p/
k�WHF(m). The scattering cross coefficient TCCS corresponds to a weighted correla-
tion of the surface errors WHF:
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TCCs m1; m2ð Þ ¼ R s mq
	 





2�ei U m1þmqð Þ�U m2þmqð Þ½ � � dmq : ð22-60Þ

Equations (22-59) and (22-60) can be further simplified. For light sources larger
than the typical correlation length of the phase error U(m), the weighting with the
light source can be neglected and eq. (22-59) can be simplified:

Is xð Þh i ¼ RR g m1 � m2ð Þ � ei2px� m1�m2ð Þdm1dm2 ¼
R
g Dmð Þ � ei2px�DmdDm ¼ G xð Þ ð22-61Þ

with the ensemble average of the random mutual phase differences g(m1–m2)

g m1 � m2ð Þ ¼ ei U m1ð Þ�U m2ð Þ½ �� �
¼ RR ei U m1ð Þ�U m2ð Þ½ �dm1dm2 : ð22-62Þ

For weak surface roughness, the random mutual phase difference g(Dm) is approxi-
mated by a series expansion with

ei U m1ð Þ�U m2ð Þ½ � ¼
X

n

X

m

ið Þn�m

n!m!
Um m1ð ÞUn m2ð Þ : ð22-63Þ

In second order, the random mutual phase differences g(m1–m2) can be written as

g m1 � m2ð Þ ¼ 1þ RR iU m2ð Þ � iU m1ð Þ þU m1ð ÞU m2ð Þ �U2 m1ð Þ þU2 m2ð Þ
2

� �

dm1dm2

¼ 1þ r2k m1 � m2ð Þ � r2 ð22-64Þ

with the correlation function k(m1–m2) of the phase fluctuations

k m1 � m2ð Þ ¼ 1

r2

RR
U m1ð ÞU m2ð Þdm1dm2 ð22-65Þ

and the mean square average r of the phase fluctuationsWHF

r ¼ RU2 mð Þdm ¼ 2p

k

� �2
R
W2

HF mð Þdm : ð22-66Þ

Fourier-transformation of g(m1–m2) gives the scattering intensity point spread func-
tion

G xð Þ ¼ 1� r2ð Þ d xð Þ þ r2

pK2 K xð Þ ð22-67Þ

with K(x) given by the Fourier transform of k(m1-m2). Surface errors of different spa-
tial frequencies m will certainly give rise to different correlation lengths K and thus
to different ranges of the scattered light due to K(x). Therefore, the scattering point-
spread function is frequently separated into different ranges of surface error fre-
quencies:

22.5 Optical Imaging in the Presence of Aberrations 315



G xð Þ ¼ 1�
X

k

r2
k

" #

d xð Þ þ
X

k

r2
k

pK2
k

K xð Þ : ð22-68Þ

Example: with a Gaussian correlation function, it follows that

k mð Þ ¼ e�p2K2m2 : ð22-69Þ

Fourier-transformation gives

G xð Þ ¼ 1� r2ð Þd xð Þ þ r2

pK2 e
�x2

K2 : ð22-70Þ

Figure 22-30 illustrates the superposition of different scattering point-spread func-
tions to form G(x) with Gaussian surface roughness errors of the correlation lengths
K = 1, 5 and 25 and each r = 0.1.

Figure 22-30: Range separation of surface roughness errors.

The emphasis of this chapter is mainly to point out the transition between coher-
ent imaging with aberrations and incoherent consideration of expectation values of
high frequency or fluctuating phase errors. For the further treatment of scattering
in optical imaging as well as the transition to real surface roughness errors, the
reader is referred to the literature, e.g., [22-25], [22-26], [22-27] and [22-28] and vol-
ume 6.
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23.1

Introduction

In chapters 20–22 the two-dimensional description of imaging for planar objects
and planar images was considered. Now the question arises as to how three-dimen-
sional objects are imaged and how the three-dimensional aerial image appears. The
three-dimensional image is of special interest because most objects, such as biologi-
cal tissue or views of landscapes, are three-dimensional. On the other hand, recep-
tors or detectors are conventionally only two-dimensional and thus only two-dimen-
sional images can be recorded, while the aerial image as interference phenomenon
is generally three-dimensional. It is therefore worthwhile to gain a full understand-
ing of the three-dimensional imaging process. The full description of three-dimen-
sional imaging was initiated by E.Wolf [23-1], R. D�ndliker and R. Weiss [23-2], and
A. Lohmann [23-3] and was finally introduced by N. Streibl [23-4, 23-5] in 1984. It
has become very popular, mainly within the field of microscopy [23-6], [23-7], [23-8],
[23-9]. The three-dimensional description of imaging is not only the most modern
theoretical description of image formation, but also gives a visual explanation of
lateral as well as depth resolution.

The three-dimensional description by Streibl is based on much previous work.
Already by 1926 Berek had contested Abbe’s theory which stated that the interfer-
ence patterns in the image space would be principally afocal in nature and thus the
image plane could not be determined under coherent illumination [23-10]. So, even
with a planar object, a three-dimensional interference pattern is generated and thus
a three-dimensional aerial image. The general question of longitudinal image for-
mation was also discussed over a long period [23-11], [23-12]. For an incoherent
image, image formation can be described as a convolution of the object with the
point-spread function which, according to McCutchen, can be obtained by using the
generalized pupil [23-13]. The generalized pupil represents a segment of the Ewald
sphere. With the Ewald sphere, a three-dimensional discussion of diffraction and
image formation becomes straightforward. By varying the incident angles, the spec-
trum of the transferred object frequencies can be determined [23-2], [23-3] and the
three-dimensional transfer function can be derived [23-4, 23-5], [23-14].

The discussion of three-dimensional image formation is a very useful and concrete
method of gaining an understanding of the effects of optical imaging. Furthermore, it
makes it possible to influence the imaging of certain object details by the careful design
of the transfer function, depending on the object spectrum. The goals of such a descrip-
tion, however, may differ greatly. Inmicroscopy the axial resolution should be increased
asmuch as possible, while for lithographical imaging the extent of the image of a planar
object in the axial direction should be as large as possible (large depth of focus). This
chapter describes the most important features of three-dimensional image formation
and gives some examples of the use of images – as was done by E. Abbe over 100 years
ago with gratings. Three-dimensional imaging properties are based on consideration of
the three-dimensional spectrum representation, introduced in section 17.5. Since this
illustrative method is not widely known, the Ewald sphere and the Born approximation
are repeated as an introduction.
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23.2

The Ewald Sphere and the Generalized Pupil

23.2.1

The Ewald Sphere

As shown in chapter 17, any field amplitude distribution may be expanded into
plane waves, or, in general, stationary field distributions U(x,y,z) can be described as
a three-dimensional Fourier transformation of the spatial frequency spectrum
u3D(mx, my, mz):

U x; y; zð Þ ¼ R¥

�¥

R¥

�¥

u3D mx; my; mz
	 


e2pi xmxþymyþzmzð Þdmxdmydmz : ð23-1Þ

Propagating solutions of equation (23-1) are plane waves, while evanescent waves
can be neglected in almost any case of image formation. Propagating solutions or
plane waves are given in a space domain by its spatial periodical field distribution
with

Uðx; y; zÞ ¼ A � e�i2p mxxþmyyþ mzzð Þ : ð23-2Þ

However, only the real part of the complex field has any physical meaning. Consid-
ering an instantaneous shot of the plane wave at the time t= t0, wave peaks and
troughs can be observed (figure 23-1). An alternative description of a plane wave can
be given by its spatial frequency vector~mm. For frequency vectors~mm of the three-dimen-
sional spectrum of propagating fields – as a consequence of the wave equation –
Ewald’s relation is valid,

~pp ¼ k~mm ¼ n~ss ¼ ~��W ð23-3Þ

Figure 23-1: Description of a monochromatic planar wave in the spatial

and in the frequency domain.
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with the optical direction cosine ~pp, the refractive index n, the tangential vector~ss to
the light ray and the wave front W. The spatial frequency vector ~mm of length n/k0
describes the propagation direction of a plane wave and is perpendicular to the
wavefronts. Since for all propagating monochromatic wave fields all spatial fre-
quency vectors have the same length n/k0 they all terminate on a spherical surface,
the Ewald sphere. The Ewald sphere is therefore equivalent to the transfer function of

free space. Particularly for the z component of the spatial frequency vector, it follows
thus from eq. (23-3)

mz ¼ –

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n

k

� �2

�m2x � m2y

r

: ð23-4Þ

For the discussion of the two-dimensional Fourier theory of optical imaging in sec-
tion 21 the frequency vectors have been described only by the two transverse compo-
nents mx and my, since the mz component is determined by Ewald’s equation (23-4).
In particular, if the propagation direction of the planar waves with reference to the z
axis is unique the descriptions of the two or three-dimensional frequency spectrum,
respectively, can be changed arbitrarily by using eq. (23-4). For a positive propaga-
tion direction we obtain:

U x; y; zð Þ ¼ R¥

�¥

R¥

�¥

u2D mx; my; z ¼ 0
	 


e
2pi xmxþymyþz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n
kð Þ

2
�m2x�m2y

q� �

dmxdmy ð23-5Þ

with

u2D mx; my; z ¼ 0
	 


¼ u3D mx; my; mz
	 
�

cosa : ð23-6Þ

23.2.2

The Generalized Aperture and the Three-dimensional Point-spread Function

From the three-dimensional frequency spectrum the three-dimensional scalar point
response function of an optical system can be calculated directly, according to eq.
(23-1). The maximum transverse frequency of the spectrum is given by the aperture
angle a of the optical system. The three-dimensional frequency spectrum is thus
given by a segment of the Ewald sphere. According to McCutchen this segment of
the Ewald sphere is called the generalized aperture (figure 23-2) [23-13]. The discus-
sion of the frequency band-width yields simple estimation formulas for the resolu-
tion of optical imaging. The distribution of the three-dimensional point image func-
tion perpendicular to the z-axis is given by the Fourier transform of the circular
opening – the Airy disk:

IPSF r; z ¼ 0ð Þ ¼
J1 2pNA

k
r

� �

pNA
k

r

0

@

1

A

2

: ð23-7Þ
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Figure 23-2: Generalized aperture P(mx, mz) as a frequency spectrum

limited by the aperture angle on the Ewald sphere.

The distribution along the z-axis is given by the Fourier transform of the rectan-
gular function, i.e., the sinc function (normalized):

IPSF r ¼ 0; zð Þ ¼ sinc
n� n cosað Þ

k
� z

� �









2

: ð23-8Þ

The axial extent of the ideal three-dimensional point image is given by the inverse
maximum spatial frequency band-width in mz, and McCutchen’s equation for depth
of focus is then obtained:

dz ¼ 1

Dmz
¼ k

n� n cosa
¼ k

n�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2 �NA2
p »

2n � k
NA2

: ð23-9Þ

McCutchen’s equation (23-9) had been given by Berek and provides an approxima-
tion for the depth of focus of the optical image [23-10], [23-13]. However, as shown
later it can be used only in a limited way. With equation (23-9) the z component is
frequently given in the Rayleigh unit with a Rayleigh unit RU corresponding to
defocussing dz by a phase ~ k/4, thus with eq. (23-9)

RU ¼ 1

4

k

n� n cos h
»

n � k
2NA2

: ð23-10Þ

Figure 23-3 compares the three-dimensional point-spread functions in cross-sec-
tions in the x-y plane and in the x-z plane for apertures from NA = 0.4, 0.6, 0.8 and
1.0. The amplitude of the point-spread function is modulated in z in accordance
with the decentered position of the generalized aperture with respect to the mx-axis.
The amplitude distribution through the focus is illustrated in figure 23-3b. For
NA = 1 the generalized aperture is given by a half-sphere, and the phase anomaly
through the focus becomes visible [23-15]. For a perfect spherical wave, the full
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Figure 23-3: a) x-y-scan of point-spread function; b) x-z-scan of the amplitude distribution

c) x-z-scan of the intensity of three-dimensional point-spread function at NA= 0.4, NA= 0.6,

NA= 0.8 and NA= 1.0 with the z-axis pointing downwards (intensity on logarithmic scale).
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Ewald sphere, as a frequency spectrum, is required. Figure. 23-4 illustrates the
three-dimensional point-spread function with intensity scans perpendicular to the
z-axis I(r; z = 0) and along the z-axis I(r = 0; z). While the lateral intensity distribu-
tion scales linearly with the numerical aperture NA, the non-linear behavior of the
Intensity through the focus becomes visible especially at the examples for NA = 0.5
and NA = 1. In figure 23-5 the point-spread functions with spherical aberration (Z9,
Z16) and coma (Z7, Z14) are shown. Symmetrical aberrations of higher order than
defocus Z4 break the longitudinal symmetry of the 3D-PSF, while asymmetrical
aberrations, like coma, break the transverse symmetry. For coma of lowest order Z7,
the intensity through the focus is bent to the shape of a banana, therefore it was also
called “bananicity” in optical lithography.

Figure 23-4: a) Airy disk I(x; z = 0); and b) intensity distribution I(x = 0; z)

(k = 1; z-coordinates in units of k). The dashed boxes show the depth

of focus in a parabolic approximation according to McCutchen.
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Figure 23-5: Amplitude and Intensity scans of the three-dimensional scalar

point-spread functions at NA = 0.6 with spherical aberration Z9 = k/5 and

Z16 = k/5 and coma Z7 = k/5 and Z14= k/5; a) cross-section x-y-plane;

b) amplitude in x-z-plane; c) intensity cross-section through the x-z plane.
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Figure 23-6: Intensity through the focus I(z) on the optical axis for different

aberrations of figure 23-6 (NA = 0.6, aberration level k/5 each).

The axial intensities for different aberrations are compared in figure 23-6 with the
axial intensity of the ideal imaging system. Since asymmetrical wave-front aberra-
tions like coma Z7 and Z14 have a point-symmetrical behaviour with respect to the
optical axis, the axial intensity distribution I(z) is symmetrical with respect to the
origin. For symmetrical wave-front aberrations, the axial intensity is in general not
symmetrical with respect to the ideal image plane. Only in the paraxial approxima-
tion is the axial intensity distribution also symmetrical [23-15]. The generalized aper-
ture is further applied to annular apertures in chapter 25.2.

23.3

The Three-dimensional Transfer Function

23.3.1

Born Approximation and the Laue Equation

In the two-dimensional Fourier theory of optical imaging, as described in chapters
20–22, the diffracted spectrum is given by the convolution of the incident spectrum
with the object spectrum. As it turns out in the three-dimensional treatment of opti-
cal imaging, the reason for this is the linearity of diffraction in frequency space, e.g.,
approximated by the Born approximation of first order (see also chapter 18). Accord-
ing to the latter, the scattered spectrum us is given by the convolution of the incident
spectrum ui with the three-dimensional frequency spectrum of the object:

usðmx; my; mzÞ ~ f ðmx; my;mzÞ � ui mx; my; mz
	 


: ð23-11Þ

In physical terms this means that the light is only diffracted, refracted or scattered
once by the object, i.e., the light is deflected only by a single interaction. For an
incident planar wave eq. (23-11) is reduced such that the spectrum of the scattered wave
is given by the object frequency spectrum shifted by the frequency of the incident wave:
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usð~mmsÞ ~ f ð~mms �~mmiÞ : ð23-12Þ

A consequence of eq. (23-11) is the well-known Laue equation. Only those frequen-
cies ~cc are transferred from the object spectrum to the scattered wave, for which the
the Laue equation is satisfied:

~mms �~mmi ¼ ~cc ð23-13Þ

with ~mms being the diffracted and ~mmi being the incident frequency vector. The Laue
equation results from the Born approximation due to the assumption of single scat-
tering (= single momentum transfer). According to the Laue equation the scattered
wave vector ~mms can be determined from the sum of an incident wave vector ~mmi and a
frequency vector ~cc from the scattering object. In the far-field approximation, i.e., if
evanescent waves can be neglected, the transfer function of free space has also to be
considered. This means that only the frequencies ~mms on the Ewald sphere can propa-
gate over distances large in comparison to the wavelength k. Figure 23-7 illustrates
this in a graphical way. The propagating contributions to the scattered field are lim-
ited to vectors on the Ewald sphere. According to the Laue equation (23-13), light is
scattered in those directions for which the spatial frequency spectrum of the scatter-
ing object has non-vanishing contributions on the Ewald sphere with center –~mmi.

Figure 23-7: Laue construction for determining a diffracted,

scattered or refracted wave vector.

For periodical objects like crystal lattices, discrete points in the spatial frequency
space which are determined by the inverse lattice vector (see solid state physics lit-
erature and figure 23-8) are obtained. According to Huygens principle every lattice
point diffracts light in all directions. Due to the periodicity of the light field and the
grating, there is constructive interference of the diffracted partial waves in certain
directions only, while there is destructive interference in certain other directions.
The conditional equation for the directions of constructive interference is the Laue
equation (23-13) assuming “conservation” of spatial frequencies.
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Figure 23-8: Lattice scattering and Laue construction with the Ewald sphere.

Plane diffraction gratings are periodical structures, too. Assuming a planar, infi-
nitely thin grating in the plane z = 0, with an infinite expansion in the y-direction,
the spatial frequency spectrum of the grating in the mx-direction is the one-dimen-
sional frequency spectrum of the lattice and in the my-direction it is a delta function
d(my), while in the z-direction the frequency spectrum is infinitely extended (figure
23-9; for convenience the symbol m is applied to all frequencies).

Figure 23-9: a) Diffraction grating; b) spatial frequency spectrum of the grating

and diffraction orders as frequencies, where the spatial frequency spectrum of the

grating does not vanish.

Again, according to the Laue equation the difference vector of the incident and
diffracted wave has to be equal to a grating vector ~cc. The graphical illustration of this
is given in figure 23-9b. For a planar linear grating the Laue vector equation is
reduced to:

mx ¼ mix þ
m

d
; my ¼ miy; mz ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n1

k

� �2

�m2x � m2y

r

ð23-14Þ
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with the index i denoting the incident field and m denoting the diffraction order.
Only for the simplified special case of the incident frequency vector laying in the
mx–mz plane do all vectors lay in the one plane (see figure 23-9b). For this case an
equation for the x-component of the wave vectors follows from the grating diffrac-
tion equation above, for the transverse component with the angles measured with
reference to the z axis (perpendicular to the grating):

sinam ¼ sina0 þm � k
p
: ð23-15Þ

With miy „ 0, the diffracted beam no longer lies in the incident plane determined by
the incident vector and the surface normal. This conical grating diffraction is a pure
3D effect and thus cannot easily be illustrated in a graphical way. In figure 23-9 the
incident frequency vector has to be imagined as having a my-component; then the
center of the scattered Ewald sphere does not lie in the mx – mz plane in figure 21-9b
but either behind or in front of it. The intercepts with the lines of the grating spec-
trum are still in the mx – mz plane, only it does not traverse the scattered Ewald sphere
at the “equator” but instead at a “latitude”. From the section plane and the center of
the sphere a truncated cone results. The spectral orders are limited to this cone,
therefore it is known as conical diffraction.

The Born approximation is only valid in the approximation of single scattering,
frequently also applied in the case of weak scattering, i.e., in inhomogeneous media.
Multiple scattering can be considered by an expansion in the Born series using a
scattered wave vector as the incident wave vector for the next scattering process
[23-16]. The Laue equation, however, is valid in a more general way. It can be shown
in a quite simple way that, apart from higher-degree effects, a diffracting object can
always generate only the same directions for diffracted waves from a given incident
wave even after multiple scattering. This means that the Laue equation correctly
determines the directions of the diffracted waves, but not the amplitudes. So the
limitations of the Born approximation refer to the scattering potential f(~mm), and for
this the scattering potential calculated by rigorous methods can be inserted instead
of the Fourier transform of the object. The Born approximation according to eq. (23-
11) offers only an approximation which, however, yields better results for phase
objects than the Thin Element Approximation TEA with a complex transmission
function [23-17].

23.3.2

D�ndliker’s Representation and the Shape of the Three-dimensional Transfer Function

All accessible information about an object is transferred to the diffracted wave
according to the Laue equation. Thus the area in the frequency space can be deter-
mined where information about the object can be transmitted by propagating elec-
tromagnetic waves. This interpretation of the Laue equation is shown in figure
23-10 at an x-z cross-section in the frequency space.
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Figure 23-10: Illustration of the Laue equation for the

construction of the 3D transfer function [23-2].

Each incident wave vector ~mmi ends on the central Ewald sphere around the center
of the coordinate system (blue circle). The scattered wave vectors for each incident
wave vector ~mmi lay again on an Ewald sphere whose center point is given by the
respective incident wave vector ~mmi (red circle). The scattered field parts are the contri-
butions of the scattering potential f(m) on the Ewald sphere. In the Born approxima-
tion the scattering potential is simply determined by the spatial frequency spectrum
of the object. The radius of the Ewald sphere of the scattered field distribution is
then equal to that of the incident field distribution if the incident and the scattered
field are in a homogenous space with an identical refraction index.

According to D�ndliker and Weiss [23-2] figure 23-10 allows an explanation of the
limited resolution power of optical far-field methods. For this discussion it is com-
pletely insignificant which optical instrument is used. If one tries to determine the
shape and structure of an object from the scattering potential, i.e., from each projec-
tion with a planar wave as the incident field distribution, one obtains information
about the object along the scattered Ewald sphere. By changing the incident direc-
tion or by turning the object (as, e.g., used in computer tomography [23-1], [23-18],
[23-19]) eventually the complete frequency spectrum of the object within the large
circle (yellow) around the origin can be determined. The resolution limit or mini-
mum object period dmin follows from the maximum spatial frequency component of
the object which can be transferred:

dmin ¼
1

cmaxj j ‡
k

2
: ð23-16Þ

Due to the technical layout, as for conventional optical imaging in translucent light,
the reflected parts are mostly lost (except for con-focal microscopy). Considering
only forward scattering it follows (see green circle in figure 23-10) that

dmin ‡
k
ffiffiffi
2

p » 0:7 � k : ð23-17Þ

Additional limitations of the resolution emerge from limited aperture angles or numer-
ical apertures, respectively. Figure 23-11 shows the limitations of the diffracted wave
vectors by the aperture angle of the pupil function of the imaging system.
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Figure 23-11: The transfer function of a perfectly imaging optical system is –

besides a linear scaling corresponding to the change of the scale – given by a

low-pass filtering.

For partially coherent optical imaging, the object is illuminated by a limited angu-
lar spectrum. Only the information for a finite angular range is gathered. So,
besides the low-pass filtering by the imaging system the finite illumination aperture
has also to be taken into account. Therefore it has to be assumed again that the im-
ages generated by single illumination source points are completely uncorrelated and
thus have to be superposed incoherently in the image space. Only those object fre-
quencies are transferred which result from the, now limited, illumination and object
apertures (figure 23-12). The resulting volume in frequency space represents the
three-dimensional transfer function of optical imaging. It describes the possible object
frequencies contributing to the image. In figure 23-12 and the following, the shape
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Figure 23-12: Resulting 3D transfer function at infinite illumination and

imaging aperture (for telecentric imaging; simplified geometrical construction).



of the 3D-MTF is illustrated according to a simple geometrical construction, in
which illumination directions with my-components are neglected. Especially for
structured illumination the intersections of the true 3D-MTF through the mx–mz
plane might deviate significantly from this simplified construction, as shown below
in the numerical examples of section 23.4.

Figure 23-13: Cross-section through 3D transfer functions:

a) for various apertures at r = 1; and b) various r for constant numerical aperture.

In figure 23-13 the intersections of the 3D transfer functions with the mx–mz plane
are shown for the normalized aperture angle of the illumination rNA and the detec-
tion NA. Figure 23-13a compares the transfer functions for various numerical aper-
tures with r= 1, while figure 23-13b compares the transfer functions for a given
numerical aperture at various r-values. Taking the rotational symmetry around the
mz axis into account, the 3D transfer functions are doughnut-shaped or toroid-like
constructions.

For the three-dimensional case, the discussion of the transfer function becomes
substantially more visual and concrete than in two dimensions. First scattering takes
place at the object according to the Laue equation. Depending on the illumination
direction, different object frequencies are transferred to the scattered waves. The
scattered field distributions are then low-pass filtered by the numerical aperture.
Corresponding interference patterns are formed in the image space to build the
image intensity. It should be remembered that the image is generally not given by a
simple Fourier transformation of the transfer function multiplied by the object spec-
trum. Rather the coherence properties of the light source, i.e., the illumination con-
ditions, have to be considered. In K
hler illumination with an incoherent light
source, first the intensity for an image amplitude calculated for a light source point
must be determined, then all intensities of the partial images to all light source
points have to be added.

For comparison, an example of the imaging of a grating beyond the coherent res-
olution limit is given in figure 23-14. For a numerical aperture of NA = 0.8, the
coherent resolution limit is at periods ddcoh= k/NA = 1.25�k, with r = 0.7 the resolu-
tion limit is approximately at period dd ~ 0.735�k. The period of the image grating of
1.05�k is beyond ddcoh, hence the central source point no longer contributes to the
imaging and thus destroys the contrast by the false light share. In figure 23-14 the
Ewald sphere around the central illumination direction – as well as the information
about the extent of the object – intercepts only the zero order of the object frequency
spectrum and thus delivers only a constant offset.
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Figure 23-14: Different object frequencies are “read out” for different illumination directions.

Figure 23-15a shows the intensity at the center source point. Using light in the illumi-
nation direction mid left and right, respectively, the zero and the first order are inter-
cepted “obliquely” by the Ewald sphere. The interference stripes are described by the dif-
ference vector of the two interfering waves, thus the orientation of the interference
fringes in the assigned image are tilted to the optical axis (figure 23-15b). The Ewald
spheres for the scattered field distributions to the selected peripheral points of the light
source, however, intercept the zero and first diffraction order in the frequency spectrum.
In this way the difference vector of the two interfering waves is perpendicular to the
mz-axis and so interference stripes parallel to the z-axis are formed (figure 23-15c). The
image-forming interference patterns are now given by afocal two-beam interferences
which, however, according to the interception points of the Ewald spheres with the

Figure 23-15: Selected partial images of the central (a); mid right (b);

outer right light source point (c) and d) the incoherent interference of all partial images.
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diffraction orders of the grating, are tilted to the optical axis. Although all two-beam
interference patterns have a very large depth extent, the depth of focus decreases
greatly, due to the incoherent superposition of the tilted interference patterns (figure
23-15d). Thus the example in figure 23-15 already contains indications for the selec-
tion of the illumination direction. So, according to the Siedentopf illumination prin-
ciple, in order to increase the contrast it is best to leave out those illumination direc-
tions which do not contribute to the image formation. To increase the depth of focus
even more, the afocal nature of the two-beam interference can be used, if there is
only illumination in those directions whose interference patterns are aligned in par-
allel to the z-axis as shown in figure 23-15c. This example and more are discussed in
detail below.

23.3.3

Resolution, Depth Resolution and Depth of Focus

From the 3D transfer function, the lateral resolution and the depth of focus can be
determined using the inverse of the maximum spatial frequency of the transfer
function. From the maximum transferred transverse frequency the lateral resolution
at partially coherent illumination is found to be:

dd ¼ 1

mx;max

¼ k

NA 1þ rð Þ : ð23-18Þ

Equation (23-18) is identical to the fundamental equation for the optical resolution
(chapter 20). Next the question of depth resolution or depth of focus will be consid-
ered. For conventional imaging like photography, usually a depth of focus is desired
which is as high as possible, i.e., a depth resolution which is as low as possible,
while for some modern microscopic methods the depth resolution is also to be as
high as possible. It can be seen from figure 23-12 and 23-13 how the lateral resolu-
tion and the depth resolution depend on the illumination aperture, the numerical
aperture and the object frequency. With increasing numerical aperture and with
increasing incoherence, i.e., a larger illumination aperture rNA, the lateral resolu-
tion increases, but a higher depth resolution is mainly achieved by using a larger
numerical aperture. In conventional imaging of ever tinier structure widths, larger
and larger numerical apertures are used. That also decreases the image’s depth of
focus. For a large depth of focus it is necessary to obtain the longitudinal mz-expan-
sion of the transfer function to be as small as possible, while the lateral resolution
ought to stay as high as possible. On a first view both conditions are contradictory
and cannot be fulfilled simultaneously. As will be described below, however, large
depth resolution as well as large depth of focus and high resolution can be obtained
for special objects under oblique illumination.

The McCutchen formula is applicable to coherent imaging or imaging with small
sigma, when the 3D-transfer function is simply given by a segment of the Ewald
sphere. For the imaging of gratings below the resolution limit, the numerical aper-
ture of an optical system is not fully used and the depth resolution can be consider-
ably lower than the minimum depth resolution according to eq. (23-9). For ampli-
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tude gratings with dominating zero and first diffraction orders, the McCutchen for-
mula can be generalized by replacing the numerical aperture by the effectively
“used” aperture k/d of the object with grating period d:

dzT ¼ 1

Dmz
»

2k

NA2
¼ 2d2

k
: ð23-19Þ

Objects of discrete spectra are, however, periodical in the direction of the discrete
frequencies. Equation (23-19) gives the longitudinal image frequency of the periodi-
cally repeated image. This effect is well known as the Talbot Effect [23-20], [23-21].
In figure 23-16 the three-dimensional aerial images of different gratings patterns
are compared. The grating period is selected such that the third diffraction order
passes the lens at the border of the pupil and contributes to the image. The aper-
tures are NA1 = 0.25, NA2 = 0.5 and NA3 = 1. The periods are thus d1 = 12k, d2 = 6k
and d3 = 3k. The pictures are scaled accordingly such that the lateral image at the
best image plane is identical for all three images. However, the Talbot periods scale
according eq. (23-19) from dzT1 = 288�k, dzT2 = 72�k, and dzT3 = 18�k. The effective
aperture used by the first diffraction order is three times less the imaging aperture,
thus the depth of focus according to McCutchen deviates by a factor of 9.

Figure 23-16: Three aerial images at object periods of 3k/NA for

different NA; NA1 = 0.25, NA2= 0.5 and NA3 = 1.0 (from left to right).

Figure 23-17 shows the corresponding axial intensity scans I(x= 0, z) and
I(x= d/2, z) for the three imaging conditions. The images are symmetrical with
respect to the x-axis, thus only positive z-coordinates are shown. It is to be remarked
that the McCutchen formula according to eq. (23-19) gives the longitudinal periodic-
ity of the three-dimensional aerial image as the distance between the two maxima of
the central intensity peak. Taking a certain image contrast requirement as the limit,
the depth of focus is significantly lower. The contrast V(z) can be approximated
from both intensity scans through the maximum and minimum of the central
object period of figure 23-17. As illustrated in figure 23-18, at the z-positions, accord-
ing to eq. 23-19, the image contrast is reversed.
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Figure 23-17: Axial intensity scan I(x=0,z) of the three images (max)

and through the first minimum of grating image at z= 0 (min);

z-scale in Rayleigh units according eq. (23-10).

Figure 23-18: Contrast V through defocus z.

From figure 23-13a and b it can be seen that the depth resolution depends on the
illumination conditions. Since the McCutchen formula eq. (23-19) is considering
the numerical aperture only it may not exactly describe the depth of focus. In addi-
tion to the system parameters like the object and illumination aperture, the depth
resolution also depends on the lateral object frequency. Figure 23-19 illustrates the
maximum frequency Dmz as a function of a grating object period d. From the calcu-
lation of the maximum frequency Dmz by means of the Laue equation (eq. (23-13))
for the image of a grating, the depth resolution can be determined. For large sigma
(r > 1 – k/(NA � d)) and under a small-angle approximation comparable to the
McCutchen formula, a generalized depth resolution formula can easily be derived:

dz ¼ d2

NA � d� k=2
: ð23-20Þ



Figure 23-20 shows the numerically calculated depth resolution dz for different
apertures at r= 1 and k= 1 (solid lines) and the results according to equation (23-19)
(dashed lines). For incoherent imaging with high aperture angles the approximation
1–cosa ~ 0.5�sin2a collapses and the approximation in eq. (23-19) predicts a signifi-
cantly larger depth of focus. The minimum depth resolution is reached for object
periods at the coherent resolution limit d = k/NA for which eq. (23-20) becomes the
McCutchen-formula eq. (23-19).

Figure 23-20: The depth resolution dz is a function of the object frequency

1/d and the numerical aperture (r = 1, k = 1); solid lines: exact calculation;

dashed lines: small angle approximation according to eq. (23-19).

23.3.4

3D-Transfer Functions in Microscopy

The 3D-transfer function is frequently applied to the different imaging conditions of
microscopy [23-22], [23-23]. As examples, conventional imaging in reflection and
transmission and also confocal imaging, are discussed. In figure 23-21 sections
through the mx–mz plane of the most relevant examples of 3D-transfer functions for
microscopy are compared, in which the illumination directions from my are
neglected.

For microscopy in transmission or optical lithography, but also, for example, in a
slide projector, the optical system collects the radiation which is transmitted through
the object. In this case one obtains a transfer function similar to that of figure 23-12.
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The dark-field 3D-MTFs do not intersect the zero order of the object spectrum at
mx= mz = 0. In the case of weak scattering, i.e., dominating zero order, the frequency
read-out for the illumination directions contains only the contributions from the
scatterer and the image therefore has a high contrast. With an illumination setting
rout> 1 for dark-field illumination, the maximum transverse frequency mx is higher
and therefore the transverse frequency bandwidth of the 3D-MTF increases at the
expense of the low frequencies.

Figure 23-21: a) Transfer functions in reflection, transmission for bright

and dark-field illumination; and b) transfer function for 4p-confocal imaging.

For imaging with reflected light, an optical system (photo objective, microscope,
eye) receives the radiation reflected by the object. With this imaging an area of the
object spectrum shifted in the mz-direction is transferred (figure 23-21a). The depth
resolution, however, does not increase in this transformation since the frequency band-
widthDmz doesnot increase. The amplitudes are just phase-modulated in the z-direction
according to a carrier frequency which vanishes after forming the intensity.

A significant increase in depth resolution is obtained by scanning confocal mi-
croscopy, where the illumination and the detection contribute to the imaging pro-
cess in an identical manner [23-24], [23-25]. However, this type of imaging requires a
scanning imaging operation, i.e., every image point is detected separately and the
image is numerically computed. So far, the highest depth resolution is achieved by
collecting reflected as well as transmitted radiation and causing them to interfere
coherently for image formation (figure 23-21b and 23-22). Due to the collection, in
principle, of the full Ewald sphere of scattered light, this is called 4p-confocal mi-
croscopy according to Stelzer and Hell [23-26], [23-8].
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Figure 23-22: Confocal 4p-microscope according to Stelzer and Hell.

23.3.5

Magnification and a Comment on Absolute Instruments

An image similar to the object is only achievable by optical systems obeying the sine
condition, i.e., the lateral frequency spectrum of the image is scaled with the inverse
of the magnification b of the imaging. In general, from the necessary transverse
linear scaling of the frequency spectrum, the sine condition, follows a non-linear
scaling of the longitudinal spatial frequencies mz – with the one exception of b= 1. It
is therefore in general impossible to achieve a three-dimensional image similar to
the three-dimensional object. This obvious fact was already derived by Maxwell and
Carath�odory. For media of constant indices of refraction the plane mirror is the
only perfect or absolute optical instrument [23-27], [23-28].

The impact on image formation of imaging with magnification „ 1 is illustrated
in figure 23-23. For a transverse similar image, the transverse spatial frequencies of
the image are scaled according to

m¢x ¼
1

b
mx or b ¼ mx

m¢x
¼ n sinj

n¢ sinj¢
ð23-21Þ

whereby the longitudinal spatial frequencies in the object and image space are given
according to the Ewald equation by:

mz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n

k

� �2

�m2x

r

; ð23-22Þ

m¢z ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n¢

k

� �2

�m¢
2
x

s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n¢

k

� �2

� m2x
b
2

s

: ð23-23Þ
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Figure 23-23: Impact of imaging, according to the sine condition,

on the longitudinal frequency scaling; the frequency spectrum in the

object space with refraction index n (left side) and in the image

space with refraction index n¢ (right side).

The longitudinal magnification a is thus given by

a ¼ Dmz
Dm¢z

¼
n
k
� mz

n
k
� m¢z

¼
n
k
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n
k

� �2

�m2x

r

n¢
k
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n¢
k

� �2

� m2x
b
2

s : ð23-24Þ

The longitudinal magnification a is in general a function of the transverse fre-
quency mx. After insertion of the propagation angles j with respect to the optical
axis, the geometrical-optical formulation of eq. (23-24) is derived:

a ¼ n 1� cosjð Þ
n¢ 1� cosj¢ð Þ ¼

n sin 2 j
2

n¢ sin 2 j¢
2

: ð23-25Þ

A longitudinally similar image is obtained only if the longitudinal magnification a

is constant for all angles j. Only in the paraxial approximation of the square-roots
in eq. (23-24), is the longitudinal magnification given by a constant – the square of
the lateral magnification:

a »
n¢

n
b
2 : ð23-26Þ

With the paraxial approximation, after insertion in eq. (23-25) the Herschel condi-
tion [23-29] follows

b¼!
n sin j

2

n¢ sin j¢
2

: ð23-27Þ

For phyical reasons, i.e., the wave-nature of light, it is impossible to satisfy the
Herschel condition eq. (23-27) strictly. Furthermore, the Herschel condition and the
sine condition are incompatible and cannot both be exactly satisfied simultaneously
– again with the one exeption of b= 1 and n= n¢.
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In an optical imaging system therefore, the lateral frequency is scaled linearly,
while the longitudinal spatial frequency is scaled according to eq. (23-24). The con-
sequences of imaging with |b| „ 1 are illustrated in figure 23-24. The illumination
directions are indicated by dark blue circle segments in the negative mz direction.
Illumination during transmission with r = 1 is assumed. The blue transfer func-
tions indicate the frequency spectrum gathered from the object in object space, with
individual apertures in object space (blue circle segments in the positive mz-direc-
tion). After imaging with |b| = 2 in figure 23-24a and |b| = 0.5 in figure 23-24b,
the transmitted spectrum illustrated in red is laterally scaled, respectively. The red
circle segments indicate the generalized apertures in the image space with the mz-com-
ponents scaled according to eq. (23-24). The transfer function in image space can be re-
scaled in object coordinates. The scaling is illustrated in figure 23-25 at the example of
b=0.5, whereby thewavelength is scaledwith b2 tomaintain equation (23-24).

Figure 23-24: Scaling of 3D-transferred spatial frequency spectrum;

a) with |b| = 2; and b) with |b| = 0.5.

Figure 23-25: Scaling of the 3D-transferred spatial function according

to imaging in frequency coordinates of the object space with |b| = 0.5.

With thin gratings, considered as objects in the remainder of this chapter, the
spectrum is invariant in the mz direction, therefore the effect of the scaling in mz is
negligible. Similar to the transverse treatment of Fourier imaging, the transverse
scaling with 1/b can be applied directly to the object spectrum and the image forma-
tion can be simulated in image space – with the one exeption of dark-field illumina-
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tion in illumination directions r >NAimage � b. Simulation of reduction imaging in
the image space allows only for illumination directions up to NAimage, which corre-
sponds in the object space to a maximum illumination direction NAimage � b.

23.4

Selected Examples of the Three-Dimensional Transfer Function

The degree of coherence is adjusted by the illumination. The smaller the effective
light source image in the pupil becomes, the more coherent the image becomes. In
figure 23-14 an example with r= 0.7 has already been shown. In the following, dif-
ferent image settings are discussed. As a structure a grating consisting of seven peri-
ods is chosen. Thus the grating spectrum is superimposed by a sinc-function which
is generated by the envelope of the grating with seven periods. The discussion is
again limited to ideal imaging in telecentric systems, although an extension to non-
telecentric imaging can be carried out quite easily.

23.4.1

Transfer Function for Incoherent Imaging with r = 1

As an example, imaging for the period of 1.4k at the resolution limit with an
NA = 0.4 and NA = 0.7 are compared. For incoherent imaging with r= 1 the 3D-
transfer function becomes symmetrical to the mx–my-plane. Figure 23-26 shows cross-
sections of the 3D-transfer function through the mx–mz plane, figure 23-27 shows the
frequency spectrum of the grating transferred by this. In figure 23-28, the resulting
aerial images are illustrated. The example shows clearly that the depth of focus can
be increased in the optical system by stopping down until, theoretically, an infinite

Figure 23-26: 3D-Tranfer function with NA= 0.4 (a) and NA= 0.7 (b).

Figure 23-27: Transferred frequencies with NA= 0.4 (a) and NA= 0.7 (b).
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Figure 23-28: x–z cross-sections through the aerial image with NA= 0.4 (a) and NA= 0.7 (b).

depth of focus can be reached at the resolution limit. However, the contrast for the imag-
ing with conventional illumination is significantly lower with approximately V~ 7% at
NA = 0.4 than at NA = 0.7 with V~ 70% and vanishes at the resolution limit.

23.4.2

Partial Coherent Image Examples

Figure 23-29 shows the Laue construction for partial coherent imaging with
NA = 0.8 and r= 0.7. The resolution limit is approximately ddr ~ 0.735�k. Since the
selected period of d = 1.3�k is still above the coherent resolution limit ddkoh ~ 1.25 � k,
the central source point contributes to the image (figure 23-30a) and limits the
depth of focus by the three-beam interference to approximately dz ~ 3�k (figure 23-
30c) according to McCutchen’s formula.

Figure 23-29: Laue construction of 3D-diffracted spectra.

Figure 23-30: Interference patterns for individual source points: a) central source

point; b) right source point; c) incoherent superposition of interference patterns.
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To obtain large lateral resolution, the maximum frequency is not to be curtailed
although it seems to be quite obvious to cut down the lower frequencies, i.e., to cur-
tail the pupil in the center. Central obscuration is unavoidable for some optical sys-
tems, such as reflection telescopes. The construction of the transfer function is illus-
trated in figure 23-31 for light source points with my = 0. If the light source points
with my „ 0 are considered the transfer function and the transferred object spectrum
of the grating are changed only insignificantly for a central obscuration of NA = 0.2
(figure 23-32), though in the example the contrast decreases from V» 86% to
V » 80% without increasing the depth of focus significantly (figure 23-33).

Figure 23-31: 3D-Transfer function under central obscuration.

Figure 23-32: 3D-transfer function and transferred object spectrum:

a) with conventional system; b) with central obscuration of NAin= 0.2 (NA= 0.8, r = 0.7).

Figure 23-33: Aerial image without (a) and with (b) central obscuration.



23.4.3

�Tayloring’ of the 3D-Transfer Function

For the investigation of some objects, such as biological objects, or for determining
the ideal image plane, a large depth of resolution is desirable. On the contrary, for
the microscopical investigation of planar objects or lithographic exposure of ideal
gratings, a very low depth of resolution is advantageous. In the case of a consider-
able field curvature of the imaging lens, a thin planar object like a transparency may
not be focused for all positions in the object plane simultaneously and therefore the
image suffers from blurring, due to defocus aberration. Therefore, it is desirable
that the image should not change over a focus range which is as large as possible.
As will be shown in this chapter, with the 3D-transfer function the proper illumina-
tion and imaging conditions for either large or low depth resolution can be obtained,
but the object spectrum has to be taken into account.

According to the Siedentopf principle, a higher contrast can be achieved by, e.g.,
annular illumination. A cross-section through the 3D-transfer function under annu-
lar illumination is shown in figure 23-34. The lateral resolution does not change
according to the maximum illumination angle sinamax ~ r�NA. The longitudinal
extent of the transfer function, though, is constricted. Correspondingly the depth of
focus is increased (for a two-dimensional treatment see e.g. [23-30]). In figure 23-34
the 3D-transfer function under annular illumination as a typical example is shown
for illumination directions with my = 0. In the example the depth of focus can in
principle become infinite. For this the illumination angles have to be selected such
that the Ewald spheres of the diffracted field distributions intercept the diffraction
orders of the object near the mx–my plane at mz = 0. Then the extent of the transferred
system in the mz-direction Dmz becomes a minimum, making the depth of focus
DOF=dz = 1/Dmz a maximum. This of course follows from all two-beam interfer-
ences running almost parallel to the z-axis. Although the depth of focus is consider-
ably higher, as for conventional illumination, due to the contribution to the transfer
function for annular illumination directions with my „ 0, the contrast and depth of
focus is diminished. Figure 23-35 shows the 3D-transfer function and the trans-
ferred object spectrum for a grating period of 1.05�k (NA = 0.8, r= 0.55–0.65), the
corresponding image is compared with conventional illumination in figure 23-36.

Figure 23-34: 3D-Transfer function under annular illumination.
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Figure 23-35: 3D-Transfer function under annular illumination.

Figure 23-36: Aerial image with conventional setting (r = 0.8; left) and

annular illumination setting (r = 0.55–0.65; right).

As Hopkins discovered, the annular illumination, however, still contains illumi-
nation directions which do not lead to an image contrast [23-31]. In order to fulfill
the condition for maximum depth of focus perfectly, i.e., to �read out’ the object
spectrum only at coordinates mz= 0, the mx-component of the illumination has to be
equal to half the inverse grating period:

d � k � mix ¼ d � sinai ¼
k

2
: ð23-28Þ

Figure 23-37: 3D-Transfer function of the dipole illumination.

The illumination condition eq. (23-28) for large depth of focus is equivalent to the
illumination condition for imaging at maximum contrast, i.e., when neighboring
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openings of the idealized grating are illuminated in phase opposition (see chapter
24) [23-32], [23-33]. So the ideal illumination for the imaging of an idealized grating
with a large depth of focus consists of two line-shaped light sources separated by the
grating frequency. Figure 23-37 shows the construction, figure 23-38 the transfer
function and the transferred grating spectrum with a grating of 1.05k at an aperture
of NA = 0.8. The mx-components of the light source are in the mx-direction between
r= 0.55 and r= 0.65. Image simulation results are given in figure 23-39 for 7 and 15
grating periods.

Figure 23-38: Transfer function and transferred spectrum with a line-shaped

light source with mx between r = 0.55 NA and r = 0.65 NA.

Figure 23-39: Aerial image with line-shaped light source, left with 7 grating periods,

right with 15 grating periods; the depth of focus depends on the extent of the grating.

When, on the other hand, large depth resolution is required, i.e., to find precisely
the ideal image plane, the illumination directions in accordance with the object peri-
od can be selected with the help of figure 23-40.

Figure 23-40: Two illumination directions r¢ and r for different object

period d and d¢ for which the depth resolution is a maximum (k = 1).
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For spatial frequencies mx of the object below NA · (1 – r)/k the maximum depth
resolution is obtained with maximum obliqueness of the illumination direction,
shown in the example of figure 23-40 on the left-hand side (green curves). From the
maximum frequency dmz the depth resolution is derived as

dz »
k

k� 2r � NA � d �
2d2

k
: ð23-29Þ

For spatial frequencies mx of the object above NA · (1 – r)/k (see figure 23-40, right
side) the illumination direction for maximum depth resolution is given by

n sinai ¼ r ¢ � NA ¼ k

d
�NA : ð23-30Þ

The depth resolution dz for the object frequency mx= 1/d>NA · (1 –r)/k is thus

dz »
k

2NA � d� k
� 2d

2

k
: ð23-31Þ

As an alternative to selecting correct illumination directions, the 3D-spectrum can
be limited by using an appropriate pupil filter. In the example of central obscuration
and coherent illumination, the zero diffraction order is filtered and only the higher
diffraction orders may pass the pupil. For object periods beyond the coherent resolu-
tion limit, only – 1 diffraction orders pass the pupil (figure 23-41). The correspond-
ing transfer functions are shown in figure 23-42. Besides the frequency doubling of
the interference pattern almost every other piece of information about the object is
lost at too strong a central obscuration (figure 23-43d). If the central obscuration is
reduced to, e.g., NAin= 0.2 at NAout= 0.8, an interference pattern with double fre-
quency limited to the object area is obtained (figure 23-43b). The suppression of the
zero diffraction order was proposed by the application of a pupil filter for spatial
frequency doubling lithography [23-34].

Figure 23-41: Transfer function for an annular pupil and coherent illumination.
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Figure 23-42: Transfer functions and transferred spectra: a) without central obscuration;

b) with NAin = 0.2; and c) with NAin = 0.7; NA= 0.8, d = 1.3�k; r = 0.1.

Figure 23-43: a) Aerial images without central obscuration; b) Central obscuration

of zero order with small central obscuration (NAin = 0.2); c) with NAin= 0.4;

and d) large central obscuration NAout= 0.8. NA= 0.8, d = 1.3�k, r= 0.1.
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Since the point-spread function of an optical system with an annular pupil is,
however, disadvantageous for arbitrary objects of different shape and size, the zero
order is frequently suppressed by the appropriate design of the object with phase
shifting structures (e.g., alternating phase-shift masks, [23-35], [23-36]). With an
alternating phase shift of p, neighboring openings of the grating are in phase oppo-
sition and an analogous effect is obtained as with oblique illumination, according to
eq. (23-28). Since there are higher diffraction orders, and the phase-shifting struc-
tures have the desired effect of Dj ~ k/2 only in a small angle range, phase-shifting
masks are mainly used under coherent illumination [23-36].

23.4.5

Influence of Aberrations

Three diffraction orders with their phase position and direction define a wavefront
by whose curvature radius and angle of tilt, the position of the image pattern can be
determined (figure 23-44a). On the other hand two diffraction orders determine
only the orientation and the phase position of the interference fringes (figure 23-
44b). Wavefront errors lead to a different interference pattern with different distor-
tion and defocus for each illumination direction. The superimposed intensity pat-
terns with non-fitting phase position thus form an image which is additionally
faded by aberrations.

Figure 23-44: a) Asphere is determined by three diffraction orders; b) two diffraction

orders only determine the orientation and the phase position of the interference pattern.

As an example, figure 23-45 shows the effect of the symmetrical wavefront error,
like spherical aberration Z9 = k/2. Figure 23-46 shows the anti-symmetrical wave-
front error coma Z7 = k/2 (at d = 1.3�k, NA = 0.8, r= 0.7 for both examples). In con-
trast to the three-beam interference produced by the illumination direction of the
central light source point, the impact of the strong aberration on each two-beam
interference pattern can hardly be seen. Superposition of the intensities from differ-
ent light source points leads – even without the three-beam interferences – to a
faded image.
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Figure 23-45: Interference images with spherical aberration of k/2 to:

a) the central light source point; b) the peripheral point of the effective source;

c) the superposition of all interference patterns delivers the faded image.

Figure 23-46: Interference image with coma of k/2 to: a) the central light source

point; b) the peripheral point of the effective light source; c) the superposition

of all interference patterns delivers the faded image.
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24 Image Examples of Selected Objects

24.1

Introduction

In this chapter, coherent, incoherent and partially coherent imaging are compared
for the examples of two-point resolution (section 24.2), the edge image (section
24.3), the line image (section 24.4) and the grating image (section 24.5). In the
examples the methods for numerical evaluation of the image formation problem
according to the theoretical descriptions given in chapters 21–23 are further
explained and illustrated.

24.2

Two-point Resolution

24.2.1

Incoherent Versus Coherent Two-point Resolution

In the case of rotational-symmetric imaging with a circular pupil according to eq. (20-
54) the ideal image of an object point is given by the Airy disc. As shown in chapter 20,
section 20.3.4, the incoherent image of two points cannot be distinguished from the
imaging of a line element until the points are at a certain distance. The critical distance
for incoherent illumination is at dw =0.47 with normalized coordinates w =NA/k�r. For
coherent imaging, the resolution limit is at approximately dw =0.73, and the coherent
resolution limit for two-point imaging is at dr » 0.75 k/NA. Figure 24-1 compares the
intensity scans for the coherent and incoherent images of two points.

Figure 24-1: Incoherent and coherent two-point resolution.

Figure 24-2 illustrates the difference between coherent and incoherent image
intensity with increasing distance between two single object points (with NA = 0.8).
The incoherent image shows high contrast for both object point distances. For the
narrow distance of d= k, the coherent two-point image is hardly resolved. The coher-
ent image suffers generally from larger interference effects, visible in the side max-
ima, due to the addition of the coherent amplitude. For a larger distance, e.g., a dis-
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tance of 3k in figure 24-2a, the interference effects between the two points may also
cancel out. Figure 24-2b compares the image for a line segment of length 4k, to the
two-point image. Here, with a different distance to that in figure 24-2a, the coher-
ence effects of the coherent two-point image do not cancel out and are much larger
for the coherent image. The coherent line image length appears much shorter, while
for the incoherent line image the 50% intensity value corresponds sufficiently well
with the line length. At the resolution limit, the visible size of objects therefore
depends on the illumination conditions.

Figure 24-2: Coherent and incoherent images with numerical aperture

of NA= 0.8 with distances of: a) two point images 1k, 2k and 3k;

b) two-point (4k distance) and line image (4k length) in comparison.

However, when taking the interference pattern into account, the coherent image is
more sensitive to changes in the object. Figure 24-3 compares, on a logarithmic intensity
scale, the incoherent and coherent images of two point objects with increasing distance
for ideal imaging. While the incoherent images are given by linear superposition of the
Airy pattern, the coherent images suffer from interference effects. In certain regions the
intensity becomes much brighter, while in other regions both amplitudes cancel each
other. The resulting specific interference pattern depends on the point distance.

357



24 Image Examples of Selected Objects

Figure 24-3: a) Incoherent and b) coherent two-point images (logarithmic scale).

Figure 24-4: Incoherent two-point images with aberrations differing by 1k.

Figures 24-4 and 24-5 illustrate the difference between incoherent and coherent
imaging for the example of two object points at increasing distance with spherical
aberration Z9, coma Z7 and Z8 of 1k each. In each case the coherent addition of the
amplitude distributions in figure 24-5 gives significantly different image intensities
with the interference fringes superimposed.
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Figure 24-5: Coherent two-point images with aberrations differing by 1k.

Figure 24-6: a) Point-spread function |H(x)|2; b) incoherent line image;

and c) coherent line image of a 4k-line ideal and with different aberrations of 1k.
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Figure 24-6 illustrates the difference between coherent and incoherent imaging
for the example of a line image with line length 4k (NA = 0.8). In the example, the
point-spread function H(x) is disturbed by a 1k spherical aberration Z9, 1k coma Z7

and Z8. The difference between coherent (c) and incoherent (b) imaging, particularly
for spherical aberration, is significant!

24.2.2

Image of a Double Slit for Coherent and Incoherent Illumination

The double slit image is a convenient example of image computation using the
coherence and Wigner distribution functions. The discussion is limited to the x-
dimension (the double slit is assumed to be infinitely extended in the y-direction).
Figure 24-7 shows the coherence function of the light source for coherent illumina-
tion with r= 0.05 and incoherent illumination with r= 1. In both cases – under one-
dimensional consideration – the coherence function of the light source at the posi-
tion of the object is given by a sinc function of width ~ 1/2r.

Figure 24-7: Coherence function a) of a coherent and b) an incoherent light source.

With the openings of the double slit at the coordinates x0 and –x0 given byd-functions

T xð Þ ¼ d x � x0ð Þ þ d x þ x0ð Þ ð24-1Þ

then for the coherence function of the double slit with a small light source S with
r= 0.05 it follows that:

COS x1; x2ð Þ ¼ CS x1; x2ð Þ � d x1 � x0ð Þ þ d x1 þ x0ð Þ½ �
� d x2 � x0ð Þ þ d x2 þ x0ð Þ½ � : ð24-2Þ

So the coherence function of the object wave under coherent illumination consists of
four delta peaks at the positions (x0, x0), (x0, –x0), (–x0, x0) and (–x0, –x0) (figure 24-8a).
At partially coherent illumination specified by the light source size rNA, it follows for
the counter-diagonal elements of the four delta peaks of the coherence function that

COS x0;�x0ð Þ ¼ R s mð Þj j2ei2p2x0mdm ¼ IS sinc
rNA

k
2x0

� �

¼ IS sinc
rNA

k
D

� �

ð24-3Þ

with the slit distance D (in the example D= 2x0 = 2k). The amplitude of the disturb-
ing contributions on the counter-diagonal of the coherence function vanishes for
arguments of the sinc function which are equal to an integer:
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r ¼ m � k

D � NA m ¼ 1; 2; 3; 4::: ð24-4Þ

For the example with NA = r= 1, D = 2k the condition according to eq. (24-4) is ful-
filled (figure 24-8b). In general the amplitudes of the disturbing contributions are
inversely proportional to the argument of the sinc function, and thus grow smaller
with increasing size of the light source, with rNA and the slit distance D, respec-
tively. After Fourier transformation there is a superposition of two cosine functions
perpendicular to each other obtained in the frequency space though under the cho-
sen conditions according to eq. (24-4) for the case of incoherent illumination one
cosine function vanishes (figure 24-8d).

Figure 24-8: Coherence function of the double slit in the object plane with

coherent (a) and incoherent (b) illumination; and after Fourier-transformation

in the entrance pupil (c and d, respectively).

The coherence functions are low-pass filtered by the coherence transfer function
k(m1,m2) = h(m1)�h*(m2) in two directions. For a perfect optical system multiplication
by the coherence transfer function corresponds to a multiplication by a two-dimen-
sional rect function. As a consequence, in the image plane the delta functions of the
coherence function are blurred by a two-dimensional sinc function. The intensity in
the image space – given by the diagonals of the coherence function in figure 24-9 –
consists of the two single-slit images blurred by the point-spread function and an
additional superposition with the tails of the two contributions on the counter-diag-
onal. The disturbances correspond to the undesired interference effects with coher-
ent illumination and depend on the ratio of the slit distance to the aperture. They
are minimal for illumination divergences according to eq. (24-4).
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Figure 24-9: Coherence function of the double slit in the image plane

for a) coherent and b) incoherent illumination.

The Wigner distribution function can be obtained from the coherence function.
The coherence function j(x,Dx) after coordinate transformation is shown in figure
24-10b starting from the coherence function C in the object plane (figure 24-10a).
Accordingly the Wigner distribution function is obtained after a Fourier transforma-
tion in the vertical Dx direction (figure 24-10c). The analogous procedure in the
image plane is shown in figure 24-11.

Figure 24-10: Determining the Wigner distribution function of the object

wave from the coherence function C (a), after coordinate transformation to

j(x,Dx) (b) and Fourier transformation over Dx (c).

Figure 24-11: Determining the Wigner distribution function in the image plane

from the coherence function C (a), after coordinate transformation to j(x,Dx) (b)
and Fourier transformation over Dx (c).

Figure 24-12 compares the Wigner distribution function of the double slit in the
object and the image plane for coherent and incoherent illumination. Since the pro-
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jection of the Wigner distribution function in the frequency direction gives the
intensity, the high-frequency contributions at x = 0 must cancel. For incoherent illu-
mination according to eq. (24-4) the high-frequency part of the Wigner distribution
function vanishes at x = 0 (24-12b).

Figure 24-12: Wigner distribution function of the double slit in the object

plane with: a) a coherent, b) an incoherent light source; and in the image

plane with: c) a coherent, d) an incoherent light source.

The differences between coherent and incoherent illumination become particular-
ly visible at defocusing. Figure 24-13 compares intensity scans at different defocus
positions in normalized coordinates w = k/NA �x and Rayleigh units RU= k/2NA2.
The Wigner distribution function in figure 24-12c at x = 0 shows a modulation in
the m direction at x = 0 which for free-space propagation between the two peaks of
the double slit leads to increased modulations (figure 24-13a). These modulations
are less visible at incoherent illumination (figure 24-13b).

Figure 24-13: Diffraction effects at the double slit for defocusing:

a) at coherent illumination; b) at incoherent illumination.



24.2.3

Phase Shift and Oblique Illumination

It has been recognized that the two-point resolution depends on the phase relation be-
tween the two waves emitted from, e.g., a double slit. As illustrated in figure 24-14, dif-
ferent phases of the waves emitted from the two slits may be obtained either by oblique
illumination or by phase shifting elements in the slit apertures [24-1], [24-2].

Figure 24-14: a) Conventional double slit; b) with phase shifter; and c) for oblique illumination.

Figure 24-15: Incoherent and coherent images I(j) of two lines at a distance w with

a phase difference of a) and b) j = 0, c) and d) j = – 0.25p, and e) and f) j =p.
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Figure 24-15 compares the resulting intensities I(j) of the image of the double
slit at a distance d = 1w = k/NA with the different phases: j= 0, j= 0.5p and j=p.
For incoherent imaging the intensities simply add up (I1 + I2). For coherent imaging
the complex amplitudes are added before the intensity is formed by the square of
the sum of amplitudes.

Without a phase difference, the incoherent double-slit image is not resolved
(24-15a–b). For a phase difference of j =p/2, the incoherent case is reproduced
(figure 24-15c and d). For an amplitude in phase opposition j =p, the coherent slit
image is fully resolved at maximum contrast, but the maxima appear at a larger slit
distance. The opposing phase condition for a double slit distance d or grating period
d is reached, when the illumination angles to the optical axis satisfies the following
condition [24-1], [24-2].

n sina � d ¼ – 2nþ 1ð Þ k
2
: ð24-5Þ

As shown in Figure 24-15, the intensity distribution for the coherent image I(j),
especially the apparent slit distance for the image, depends on the relative phase
difference j of the amplitudes A1 and A2 of the single lines. In particular, for par-
tially coherent image formation, the appearance of the image, e.g., the image line
length or the distance of two narrow point or line images and the �contrast’ (i.e., the
minimum intensity value between the double slit) is influenced by the coherence
properties and the obliqueness of the illuminating light. This effect, further dis-
cussed below for the examples of the edge, slit and grating images, has to be consid-
ered when measuring objects with fine detail. Since in the vector model when con-
sidering exact boundary conditions and diffraction effects, the resulting phase shifts
often cannot be uniquely determined, and optical metrology of fine structures is in
general of limited accuracy. On the other hand, the dependence of the image on the
phase or illumination conditions can be utilized in, e.g., lithographic imaging for
contrast enhancement of fine details by the application of phase shifters and oblique
coherent illumination [24-3], [24-4].

24.3

The Image of an Edge

24.3.1

The Coherent Image of an Amplitude and Phase Edge

The image of a linear edge is illustrated in figure 24-16 and figure 24-17. The steps
for coherent image formation consist of Fourier transformation, low-pass filtering,
and again Fourier transformation.
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Figure 24-16: Coherent image of an amplitude edge.

Figure 24-17: Illustration of the imaging of an edge in Fourier steps.

The transmission function of an amplitude edge can be described by the step
function H(x)

T xð Þ ¼ 0:5 � sign xð Þ þ 1ð Þ ¼ H xð Þ ¼ 1 x ‡ 0
0 x < 0 :

�

ð24-6Þ

According to eq. (21-34), in the simplest case of perpendicular illumination with a
plane wave, the image amplitude is given by

U xð Þ ¼ R t mð Þ � h mð Þ � e2pimxdm ¼ R t mð Þ � P mð Þ � ei2pk W mð Þe2pimxdm : ð24-7Þ

After insertion of the diffraction spectrum of a linear, infinitely extended edge given
by

t mð Þ ¼ 0:5 � d 0ð Þ þ 1

pim

� �

ð24-8Þ

into eq. (24-7) it follows that the coherent image amplitude is

U xð Þ ¼ 1

2
� R

NA
k

m¼�NA
k

dð0Þ þ 1

pim

� �

� ei2pk W mð Þ � e2pimxdm

¼ 1

2
þ 1

2pi

R
NA
k

m¼�NA
k

1

m
� ei2pk W mð Þ � e2pimxdm : ð24-9Þ

For the aberration-free optical system eq. (24-9) can be solved with the integral-sinus
Si(x):
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U xð Þ ¼ 1

2
þ 1

p

R
NA
k

m¼0

sin 2pmxð Þ
m

dm ¼ 1

2
þ 1

p
Si 2p � NA

k
� x

� �

: ð24-10Þ

The image intensity is thus given by

I
ðcohÞ
edge ðxÞ ¼

1

2
þ 1

p
� Si 2p � NA � x

k

� �� � 2

: ð24-11Þ

Figure 24-18 shows the amplitude and intensity of the amplitude edge image in
normalized units of v = 2p�x�NA/k. The amplitude U(v) shows oscillating behaviour
on both sides of the edge due to the low-pass filtering of the optical system. In the
intensity image, the diffraction effect is intensified on the bright side of the edge,
while in the shadow region it is only visible on a logarithmic scale (figure 24-19).

Figure 24-18: Amplitude and intensity distribution of the coherent image of an amplitude edge.
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Figure 24-19: Intensity distribution of the coherent image on a logarithmic scale.

As indicated in figure 24-18, the amplitude U(0) at the geometrical image position
of the edge is 0.5, and consequently the intensity I(0) = 0.25. For the determination
of the position of an edge, frequently the 50%-value of the intensity distribution is
taken. Coherent images appear smaller than the objects, since in the coherent image
the edge is shifted into the bright region by

D x ¼ 0:212 � k

NA
: ð24-12Þ

In the special case of a coherent image of a phase edge with a phase difference of p,
the transmission function is simply given by the sign-function:

T xð Þ ¼ sign xð Þ ð24-13Þ

The image amplitude is given by

U xð Þ ¼ 2

p
Si 2p

NA

k
x

� �

ð24-14Þ

and the intensity by

IðcohÞp-edgeðxÞ ¼
2

p
� Si 2p � NA � x

k

� �� � 2

: ð24-15Þ
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24.3.2

The Incoherent Image of an Amplitude Edge

The incoherent image intensity of an amplitude edge can be derived from

I xð Þ ¼ T xð Þj j2� H xð Þj j2 : ð24-16Þ

The square of the amplitude edge is simply given by the edge function itself, and
the Fourier transform of the point-spread function is inserted in the spectrum repre-
sentation of eq. (24-16) the optical transfer function g(m) as:

Iincohedge xð Þ ¼ R t mð Þ � P mð Þ � P mð Þ½ �e2pixmdm ¼ R t mð Þ � g mð Þ � e2pixmdm : ð24-17Þ

In a linear one-dimensional system approximation with g(m) according to eq.
(21-64), it follows for the intensity in image plane that

Iincohedge xð Þ ¼ 1

2
� R

2NA
k

m¼�2NA
k

dð0Þ þ 1

pim

� �

� 1� k

2NA
sign mð Þ � m

� �

e2pimxdm

¼ 1

2
þ 1

p
Si 4p

NA

k
x

� �

þ 1

p

cos 4pNA
k

x
� �

� 1
h i

4pNA
k

x
:

ð24-18Þ

In contrast to the coherent image, the incoherent image is almost free of interfer-
ence effects and the modulations of the coherent image vanish. However, as shown
in figure 24-20, the edge image is blurred by the low-pass filtering of the optical
imaging. The 50% threshold value coincides with the geometrical edge position,
therefore the 50% threshold value gives reasonably good image positions of edges.

Figure 24-20: Example of an intensity distribution of the incoherent 1D-image of an edge.
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Figure 24-21: Intensity distributions of the incoherent 1D- image of an edge for

different numerical apertures for monochromatic illumination (solid lines, k= 660 nm)

and illumination with finite bandwidth of – 30nm (dashed lines).

Figure 24-21 shows the intensity distribution of the incoherently imaged edge on
a logarithmic scale for different numerical apertures. With decreasing numerical
aperture, the impact of the low-pass filtering increases, leading to an increased blur-
ring of the edge. In figure 24-21 the incoherent polychromatic intensity for a light
source with bandwidth – 30 nm is shown in comparison with the monochromatic
images. The small bandwidth has a negligible impact on the image. With increasing
wavelength the diffraction angles also increase, therefore the effective numerical
aperture decreases with increasing wavelength. Therefore, since the diffraction
effects increase with the wavelength, the polychromatic image of an amplitude edge
shows coloured fringes in the neighbourhood of the edge, which are dominated by
the longer wavelengths.

24.3.3

Partially Coherent Edge Image

The partially coherent edge image can be calculated with reasonable accuracy by
assuming a linear one-dimensional imaging system by application of the Hopkins
transmission cross-coefficient [24-5], [24-6]. Usually the application of the transmis-
sion cross-coefficient is reduced to the linear part as it is illustrated in figure 22-1.
The linear TCC is then only a function of one frequency. In general, however, the
TCC is a four-dimensional function and reduces to a two-dimensional function for a
one-dimensional object. Some examples have been given by Sheppard [24-7]. In the
special case of one-dimensional imaging the Hopkins transmission cross-coefficient
and thus the image intensity computation according to eq. (22-3), can approximated
analytically. For conventional partially coherent illumination with an effective source of
diameter 2r�NA/k in one dimension, the transmission cross-coefficient is given by
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TCC m1; m2ð Þ ¼ R rect mq

2rNA=k

� �

� rect m1 þ mq

2NA=k

� �

� rect m2 þ mq

2NA=k

� �

dmq : ð24-19Þ

Figure 24-22 compares different one-dimensional imaging TCC for different light-
source diameters given by 2r.

Figure 24-22: One-dimensional imaging Transmission Cross-Coefficient

for different degrees of coherence: a) coherent illumination;

b) partially coherent illumination with 0 <r< 1;

c) incoherent illumination with r= 1; d) incoherent illumination with r > 1.

Figure 24-23: One-dimensional imaging Transmission Cross-Coefficient and approximation.

As illustrated in figure 24-23, the 1D-TCC can, according to Glindemann [24-5],
[24-6], be approximated by separation of variables m1 and m2:

TCCa m1; m2ð Þ ¼ TCC m1; 0ð Þ � rect k � m2
2 1� rð ÞNA

� �

þ TCC m1;
NA

k

� �

� rect k � m2 � NA

2rNA

� �

� NA 1þ rð Þ � k � m2
rNA

:

ð24-20Þ

a) b) c) d)



The linear TCC(m1,0) of eq. (24-20) can easily be derived, and the TCC(m2,NA/k)
corresponds to a shifted linear TCC for oblique illumination with obliquity
r0 = (NA – r)/2. After insertion into eq. (22-3) we obtain for the real part of the
intensity IR:

IR xð Þ ¼RTCC m1; 0ð Þ � t m1ð Þ � ei2px�m1dm1 �
R
rect

k � m2
2 1� rð ÞNA

� �

� t� m2ð Þ � e�i2px�m2dm2

þ RTCC m1;
NA

k

� �

� t m1ð Þ � ei2px�m1dm1 ð24-21Þ

� R rect k � m2 �NA

2rNA

� �

� NA 1þ rð Þ � k � m2
rNA

� t� m2ð Þ � e�i2px�m2dm2 :

Figure 24-24: Partially coherent one-dimensional image of a straight edge

of transmission t0, phase j and partial coherence r .
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Figure 24-25: Approximation according to eq. (24-21) in comparison wih exact

one-dimensional partially coherent image of an edge.

For further details of the solution of eq. (24-21) the reader is referred to Glinde-
mann [24-5], [24-6]. In the following, solutions for the imaging of a linear straight
edge obtained by the solution of eq. (24-34) will be given. Figure 24-24 compares the
partially coherent images of generally complex linear edge functions in dependence
on the coherence parameter r, the phase step of the edge and the transmission t0 of
the opaque side of the edge. Figure. 24-25 illustrates the difference from the correct
simulation. There is a reasonable agreement only for low r and for small phase
shifts for the diffraction effects, while the edge position is found to be in good agree-
ment with the one-dimensional simulation result. As illustrated in figure 24-26a, for
a pure amplitude edge, the position Dx, which is determined as the 50%-value of
the intensity distribution, as well as the slope dI/dx of the partially coherent edge
image, depends on the coherence parameter r. For telecentric imaging, the edge
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image position Dx remains invariant under defocus and spherical aberration, while
asymmetrical aberrations like coma, influence the apparent edge position (figure
24-26b).

Figure 24-26a: For an amplitude edge, the position Dx as well as the slope

dI/dx of the partially coherent edge image depends on the coherence parameter r.
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Figure24-26b: Incoherent one-dimensional images of an amplitude edge under:

defocus (top); spherical aberration (bottom left); and coma (bottom right), with

Zernike coefficients c4, c9 and c7.



24.3.4

The Determination of the Optical Transfer Function from the Edge Image

As illustrated in figure 24-27, the edge image provides a method for the determina-
tion of the transfer function of optical systems. After determination of the edge
image the line-spread function (LSF) is achieved, and the optical transfer function
(OTF) is obtained by Fourier transformation.

Figure 24-27: Schematic illustration of the differentiation method for

determining the transfer function of optical systems.

According to eq. (24-17) the edge image intensity I(x) is given by

Iincohedge xð Þ ¼ 1

2
þ 1

2pi

R1

m
� g mð Þe2pixmdm ð24-22Þ

it follows, with the differentiation rule, that

dIincohedge

dx
¼ LSF xð Þ ¼ R g mð Þe2pixmdm ð24-23Þ

with the line-spread function LSF (see chapter 24.4). The incoherent optical transfer
function OTF can be calculated by inverse Fourier transformation

g mð Þ ¼ FT LSF xð Þ½ � ¼ FT
dIincohedge

dx

" #

: ð24-24Þ

As illustrated, for the determination of the OTF from measured edge images, the
intensity has to be differentiated, which is difficult as it is sensitive to noise at the
edge itself, especially for large numerical apertures. Therefore, for determining the
optical transfer function, usually methods other than the differentiation method are
preferred. Nevertheless, it gives a good example of the application of Fourier theory
in optical imaging.
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24.4

The Line Image

24.4.1

The Line Image of a Rotational-symmetrical Lens

The idealized line image as the image of a delta-like line is the special case of the slit
image of infinitely small width. The general slit function is considered below. The
line image or line-spread function LSF is obtained after integration of the point-
spread function PSF in one direction (figure 24-28):

Figure 24-28: Line-spread function LSF given by integration of the PSF in one direction.

ILSFðxÞ ¼ R
IPSFðx; yÞ dy : ð24-25Þ

According to the result of the integration the line-spread function does not have
any zeros and the intensity is less modulated than for the point-spread function.
The intensity decays in steps. Figure 24-29 illustrates the line-spread function in
more details.

The line-spread function is given by the Fourier transform of an intersection
through the incoherent transfer function, as can be derived after Fourier transfor-
mation of eq. (24-25)

ILSFðxÞ ¼ R RR
P mx; my
	 


� e�2p i� mxxþmyyð Þ dmxdmy








2

dy

¼ R RRP mx; my
	 


� P� mx; my
	 


� e�2p i� mxxþmyyð Þ dmxdmy dy
¼ R g mx; 0ð Þ � e�2p i�mxx dmx :

ð24-26Þ

With the ideal transfer function for m > 0 in normalized coordinates (NA = 1)

g vx; 0ð Þ ¼ 2

p
arccos mx � mx �

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� m2x
p� �

ð24-27Þ

and from the fact that g(mx,0) is real, it follows that

ILSFðxÞ ¼ 2
R1

0

g vx; 0ð Þ � cos 2p � x � vxð Þ dvx : ð24-28Þ



Figure 24-29: Line-spread function LSF of an ideal imaging system.

With the help of the Struve function of order m, defined by

HmðzÞ ¼ 2 z=2ð Þm
ffiffiffi
p

p
� C m þ 1=2ð Þ �

R1

0

1� t2ð Þm�1=2� sin ðztÞ dt ð24-29Þ

and the recursion formula

Hm�1ðzÞ þ Hmþ1ðzÞ ¼ 2m

z
�HmðzÞ þ z=2ð Þm

ffiffiffi
p

p � C m þ 3=2ð Þ ð24-30Þ

one obtains after insertion of (24-27) into (24-26) and partial integration the final
result for the idealized line-spread function, normalized to one [24-8]:

IðidealÞLSF ðxÞ ¼
3p �H1

2p � NA
k

� x
� �

2 � 2p � NA
k

� x
� �2 : ð24-31Þ

24.4.2

Coherent Line or Slit Image

The complex transfer functions of a slit or a line (= bar) can now be constituted by
step functions (see figure 24-30 and figure 24-31):

Tslit xð Þ ¼ rect
x

2a

� �

¼ H x þ að Þ �H x � að Þ ; ð24-32aÞ
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Tbar xð Þ ¼ rect
x

2a

� �

¼ H x � að Þ þH �x � að Þ

¼ 1�H x þ að Þ þH x � að Þ : ð24-32bÞ

Figure 24-30: Imaging of a slit (transparent line) by a 4f-system.

Figure 24-31: Transparent line (a) and line (= bar) (b) constituted by step functions.

The coherent images are consequently given by the linear superposition of the
amplitude slit images. The intensity is given by the squared value:

IðcohÞslit ðxÞ ¼ 1

p2
Si 2p

NA

k
x þ að Þ

� �

� Si 2p
NA

k
x � að Þ

� �� �2

: ð24-33aÞ

IðcohÞbar ðxÞ ¼ 1

p2
Si 2p

NA

k
x � að Þ

� �

� Si 2p
NA

k
x þ að Þ

� �� �2

: ð24-33bÞ

Figure 24-32 shows an example of a slit image with a = 20. From eq. (24-33) it can
be seen that the difference in the arguments of the integral-sine-functions Si(x)
scale with the product of NA�a. For NA�a = 0 the intensity vanishes. With increasing
slit width or increasing numerical aperture the difference of the arguments
increase, and, as a consequence, the diffraction effects decrease. This is illustrated
in figure 24-33, in scaled coordinates x/a, for different slit widths in units of k/NA.
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Figure 24-32: Example of a coherent slit image in normalized coordinates with a= 20.

Figure 24-33: Coherent slit images for different numerical apertures in scaled units x/a.

With the 50% threshold of the intensity the apparent slit width deviates from the
original with decreasing a�k/NA (figure 24-34). The derivation of the slit width from
the coherent image gives, for a threshold value of approximately 25%, one order of
magnitude better results than for the usual 50% threshold. The result of figure
24-34 is normalized to intensity while figure 24-33 shows the images with constant
energy.
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Figure 24-34: Relative difference of apparent slit width of the coherent image

from the object slit width for the 25% and the 50% intensity threshold.

24.4.3

Incoherent Line or Slit Image

The incoherent image of a slit, illustrated in figure 24-35, can now be evaluated after
insertion of eq. (24-33a) into eq. (24-17). For the intensity it follows that

Iincohslit xð Þ ¼ 1

p
Si x þ cð Þ � Si x � cð Þ þ cos x þ cð Þ � 1½ �

x þ cð Þ � cos x � cð Þ � 1½ �
x � cð Þ

� �

ð24-34Þ

with the normalized slit half-width c ¼ 4p � a � NA=k. Figure 24-35 illustrates inco-
herent slit images for some examples of c.

Figure 24-35: Incoherent slit image for different slit half-widths c in scaled coordinates x/a.



24.5

The Grating Image

24.5.1

The Coherent Linear Grating Image

In case of symmetrical aberrations or aberration-free imaging, the image intensity
of a grating can be written, according to eq. (22-28), as a series of cosine functions:

I x; yð Þ ¼ b0 þ b1 � cos
2p

d
� x

� �

þ b2 � cos
4p

d
� x

� �

þ :::

þ bn � cos
2n � p
d

� x
� �

ð24-35Þ

with the coefficients bn given from eq. (22-27a). The maximum value for n is given
by the number of diffraction orders which are passing the lens, minus one. Consid-
ering the zero and first diffraction orders only, the coefficients bn are given by

b0 ¼ g0j j2�TCC 0; 0ð Þ þ g1j j2�TCC 1; 1ð Þ þ g�1j j2�TCC �1;�1ð Þ; ð24-36aÞ

b1 ¼ 2 � Re g1g
�
0 � TCC 1; 0ð Þ þ g0g

�
�1 � TCC 0;�1ð Þ

� �
; ð24-36bÞ

b2 ¼ 2 � Re g1g
�
�1 � TCC 1;�1ð Þ

� �
: ð24-36cÞ

For an aberration-free imaging system passing a finite number of diffraction orders
without truncation of one of the diffraction orders, the TCC’s are equal for all m and
n and the image contrast of a binary Ronchi grating with aspect ratio 1:1 is
V = 100%, independent of shape and size of the light source. An example with three
diffraction orders is illustrated in figure 24-36a. Two exemplary intensity distribu-
tions formed by interference patterns with three diffraction orders where m £ 1 and
five diffraction orders where m £ 3, are illustrated in figure 24-37. Here, with the
Ronchi grating as object the – 2nd diffraction orders vanish. The image formed by
five diffraction orders in 24-36b differs from the image formed by just three diffrac-
tion orders only in the higher series expansion terms with n > 3.

Figure 24-36: Three and five (seven) diffraction orders passing the pupil without truncation.
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Figure 24-37: Interference patterns of order n forming the image intensity I(x)

in comparison with the object transmission for: a) three and b) seven passing

diffraction orders; c) phase grating image formed by two diffraction orders.
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For a phase grating, the zero-order diffraction efficiency g0 and thus the series
term b1 vanishes. The coefficients reduce to

b0 ¼ g1j j2�TCC 1; 1ð Þ þ g�1j j2�TCC �1;�1ð Þ; ð24-37aÞ

b1 ¼ 0; ð24-37bÞ

b2 ¼ 2 � Re g1g
�
�1 � TCC 1;�1ð Þ

� �
: ð24-37cÞ

After insertion into eq. (24-35), the image intensity of a phase grating is given by

I x; yð Þ ¼ b0 þ b2 � cos
4p

d
� x

� �

: ð24-38Þ

If only first diffraction orders contribute to the image, the phase object still gives an
image of high contrast, although the modulation frequency of the image is twice the
grating frequency 1/d (see figure 24-37c). For symmetrical gratings with phase j ~

cos(2p/d�x), the coefficients in eq. (24-38) can further be simplified by

b2 ¼ b0 ¼ 2 � g1j j2�TCC 1; 1ð Þ : ð24-39Þ

The image of a symmetrical phase grating thus has a maximum contrast or visibility
of V = 1 – independent of symmetrical aberrations (like, e.g., spherical aberration or
defocus).

24.5.2

The Coherent Grating Image with Aberrations

In general the TCC is given by eq. (22-30)

TCC m; nð Þ ¼ C
RR

uL mx; my
	 





2
P mx þ

m

d
; my

� �

P mx þ
n

d
; my

� �

� ei2pk W mxþm
d
;myð Þ�W mxþn

d
;myð Þ½ �dmxdmy : ð24-40Þ
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Figure 24-38: a) Influence of defocus Z4 and b) spherical aberration Z9 on the

grating image with grating period d= 3.6k/NA; c) Influence of spherical aberration

and defocus on the image of a grating with d= 3.5k/NA.



Wave-front errors thus lead in general to complex TCC and cause additional phase
modulations in the image intensity. Due to the different phase modulation of indi-
vidual series contributions which form the image according to eq. (22-27), the inten-
sity distribution of the resulting image period might be asymmetrically deformed.
The influence of symmetrical aberrations is illustrated in figure 24-38 at the exam-
ples of defocus Z4 and spherical aberration Z9 on the image of a Ronchi grating
with period 3.6 k/NA and 3.5k/NA, to which consequently five diffraction orders
contribute. For ease of computation, the coherent TCC is applied in good approxi-
mation for partially coherent image settings with small r. For a regular Ronchi grat-
ing, Talbot periods appear more frequent than they would, according to eq. (17-81),
and thus already at zT/4 a repetition of the original grating pattern is reproduced
under defocus. For certain object frequencies the grating pattern is reproduced even
with spherical aberration (24-38b). In general, the effect of Z9 on the grating image
scales due to a larger defocus (by a factor 3) compared with Z4, but the Talbot planes
are not found as expected due to the additional aberrations (24.38c).

In figure 24-39, the distortion Z2 and the asymmetrical deformation of the image
period due to coma of lowest order Z7 is illustrated. Three diffraction orders contribute

Figure 24-39: �Real’ distortion due to Z2 in comparison with coma-induced

dispersion for the examples of linear grating: a)with d= 1.2k/NA; and b) with d= 3.6k/NA.
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to the grating image with d = 1.2 k/NA and the image intensity thus shows only
lateral displacement for both wave-front aberrations Z2 and Z7, but with different
lateral displacement depending on the object period. The grating image with
d = 3.6k/NA and distortion according to Z2 is shifted, while for Z7 the image period
is additionally deformed. Due to the different phase modulations for the different
series terms, the centre of gravity of the expected period is approximately at ~0.11/d.
Since this effect is observed especially by asymmetric wave-front errors like coma,
the effect is called coma-induced distortion. Coma-induced distortion depends on
imaging conditions such as illumination, aberration level and object period and ori-
entation.

24.5.3

The Influence of the Coherence Parameter r on the Grating Image

In this paragraph, the effect on the grating image of partially coherent imaging with
different light sources, is discussed. The comparison of the results of partially coher-
ent image simulation is restricted to the iterative solution of eq. (21-40) without con-
sideration of rigorous diffraction effects or polarization. Further, only the aerial
image will be given as a simulation result, the effect of detectors will be neglected. A
grating consisting of seven periods is taken as the object. All aerial images are given
in an image scan through focus, i.e., x–z-scans with lateral coordinate x and axial
coordinate z. The x-axis always points to the right, the z-axis points downwards
through the focus. For the details of the computation of the through-focus aerial
image scan, the reader is referred to chapter 23.

First the image formed by a common circular light source with different sizes
rNA with r= 0.2, r= 0.6 and r= 1.0 (NA = 0.75) are discussed. Partially coherent im-
aging with small sizes of the effective light source with, e.g., r < 0.3 shows similar
behavior to the coherent image. These illumination conditions are thus frequently
considered as �coherent’ illumination. The resolution limits for the images and the
grating periods which, for higher diffraction orders, participate in the imaging, are
compiled in table 24-1. The coherent resolution limit is given for k/NA at 1.33k. Fig-
ure 24-40 compares simulation results for grating periods beyond the coherent reso-
lution limit, figure 24-41 for periods above the resolution limit.
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Figure 24-40: Aerial images from a simulation of partially coherent image

formation for different grating periods d above the coherent resolution limit

with r = 0.2, 0.6 and 1.0.

Table 24-1: Resolution limits and grating periods, for which higher diffraction

orders participate in the imaging (NA= 0.75).

r 1st diffraction order

(limit resolution )

2nd diffraction order 3rd diffraction order

Coherent (r= 0) 1.33 k 2.66 k 4 k

0.2 1.11 k 2.22 k 3.33 k

0.6 0.83 k 1.66 k 2.5 k

1.0 0.66 k 1.33 k 2 k
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Figure 24-41: Aerial images from a simulation of partially coherent image

formation for different grating periods d beyond the coherent resolution limit

with r = 0.6 and r = 1.0.

For incoherent imaging, the finest object periods can be resolved in the vanishing
contrast limit. The incoherent image beyond the coherent resolution limit is formed
by symmetrical two-beam interferences whose afocal nature becomes visible for
object periods smaller than d = k. With increasing object period, the contrast
increases while the depth of focus is reduced (figures 24-40 and 24-41, r= 1.0). For
object periods larger than the coherent resolution limit, the image is formed also by
three-beam interferences. For the discussed object periods, these as well as the high-
er diffraction orders, have a minor impact on the incoherent imaging.

The simulation results for partially coherent illumination with r= 0.6 and object
grating periods d below the resolution limit at d = 0.832�k only the envelope of the
seven periods is imaged. At r= 0.6 the afocal nature of the two-beam interferences
below the coherent resolution limit is less distinctive since the diffraction orders do
not pass the pupil symmetrically (see chapter 23).

Under almost coherent imaging with r= 0.2, the object details are resolved only
above larger periods d = 1.11�k. For object periods above the coherent resolution
limit, the aerial images are now characterized by three-beam interferences. Particu-
larly for a smaller illumination divergence the images show periodical repetition of
the image grating (though with a reduced number of periods) due to the Talbot
effect (figure 24-40, d = 1.2k and 1.4k), while for a large illumination divergence
with, e.g., r= 0.6, the Talbot planes are faded.

Figure 24-42 compares the image contrast or visibility V for the central maximum
and the adjacent minima of the aerial images in the ideal focus plane in normalized
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frequency units of NA/k. As explained in section 21.2.3 the image contrast is mainly
reduced by that share of the zeroth order which is not contributing to the image for-
mation. For imaging with a common circular light source with r= 1 the contrast is
thus already decreasing for low frequencies of the object grating with increasing
grating frequency, while for small r -settings the contrast theoretically stays at 100%
until one of the – 1 diffraction orders touches the border of the pupil. At the coher-
ent resolution limit, in normalized units at w =NA/k � d = 1, the contrast decreases
steeply down to the corresponding resolution limit d = k / NA�(1+r).

Figure 24-42: Contrast of the central maximum of the aerial images

according to the simulation of partially coherent image formation for

different light- source dimensions r.

24.5.4

Influence of the Shape of the Effective Light Source on the Grating Image

The conventional partially coherent and incoherent images have high resolution at
the expense of increasing contrast loss. The contrast loss beyond the coherent-reso-
lution limit, however, can be avoided according to Siedentopf, by an appropriate illu-
mination distribution. Using this, the image contrast even for high grating frequen-
cies can theoretically be V = 100%. The size and shape of the effective light source
have a significant impact on the image contrast. As examples, the annular illumina-
tion, i.e., with the source in the shape of a ring, and the Hopkins dipole illumination
are compared with conventional illumination for large and small r value. The Hop-
kins dipole illumination is derived from annular illumination using the Hopkins
pair of shutters with a structure-dependent shutter position mh (figure 21-17). The
exemplary light-source shapes under consideration are illustrated in figure 24-43 for
comparison.
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Figure 24-43: Different light-source shapes with two diffraction orders each.

Figures 24-44 to 24-47 compare the simulation results for different shapes of light
source. Figure 24-44 shows the image contrast depending on the normalized object
frequency w. Again the share of the zeroth order, which is not contributing to image
formation or the direct light-source image in the pupil plane, under conventional
incoherent illumination with a large light source (r= 0.7) is already relatively large
for large object structures, i.e., for low normalized frequencies w. Under coherent
illumination with a small light source, on the other hand, the contrast stays almost
ideally at 100% up to frequencies of w ~ 0.75, then it decreases steeply and vanishes
at the resolution limit w = (1 + r) = 1.3. Annular illumination with rmean= 0.7 with
the inner radius rin= 0.65 and the outer radius rout= 0.75 behaves approximately
like incoherent illumination at smaller object periods, but at higher object frequen-
cies it has a reduced false-light share and thus delivers a higher contrast at frequen-
cies of about w = 1 and higher. For the structure-adjusted dipole illumination,
according to Hopkins, above the normalized frequencies of w = 0.7 the increased
contrast becomes noticeable (below object periods of 1.4�k). It stays at more than
80% for frequencies up to w = 1.5 and decreases, subsequently also vanishing at the

Figure 24-44: Image contrast depending on the object frequency for imaging of a

grating structure with 7 periods.



resolution limit at w = 1.75. At w = 0.85 and w = 0.425 the contrast curves with annu-
lar illumination and Hopkins’ dipole illumination, respectively, show small col-
lapses at those frequencies where the 2nd and the 4th diffraction orders start to pass
the pupil. These are quite weak in the example of the amplitude grating with an
aspect ratio of the grating width to the groove width of 1:1 due to this structure.

Figure 24-45 shows the contrast distribution at defocus in Rayleigh units RU=
k/(2�NA2). The depth of focus obviously depends on the object period and the selec-
tion of the illumination. For an object period of d = k (dashed lines) Hopkins’ illumi-
nation aperture only influences the contrast and shifts the contrast distribution basi-
cally parallel to the curve of annular illumination. At d = 2�k the Hopkins pair of
apertures no longer has any effect and the contrast is identical to the contrast of
annular illumination. With a larger object period, the contrast curve is significantly
lower for annular illumination. The question of the depth resolution of the optical
image is discussed in more detail in chapter 23, concerning three-dimensional
image formation.

Figure 24-45: Image contrast for grating periods d= 1 and d= 2 in units of k

versus the defocusing for different light sources.

Figures 24-46 and 24-47 show the aerial images as results of the partially coherent
simulation. It can be clearly seen from the distribution of the interference pattern
through the focus when three and more or even just two diffraction orders contrib-
ute to the image formation. The small object periods of d = 0.6k–0.8k can be imaged
only with an appropriate dimension of the secondary light source r. Here a low
depth resolution is achieved using the afocal nature of the two-beam interference.
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Figure 24-46: Image contrast for grating periods from d= 0.6k up to d= 0.8k for:

a) conventional illumination with r = 0.3; b) conventional illumination with r = 0.7;

c) annular illumination; d) Hopkins dipole.
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Figure 24-47: Image contrast for grating periods from d= k up to d= 4k for:

a) conventional illumination with r = 0.3; b) conventional illumination with r = 0.7;

c) annular illumination; d) Hopkins dipole.
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24.5.5

Wigner Distribution Function for Gratings, Talbot Effect and

Propagation-invariant Fields

For coherent illumination from the light-source point mq, the scalar field distribution
behind an infinitely extended grating is given by

U0 xð Þ ¼
X

m

gme
i2p m

d
þmqð Þx : ð24-41Þ

Thus the Wigner distribution function of a grating under coherent illumination is
given by:

W x; mð Þ ¼ R
X

m;n

gmg
�
ne

i2p x
d
m�nð ÞþDx

2d
mþnð Þ½ � � e�2piDx� m�mqð ÞdDx

¼
X

m;n

gmg
�
ne

i2px
d
m�nð Þd m� mq �

m þ n

2d

� �

:
ð24-42Þ

The diffraction orders become noticeable by discrete contributions of the Wigner
distribution function parallel to the x-axis with [24-9]

Wk x; m ¼ k

2d
þ mq

� �

¼
X

m

gmg
�
k�me

i2px
d
2m�kð Þ : ð24-43Þ

In table 24-2 the leading spatial periods 2m–k for the diffraction orders k are indi-
cated, taking into account the diffraction orders gm and gk-m of a Ronchi grating. For
such a Ronchi grating all even expansion coefficients, except the equal part, will van-
ish, i.e., g2m = 0.

In the zeroth diffraction order for k = 0, the Wigner distribution function, W0,
takes on the function of a grating with doubled frequency 2/d. In the first diffraction
order W1 with k = 1 there are non-vanishing contributions only for m = 0 and m = 1,
thus the basic frequency of W1 is given by |(2m–k)/d| = 1/d. For k = 2 the leading
basic frequency is for m = 1 at 0 (constant) and for m = –1 at –4/d. For the higher
diffraction orders, equivalent considerations can be undertaken.

Table 24-2: Leading periods 2m–k of the diffraction orders of the Wigner distribution functionW.

2m–k k–m = 0 k–m = 1 k–m = 2 k–m = 3 k–m = 4 k–m = 5

k = 0 0 –2 –4 –6 –8 –10

k = 1 1 –1 –3 –5 –7 –9

k = 2 2 0 –2 –4 –6 –8

k = 3 3 1 –1 –3 –5 –7

k = 4 4 2 0 –2 –4 –6

k = 5 5 3 1 –1 –3 –5

k = 6 6 4 2 0 –2 –4
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Figure 24-48 shows the Wigner distribution function for a finite grating with a
period of 1.2k (NA = 1) consisting of 11 periods under illumination by a perpendicu-
lar planar wave mq = 0 and with incoherent illumination in figure 24-49. The struc-
ture described above according to eq. (24-43) and table 24-2 can be clearly recognized
for coherent illumination. The 11 periods can be recognized in the –1st and 1st

diffraction orders from the maxima with the 10 minima arranged in between at
m= 1/2d. The diffraction ordersWk are faded because of the finite grating.

For incoherent illumination, the structure of the Wigner distribution function is
faded in the frequency direction due to the superposition of all the Wk’s for all illu-
mination directions mq (figure 24-49a). After a low-pass filtering by the imaging, the
spectrum is cut back by the aperture and the distribution is blurred in the x-direc-
tion due to diffraction effects. The projection along the m-axis delivers the intensity.

Figure 24-48: Wigner distribution functions for coherent illumination with

r = 0.01 of a grating structure in: a) the object and b) the image plane.

Figure 24-49: Wigner distribution functions for incoherent illumination with

r = 0.01 of a grating structure in: a) the object and b) the image plane.
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For coherent illumination of a grating, additional intensity patterns similar to the
original grating are formed in planes defocused to the image plane. This effect,
named after Talbot, is shown in figure 24-50 for a grating with 13 periods as object
under coherent axial illumination. The example is chosen at the coherent resolution
limit with a NA = 1 and with a period of d = k. In this case only two diffraction orders
contribute to the image formation. If the Wigner distribution function of the grating
is sheared by free-space propagation, the maxima of the two diffraction orders inter-
fere constructively at certain distances due to projection in the m-direction, at other
distances they interfere destructively (see figure 24-51; showing destructive interfer-
ence and thus contrast cancellation at z = 3.5k and the Talbot plane at 4k). Accord-
ingly there is contrast cancellation or secondary images due to the Talbot effect.
Because of the symmetry, in addition to the actual Talbot planes, there are additional
planes in which an intensity pattern similar to the object with inverse contrast,
occurs (figure 24-51).

Figure 24-50: Aerial image of a grating for coherent illumination,

to illustrate the Talbot effect.

An intensity distribution, which is invariant to propagation, and thus a large
depth of focus DOF is achieved if the projection of the Wigner distribution function
is invariant to propagation. In figure 24-51 the first diffraction orders for axial illu-
mination are given for frequencies m= 1/2d. These horizontal patterns are shifted
horizontally in the x-direction due to free-space leading to contrast cancellation,
inverse contrast and Talbot planes. Only those contributions of the Wigner distribu-
tion function at m= 0, i.e. W1(x,0) are invariant to propagation. By oblique illumina-
tion of under half the diffraction angle, a diffraction order can be shifted in the fre-
quency direction over m= 0 so that a propagation-invariant Wigner distribution func-
tionWk is generated. This illumination direction is given according to eq. (24-43) by

mq ¼ –
k

2d
: ð24-44Þ

Figure 24-53 shows the example above with oblique illumination according to eq. (24-
44). Figures 24-54 and 24-55 illustrated the Wigner distribution functions in the image
plane and defocused positions. Since the modulation carrying all information about
the object is shifted to Dm = 0, free-space propagation has no impact on the image.
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Figure 24-51: Free-space propagation of the Wigner distribution function of a

grating for coherent illumination, to illustrate the Talbot effect.
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Figure 24-52: Intensity distributions in the Talbot planes using the projection

of the Wigner distribution function; defocus dz in units of k.

Figure 24-53: Aerial image of a grating at oblique coherent illumination

to illustrate the propagation invariance of the Wigner distribution function,

according to eq. (24-44).

Figure 24-54: Wigner distribution function of a grating with 13 periods for oblique illumination.
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Figure 24-55: Free-space propagation of the Wigner distribution functions

of a grating for oblique illumination after low-pass filtering to illustrate the

propagation invariance of the Wigner distribution function.

24.6

Pinhole Imaging and Quasi-point Sources

24.6.1

Introduction

In practical setups, a point source is very often required for illumination purposes.
Particularly in applications of measurement systems, this kind of illumination
source generates an almost ideal wave front. Theoretically, the source can be realized
by a very small pinhole, which is much smaller than the wavelength. However, from
a practical viewpoint, there are several drawbacks with the use of such small pin-
holes. These are [24-9], [24-10]:

1. The manufacturing of a circular transmission pinhole of this size is expen-
sive and quite difficult.

2. The measurement of the exact geometry and size is non-trivial, but this is
necessary for control reasons.

3. The energy throughput of such a small pinhole is very low, this is a disadvan-
tage for the signal-to-noise ratio. For small pinholes, the transmission scales
as the fourth order of the diameter.

4. If the size of the pinhole is smaller than the wavelength, significant polariza-
tion effects occur, which may be unwanted. The scalar model for describing
the emission of light is no longer applicable.
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5. Normally, pinholes of this size are fabricated by thin chromium layers. But
for sizes of this amount, the aspect ratio of diameter to depth of the pinhole
opening becomes small and the channelling effects in this light waveguide
generate an unwanted non-isotropic emission.

6. There are specific effects on the microscopic range depending on the material
parameters such as plasmon excitation, resonances, etc.

Therefore, one tries to make the pinhole as large as possible. In this case, from
the physical viewpoint, the source is a circular source with finite dimension. In this
case, the illumination of the opening also plays a role in the description of the
emitted light cone.

In this section, the modelling and limits of this kind of quasi point source are
discussed.

24.6.2

Incoherent Image of a Circular Object

The ideal point-spread function of an aberration-free circular pupil with homoge-
neous illumination is given by the Airy function. If sin u is the sine of the aperture
angle, it obeys the equation

IPSFðrÞ ¼
2 � J1 2p

k
� r sin u

� �

2p
k

� r sin u

2

4

3

5

2

: ð24-45Þ

If a circular object with radius a is incoherently illuminated, the circle has to be con-
volved with this distribution to form the image. If the special rotational symmetry is
taken into account, one gets the expression

IpinholeðrÞ ¼ Ra

r¼ 0

R2p

h¼ 0

2J1 p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ r2 � 2rr � coshpð Þ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ r2 � 2rr � cos h

p
� �2

r dr dh : ð24-46Þ

Figure 24-56 shows the image, calculated using this equation for different sizes of
the pinhole. The radius of the pinhole is normalized in the form

d ¼ a � sin u
k

ð24-47Þ

which corresponds nearly to the scaling of the radius of the Airy disc. It can be seen
from the figure that, for pinhole sizes much smaller than the Airy radius d << 1, the
image closely resembles the Airy distribution. But for radii larger than half of the
Airy value, the difference becomes significant. To show this more clearly, figure
24-57 contains the same curves in a logarithmic scale.
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Figure 24-56: Image of a pinhole as a function of the relative size d.

Figure 24-57: Image of a pinhole as a function of the relative size d on a logarithmic scale.

The appearance of the corresponding intensity distributions with the sizes of the
circular pinhole are shown in figure 24-57. The vanishing diffraction fine structures
with increasing size of the object can be seen clearly.

24.6 Pinhole Imaging and Quasi-point Sources 401



Figure 24-58: Images of a pinhole as a function of the relative size d.

24.6.3

Quasi-point Source

If the diameters of the resulting pinhole image for an intensity level of 50 % and 10
% are compared with the corresponding diameter of an ideal Airy pattern, one gets
a measure for the largest pinhole size, which can be regarded as a quasi-point
source. Figure 24-59 shows these ratios as a function of the relative size d of the
object pinhole.

For diameters of the pinhole in the range

a <
1

8
� rairy »

k

16 � n � sin u ð24-48Þ

the images are nearly identical to the ideal pattern and therefore, the point-source
requirement is fulfilled to a high degree. If a 10% enlargement of the diameter is
accepted, it follows from the numerical calculation as indicated in the figure, in the
range

a < 0:4 � rairy »
2k

4 � n � sin u ð24-49Þ

that the source can be approximately considered as a quasi-point source. In the
range

a > 0:8 � rairy ð24-50Þ

the diameters are increasing almost linearly with the pinhole size, the image is
dominated by the object size and not by the diffraction. Here, a point source
assumption is definitely invalid.
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Figure 24-59: Diameter of a pinhole image at 10% and 50% relative to the Airy pattern.

To get an impression for the absolute sizes of the pinholes which are necessary
for this purpose, figure 24-60 shows these values as a function of the numerical
aperture and the wavelength. As can be seen, for most practical circumstances, the
diameter of the pinhole has to be significantly smaller than 1 mm.

Figure 24-60: Limit of the pinhole size for a quasi-point-source model as a function

of the numerical aperture and the wavelength.
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24.6.4

Pinhole with Coherent Illumination

If the illumination of the pinhole object is coherent, the image shows more diffrac-
tion ring structures, as can be seen in figure 24-61 for different pinhole sizes. But
the similarity to the ideal Airy point-spread pattern for small pinholes is sufficient
up to a relative diameter of d = 0.8. Therefore, the assumption of a quasi-point
source is valid in a range of almost double the size than it is in the incoherent case.
Figure 24-62 shows the section through the images in a logarithmic scale, where the
differences can be seen much more easily.

In the case of pinhole imaging with coherent illumination, the pupil is usually
not filled. Since the pupil contains the Fourier spectrum of the object, it shows the
corresponding diffraction interferences. The greater the pinhole, the more struc-
tured is the pupil amplitude. As in the inverse case of a point-spread function for a
homogeneous illuminated pupil, the distribution in the pupil is given by the Airy
function

UðrpÞ ¼
2J1 1:22 � p � a

rairy �
rp

f � sin u

� �

1:22 � p � a
rairy �

rp
f � sin u

: ð24-51Þ

Figure 24-61: Image of a pinhole with different diameters for coherent illumination.
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Figure 24-62: Image of a pinhole with different diameters for coherent illumination,

section through the image in a logarithmic scale.

If the pinhole reaches the diameter of the Airy disc, the amplitude drops to zero
at the rim of the pupil. Figure 24-63 shows the pupil illumination for various pin-
hole sizes for comparison.

Figure 24-63: Pupil amplitude for the imaging of a pinhole with different diameters

and coherent illumination.

24.6.5

Pinhole with Partial Coherent Illumination

If the pinhole is partially coherently illuminated with a coherence parameter r,
there is a transition between the two limiting cases discussed above. Especially in
the case of an imaging setup with a high numerical aperture, it is almost impossible
to generate a fully incoherent illumination. Figure 24-64 illustrates the image devel-
opment with different coherence factors r for three pinhole sizes.
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Figure 24-64: Image of a pinhole with different sizes a/rairy and a partial coherent

illumination with parameter r.

In figure 24-65, a comparison between a pinhole image with partially coherent
illumination and the coherent case is shown in a more quantitative manner. As can
be seen, the rms-value of the compared images grows with the size of the pinhole
and the r-factor as expected. Below a coherence factor of approximately r= 0.25, the
influence of the coherence is very low and in the most practical cases negligible.

Figure 24-65: Rms value of the difference between the images of a coherent

and a partially coherent illuminated pinhole as a function of the pinhole size

and different coherence factors r.

24.6.6

Defocusing Planes and Deconvolution

In the above discussion the pinhole image is always regarded directly in the image
plane. As can be seen from figure 24-66, the effect of the finite pinhole size can be
recognized much more easily in the defocusing planes of an image stack with vari-
able z-values.
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Figure 24-66: Ideal point-spread function and image stack for a pinhole with

relative size d = 1 in different defocusing locations.

This observation leads to the concept of the pinhole deconvolution. If the effects of
the finite pinhole size have to be removed for special applications, it is possible to
retrieve the point-spread function out of the image with the help of the redundant infor-
mation in several defocusing planes. As can be seen in the figure, the fine structure of
the diffraction rings manifests more significantly far from the image plane.

24.7 Literature 407

24.7

Literature

24-1 Ernst Abbe, Die Lehre von der Bildentste-
hung im Mikroskop, edited by O. Lummer
and F. Reiche, Vieweg, Braunschweig (Ger-
many) (1910).

24-2 K. Michel, Die Grundz�ge der Theorie des
Mikroskops (Wissenschaftliche Verlagsge-
sellschaft M.B.H., Stuttgart, 1981).

24-3 M. D. Levenson et al., Improving resolution
in photolithography with a phase shifting
mask, IEEE Transactions on Electron devices
ED-29, 1828–1836 (1982).

24-4 F.M. Schellenberg, Resolution Enhancement
Techniques in Optical Lithography, SPIE
Milestone Series Vol. MS 178 (2004).

24-5 A. Glindemann, New approximation for
partially coherent imaging of straight edges,
J. Mod. Opt. 36, 659–668 (1989).

24-6 A. Glindemann and J. Kross, Symmetry in
partially coherent imaging semi-transparent
edges, J. Mod. Opt. 38, 379–394 (1991).

24-7 C.J.R. Sheppard, A. Choudhury, Image for-
mation in the scanning microscope, Optica
Acta 24, 1051–1073 (1977)

24-8 V. N. Mahajan, Optical Imaging and Aberra-
tions, Part II, SPIE Press, Bellingham
(2001).

24-9 M. Testorf and J. Ojeda Castaneda, Fractional
Talbot Effect: analysis in phase space, J. Opt.
Soc. Am. A 13, 119–125 (1996).

24-9 F. J. Garcia de Abajo, Opt. Express 10, 1475
(2002), Light Transmission through a single
cylindrical hole in a metallic film.

24-10 N. Bonod, E. Popv and M. Neviere, Opt.
Commun. 245, 355 (2005), Light trans-
mission through a subwavelength micro-
structure aperture: electromagnetic theory
and applications.

24-11 A. Degiron, H.J. Lezec, N. Yamamoto and
T. W. Ebbesen, Opt. Commun. 239, 61 (2004),
Optical transmission properties of a single
subwavelength aperture in a real metal.

24-12 C. Oberm�ller and K. Karrai, Appl. Phys.
Lett. 67, 3408 (1995), Far field characteriza-
tion of diffracting circular apertures.





409

25.1 Introduction 410

25.2 Point-spread Functions for Annular Pupils 410

25.2.1 Introduction 410

25.2.2 Annular Pupils, Central Obscuration and Pupil Filters 411

25.3 Point-spread Functions of Non-uniform Illuminated Pupils 416

25.3.1 Introduction 416

25.3.2 General Gaussian Apodization 417

25.3.3 Gaussian Profile with Truncation 418

25.4 Engineering of the Point-spread Function by Pupil Masks 423

25.4.1 Introduction 423

25.4.2 Characterization of the Three-dimensional Point-spread Function 423

25.4.3 Characterization of Extended Depth of Focus 426

25.4.4 Relation Between Axial and Transverse Resolution 427

25.4.5 Ambiguity Function as Defocussed Transfer Function 429

25.4.6 Image Multiplexing 430

25.4.7 Fundamental Relationships 432

25.4.8 Calculation of Masks 432

25.5 Special Pupil Masks 433

25.5.1 Introduction 433

25.5.2 Phase Masks According to Toraldo 434

25.5.3 Logarithmic Phase Mask 435

25.5.4 Chirped Ring Pupil 437

25.5.5 Complex Filter Described by Zernike Expansions 439

25.5.6 Cubic Phase Plates for Extended Depth of Focus 442

25.5.7 Structured Illumination 447

25.6 Selected Practical Applications for Pupil Filtering Techniques 450

25.6.1 Phase Contrast Filtering, Dark-field Illumination 450

25.6.2 Frequency Doubling 453

25.6.3 Defect Filtering 455

25.6.4 Ronchi Test 456

25.7 Literature 463

25

Special System Examples and Applications



25 Special System Examples and Applications

25.1

Introduction

In this section, some examples and special applications are described, which illus-
trate the use of the theoretical results from the preceeding chapters and which apply
them to practical issues. Here, the effect of a modified pupil function on the genera-
tion of the point-spread function is one of the major topics. If only ring-shaped
pupil forms are present, the point-spread function changes very significantly in the
axial and transverse directions. Another case, which occurs very often in practice, is
pupil apodization and inhomogeneous illumination. In particular, if laser sources
are used for illumination, Gaussian pupil filling can be observed. In this case, the
point-spread function is also modified. Here, the rim of the pupil is not the only
parameter on which the performance of the system depends, the width of the illumi-
nated area is also important.

Special types of pupil mask with the appropriate phase and transmission distribu-
tion can be used to modify the point-spread function in the desired way. These
methods and some well known mask types are discussed in this chapter. To obtain
the full benefit of this technique, a digital detection of the image combined with a
image processing in the form of a deconvolution can be used. This is also treated
briefly in this chapter.

Some practical methods of using these pupil-filtering techniques for measure-
ment purposes, defect recognition, or phase imaging, are finally discussed.

25.2

Point-spread Functions for Annular Pupils

25.2.1

Introduction

The point-spread function considered so far has been restricted to conventional im-
aging optical systems with homogeneous transmission of the aperture. Real systems
such as telescopes or mirror systems often have annular pupils. In addition to this,
optical systems in general suffer from variations of the optical transmission over the
pupil. The influence of inhomogeneous transmission on the point-spread function
and the imaging characteristic will be outlined in this and section 25.3. As will be
shown, with special annular pupil filters, the central maximum of the point-spread
function can be reduced at the expense of larger secondary maxima. In special appli-
cations, inhomogeneous transmission of optical systems is thus desired. On the
other hand, variable transmission of optical systems may be employed to reduce
these diffraction rings of the Airy pattern. The latter, called apodization filters, are
treated in section 25.3. The first effect, annular pupils and pupil filtering, is the con-
tent of this section. The special topic of enhancement of depth of focus by annular
pupil filters is treated as an example of image multiplexing.
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25.2 Point-spread Functions for Annular Pupils

25.2.2

Annular Pupils, Central Obscuration and Pupil Filters

With the numerical aperture of the obscuration given by e�NA with
e ¼ NAobs=NA < 1, in general the amplitude of an ideal image point in the image
plane of an imaging system with annular pupil is obtained by

U rð Þ ¼ 2p
R1

r¼e

J0 2prrð Þrdr ¼ NA

r � k J1 2pr � NA
k

� �

� e � J1 2pr � e � NA
k

� �� �

ð25-1Þ

where J0(2prr) and J1(x) are the Bessel functions. The radius rn of the nth dark
minima of the resulting intensity pattern is determined according to

J1 2prn �
NA

k

� �

¼ e � J1 2prn �
e � NA

k

� �

: ð25-2Þ

The point-spread function of an annular pupil in the limit e fi 1 is given by the
Bessel function of 0. order |J0|

2. For e= 0.5, the first minimum is at r0 = 0.5k/NA,
thus at a smaller radius as in the Airy pattern, while the next minima have larger
radii. Table 25-1 compares radii and encircled energy for the first rings of the inten-
sity pattern with e = 0.5.

Table 25-1: Radii and encircled energy of first rings of the Airy intensity pattern in comparison with

central obscuration with e= 0.5.

Central spot first ring second ring

rn (Airy) r0 = 0.611 k/NA r1 = 1.1165 k/NA r2= 1.62 k/NA

Encircled energy (Airy) 83.8% 7.2% 2.8%

rn (e= 0.5) r0 = 0.5 k/NA r1 = 1.14 k/NA r2= 1.75 k/NA

Encircled energy (e= 0.5) 47.9% 33.6% 7.3%

The normalized point-spread functions for a conventional and an ideal ring-
shaped pupil with e fi 1 are compared in figure 25-1, with the Airy disk (25-1a), and
the Bessel function |J0|

2 (figure 25-1b). As can be seen, the central maximum is
smaller for the Bessel Beam at the expense of the secondary maxima, which are
much more distinctive than for the Airy disc. The resulting normalized point-spread
functions for different obscuration parameters e are compared in figure 25-2. The
height of the ring intensities increases with increasing obscuration e, while the
FWHM diameter of the central maximum decreases slightly with obscuration para-
meter e (figure 25-2a). The difference becomes more visible when comparing the
encircled energy function, as illustrated in figure 25-2b, where the shift of the ener-
gy from the central maximum into the outer diffraction rings is observed.
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25 Special System Examples and Applications

Figure 25-1: PSF for circular and annular pupils in comparison.

a) Intensity pattern of the Airy disk.

b) Intensity pattern of a circular ring pupil (Bessel function).

Figure 25-2: a) Intensity distribution I(r) of the point-spread function of an annular

pupil with different obscuration ratios e; b) encircled energy function of the different PSFs.
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25.2 Point-spread Functions for Annular Pupils

The effect of an annular pupil on the 3D point-spread function can be obtained by
considering the generalized aperture (figure 25-3). The point-spread function in
both the radial and longitudinal direction is analogously given by the Fourier trans-
form of the projections of the three-dimensional transfer function. With NAin =
e·NAout it follows that

IPSF r; z ¼ 0ð Þ ¼ 1

1� e2ð ÞpNAout

k
r

J1 2p
NAout

k
r

� �

� e � J1 2p
NAin

k
r

� �� �
8

<

:

9

=

;

2

; ð25-3Þ

I r ¼ 0; zð Þ ¼ sinc
n cosain � n cosaoutð Þ

k
� z

� �









2

: ð25-4Þ

Figure 25-3: Generalized pupil P(mx ,mz) with central obscuration.

From the generalized aperture it follows that, for a lens systems with central
obscuration or with an annular pupil, the maximum lateral resolution according to
Abbe remains unchanged in the first order compared with a lens without central
obscuration, but the depth of focus increases over the reduced mz-extension of the
generalized pupil. Therefore, the depth resolution is reduced in imaging with annu-
lar apertures, leading on the other hand to a larger depth of focus [25-1]. As illustrat-
ed in figure 25-4 for the example with NAin = 0.5, the maximum depth of focus is
obtained for apertures formed by small annular rings, while the point-spread func-
tion consists of many bright rings encircling the central maximum and thus having
a diminishing effect on the image contrast [25-2]. The effect of “annular” pupils
becomes especially visible for one-dimensional systems (cylindrical systems) with
two off-axis segments of the “linear” pupil. For high obscuration, in the example
with NAin= 0.4, the image amplitude and intensity is, to a good approximation,
given by the interference pattern produced by two plane waves (figure 25-5, last
column).
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Figure 25-4: Intensity scans through three-dimensional point images of

systems with central obscuration; NAout = 0.6 with central obscuration of

NAin = 0, 0.2 and 0.4, a) in x and y, b) in x and z (logarithmic scale).

The decreasing diameter of the central maximum of the point-spread function for
annular pupils, stimulated the idea of optical super-resolution by annular pupils
and also of pupil filtering. Annular apertures, or generally, apertures consisting of
several annular rings, have been proposed in order to achieve super-resolution com-
pared with the Rayleigh resolution [25-3], [25-4], [25-5], [25-6]. Since systems with
annular pupils or transmission pupil filters have a limited transmission, it was also
proposed to apply annular phase filters. With a set of binary phase filters of phase jn

between radius rn and rn–1 the amplitude of the point-spread function is given by

U rð Þ ¼
X

n

eijn

r � k rn � J1 2pr � rn

k

� �

� rn�1 � J1 2pr � rn�1

k

� �h i

: ð25-5Þ

To summarize, various shapes of pupil filters have been investigated, with greater or
lesser success. In every case, the width of the central maximum is reduced at the
expense of the side orders of the point-spread function, which has very disturbing
effects on the optical imaging of extended objects since the visibility is reduced by a
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Figure 25-5: a) Amplitude and b) intensity scans through two-dimensional

point images of cylindrical (1D) systems with central obscuration; NAout= 0.6,

central obscuration of NAin = 0, 0.2, and 0.4.

large background share due to the secondary maxima. The special shaping of the
point image is mainly useful for scanning imaging methods, e.g., scanning micro-
scopes or CD and DVD pickups [25-7], [25-8]. Due to the drawbacks, especially lower
contrast, so far pupil filtering techniques only play a minor role within general opti-
cal imaging and the application of pupil filters is restricted only to special applica-
tions.
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25.3

Point-spread Functions of Non-uniform Illuminated Pupils

25.3.1

Introduction

The point-spread functions of conventional or annular pupils suffer from large second-
ary maxima, which may have a diminishing effect on the optical image. On the other
hand, it is possible to suppress the secondary maxima by an approximately Gaussian
shape of the pupil function. The suppression of the secondarymaxima is called apodiza-
tion (from the Greek; it means �removal of the feet’ [25-9]). In figure 25-6, for compari-
son, the ideal case of a completely Gaussian-shaped pupil function is shown.

Figure 25-6: Comparison of the cross-sections of the Airy point image to the

point image of a ring pupil with e << 1 (Bessel function) and to a Gaussian-shaped pupil.

With theGaussian apodization, themaximumencircled energy of 100% is reached at
a smaller radius of the point-spread function comparedwith theAiry diffraction pattern,
while with the latter, more energy is concentrated in the centre of the point image. The
Bessel function of an annular pupil showing, in contrast, a smaller width of the central
maximum (e.g., determined by the FWHM), distributes the energy over a larger area.

Figure 25-7: Encircled energy for different point-spread functions according to

the profiles of figure 25-6.
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25.3 Point-spread Functions of Non-uniform Illuminated Pupils 417

In practice, the illumination of coherent optical systems is often realized with
lasers operating in a fundamental mode, given by a Gaussian intensity distribution.
Gaussian shapes of the point-spread functions are also obtained by inhomogeneous
illumination with Gaussian beams. Particularly in scanning con-focal microscopy,
when the object is scanned by focussed beams, Gaussian beam shapes may be
applied instead of plane waves with corresponding Airy point-spread functions.
Both, apodization pupil filters and inhomogeneous illumination by Gaussian beams
are considered in this chapter.

25.3.2

General Gaussian Apodization

Apodization in general is expressed by inhomogeneous pupil functions of optical
systems. Frequently so called super-Gaussian profile functions are applied. This
function is given for rotational symmetry by the equation

P rð Þ ¼ Poe
�2 r

wð Þm : ð25-6Þ

The profile is determined by two parameters, given by radius w describing the lateral
extent and the exponent parameter m, indicating the steepness of the gradient at the
rim of the pupil. The special case m = 2, results in the conventional Gauss profile.
With increasing m, the distribution increasingly takes the shape of a top hat profile
with a very large slope at the boundary. Figure 25-8 compares several super Gaus-
sian profile functions for different values of the parameter m.

Figure 25-8: Super Gaussian profile for different exponential parametersm in one dimension.

Examples of point-spread function for pupils with super-Gaussian apodization
and vanishing phase aberrations are compared in figure 25-9 on a logarithmic scale.
It can be seen that the diffraction rings are absent only for the Gaussian profile with
m = 2, while for increasing power m the point-spread function becomes more and



Figure 25-9: Intensity profiles of the focus of apodized pupils with super

Gaussian profiles and different exponentials parametersm.

more similar to the Airy pattern. It is interesting to note that the radius of the dark
rings or intensity minima is approximately constant. The value of m only has an
effect on the height of the maxima.

25.3.3

Gaussian Profile with Truncation

Since the maximum aperture of optical systems is limited, the infinitely extended
super-Gaussian function for the pupil function according to eq. (25-6) cannot be real-
ized. The truncation by the aperture limit is of special interest for the collimation of
Gaussian beams, such as laser beams, and is considered by the truncation ratio e,
given by

e ¼ D

2w
ð25-7Þ

where the beam radius is w and the pupil diameter D [25-10], [25-11], [25-12]. Figure
25-10 illustrates truncated Gaussian profiles either by Gaussian illumination of an
exit pupil or truncated apodization filters for different values of the truncation ratio
e. Truncation effects are mainly observed for truncation ratios e < 2.

As the Airy pattern, the diameter of the point-spread function of a truncated
Gaussian profile scales with k/NA. The influence of the truncated apodization is
considered by an empirical parameter K:

drspot ¼ K � k

NA
¼ K � 2 � f � k

D
ð25-8Þ
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Figure 25-10: Intensity profiles of an apodized pupil with a truncated Gaussian

profile for different truncation ratios.

where the pupil diameter is D and the focal length f. The parameter K depends on
the apodization profile and the truncation ratio e as well, and the focal spot size of a
truncated beam cannot, in general, be evaluated analytically. Empirically, for the
usual 1/e2 or the FWHM definitions, the factors can be approximated in the range
e < 2.5 by [25-13]

K50% ¼ 0:5145þ 0:3562

1=e � 0:2161ð Þ2:176
� 0:3223

1=e � 0:2161ð Þ2:221
ð25-9Þ

and

K13:5% ¼ 0:8225þ 0:3230

1=e � 0:2816ð Þ1:821
� 0:2660

1=e � 0:2816ð Þ1:891
: ð25-10Þ

Figure 25-11 compares the dependence of the spot sizes on the parameter e accord-
ing to exact values and the two definitions according to (25-9) and (25-10). Some
typical intensity profiles are shown in figure 25-12.
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Figure 25-11: Correction factor K for the calculation of the focal spot

diameter for an apodized pupil with a truncated Gaussian profile as a function

of the truncation ratio e.

Figure 25-12: Intensity profiles of an apodized pupil with a truncated Gaussian profile

for different truncation ratios.

In table 25-2, examples of focal spot sizes of pupils with truncation and apodiza-
tion are compared, where different definitions of the spot size are applied. The defi-
nitions of the spot size by the first zero, as intensity thresholds (FWHM, 1/e2 radius)
and by encircled energy (EncE) values are applied. As can be seen, the factor K varies
by a factor of greater than 10, depending on the definition and shape of the pupil
function.
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Table 25-2: Comparison of focal spot sizes according to different definitions for different pupil

functions.

Definition of focus

criterion

1D Gaussian Super

Gaussian

Circular

(Airy)

Gaussian

truncation

e= 1

Gaussian

truncation

e= 2/3

m 0 2 6 0 2 2

e ¥ ¥ ¥ ¥ 1 2/3

first zero 0.5 – – 0.611 0.713 –

I = 0.5 (FWHM) 0.443 0.375 0.513 0.519 0.564 0.644

I = 0.13534 =1/e2 0.697 0.637 0.831 0.822 0.914 1.059

I = 0.01 0.908 0.966 1.122 1.092 (peak) 1.238 1.491

I = 0.001 0.969 1.183 2.109 1.174 (peak) 2.925 1.695

EncE = 0.86466 0.658 0.637 0.818 1.378 0.890 1.008

EncE = 0.95 1.989 0.779 1.040 3.915 1.104 1.201

In special applications, where it is important to overcome a threshold value, e.g.,
to trigger thermal or photo-chemical reactions, the main interest is not a small di-
ameter of the focal spot but a very high energy density. An inhomogeneous illumi-
nated or apodized pupil offers the advantage of influencing the focal intensity distri-
bution at the expense of the total power. The absolute value of the focal point inten-
sity is thus reduced. For a comparison of intensity peaks of different setups, it is
thus necessary to take the integrated power into account. The amplitude of a homo-
geneous illuminated circular pupil of homogeneous transmission according to eq.
(20-55) is given by

U rð Þ ¼ NA

r � k J1 2pr � NA
k

� �

¼ p
NA

k

� �2 J1 2pr � NA
k

� �

pNA
k

r

2

4

3

5 : ð25-11Þ

With a constant Intensity IP in the pupil, the peak intensity of the Airy distribution
is thus given by [25-14]

Iairy 0ð Þ ¼ U 0ð Þj j2¼ p2 NA

k

� �4

IP ¼ p
NA

k

� �2

P ð25-12Þ

with the total incident Power P. For a Gaussian shape of width w =D/p of the pupil
transmission, corresponding to a truncation ratio of e=p/2, the peak value of the
intensity is given by

IGB 0ð Þ ¼ 2p � w2

k
2f 2

P ¼ 16w4

p2k
2f 2

IGauss
P 0ð Þ ð25-13Þ

where IGaussP 0ð Þ is the peak intensity at the centre of the pupil plane. For equal power
P, however, the pupil intensity IGauss

P 0ð Þ of the truncated Gaussian beam must be a
factor of ~5 larger compared to the power IP of the homogeneous pupil and Airy
distribution. As a consequence, the Airy distribution of the homogeneous pupil has
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a considerably higher peak intensity. As can be shown, a 30% loss of peak intensity
in the Gaussian beam is observed.

In a general consideration of pupil transmissions with Gaussian profile and trun-
cation ratio e, the total power transmission of the pupil is

P ¼ 1� e�2e2
	 


� Pin : ð25-14Þ

For equal beam powers, the peak intensity of the truncated Gaussian beam at the
pupil has to be increased in comparison to the top-hat profile by the relation

IGaussP 0ð Þ ¼ 2e2

1� e�2e2
� IP : ð25-15Þ

For equal total power, the peak value of the focal intensity is given by

IGB 0ð Þ ¼ 2p a2P

e2k
2f 2

� 1� e�e2
	 
2¼ 2

e2
� 1� e�e2
	 
2

1þ e�2e2
� Iairy 0ð Þ : ð25-16Þ

Figure 25-13 illustrates the peak intensity for constant input power P according to
eq. (25-16). Uniform transmission of the pupil and homogeneous illumination gives
the highest peak value. After a normalization to the total transmitted power, the
maximum value of the peak intensity, eq. (25-16), is obtained at a truncation ratio of
e= 1.121 or the beam radius w = 0.892 D/2. It is given by ~ 81.45% of the peak inten-
sity of the Airy distribution.

Figure 25-13: Intensity peak on the optical axis for focussed truncated Gaussian

transmission profile of the pupil with and without renormalization of the total power.
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25.4

Engineering of the Point-spread Function by Pupil Masks

25.4.1

Introduction

The complex pupil function P(xp,yp) has a strong influence on the form of the focal
intensity distribution I(x,y,z). In particular, the phase distribution affects the beha-
viour very sensitively. In general there are three aspects, which are important for the
function I(x,y,z) [25-15]:

1. The geometry of the pupil area boundary.
2. The amplitude distribution inside the pupil area.
3. The phase inside the pupil area.

These dependencies can be used on the other side to form or reshape the focal
caustic by introducing an appropriate complex filtering mask in the pupil in order
to obtain some desired effects. The most important claims in the context of this
point-spread function engineering are:

1. An improved transverse resolution.
2. An improved axial resolution.
3. An improved axial depth of focus.

If the illumination is fully coherent, the generation of the intensity distribution in
the focal region can be understood by the interference of the Huygens elementary
waves, emitted by the exit pupil of the system. Therefore, the different aims
described above are not independent. The caustic has to be formed according to a
practical application. In general, some drawbacks have to be accepted. First of all, it
is necessary to characterize the caustic distribution, in order to have a quantitative
measure which has to be optimized.

There are already two different situations, which have to be distinguished. In the
first case, the pupil mask works as a wavefront coding device and changes the point-
spread function in a passive way. In the second case, the primary detected image
cannot be used directly. But if the mask and therefore the optical transfer function
are known, with the help of a digital calculation, the generation of a final image can
be performed in the computer.

25.4.2

Characterization of the Three-dimensional Point-spread Function

If enhancement of the resolution in either the longitudinal z-direction or the trans-
verse x-direction is desired, the definition of the so called gain-factors is a possible
way of generating a quantitative measure in order to describe the shaping of the
caustic distribution [25-16], [25-17].

For simplification, in the following, the considered system is assumed to have
rotational symmetry. Therefore, the description of the transverse direction is
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reduced to the radial coordinate r. If the pupil function is denoted by P(rp) and the
boundary of the pupil is at rp= a, with the help of the coordinates in the image space,
normalized in the usual way with aperture angle h according to [25-14] is in the lat-
eral direction

v ¼ 2p

k
� r � sin h ð25-17Þ

and in the axial direction

u ¼ 2p

k
� z � sin 2h : ð25-18Þ

Then the field amplitude can be described in Fresnel approximation along the opti-
cal axis as

Uð0; uÞ ¼ 2
R1

0

PðrpÞ � e
1
2iu � r

2
p rp drp ð25-19Þ

and perpendicular to the axis in the ideal image plane as

Uðv; 0Þ ¼ 2
R1

0

PðrpÞ � J0ðv � rpÞ rp drp : ð25-20Þ

With the help of the auxiliary parameter

tp ¼
rp
a

� �2

; ð25-21Þ

the following moments of the pupil function can be defined:

M0 ¼
R1

0

PðtpÞ dtp ; ð25-22Þ

M1 ¼
R1

0

tp � PðtpÞ dtp ; ð25-23Þ

M2 ¼
R1

0

t2p � PðtpÞ dtp : ð25-24Þ

For small values of the coordinates u and v, by a Taylor expansion of the Fresnel
integral, the intensity near the axis in the vicinity of the image plane can be
expressed in the form
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Iðu; vÞ ¼ 1

M0j j2
M0j j2� iu

2
� M0M

�
1 �M�

0M1

	 

þ u2

8
� 2 M1j j2�M0M

�
2 �M�

0M2

	 

� �

� M0j j2� v2

4
� M0M

�
1 þM�

0M1

	 

þ v2

64
� M0M

�
2 þM�

0M2 þ 4 M1j j2
	 


� �

:

ð25-25Þ

This equation is a decoupled expansion of the intensity in the two directions up to
second order in the variables u and v. In the special case of a real pupil function, this
expression simplifies to

Iðu; vÞ ¼ M0j j2 1þ u2

4
� M2

1

M2
0

�M2

M0

� �� �

� 1� v2

2
�M1

M0

� �

: ð25-26Þ

If the focal caustic is manipulated by a complex pupil mask, this quadratic form can
be used in a first-order approximation to describe the changes of the form quantita-
tively. The transverse gain factor describes an improved transverse resolution and is
defined as

GT ¼ 2
M1

M0

: ð25-27Þ

If the value of GT> 1, the resolution is increased in comparison with the case of the
ideal point-spread function of Airy. Similarly, the axial gain factor is defined in the
equation

GA ¼ 12 � M2

M0

� M1

M0

� �2
" #

: ð25-28Þ

If GA> 1, the system shows an increased axial resolution, GT < 1 means that the sys-
tem has an enlarged depth of focus. Using these two gain parameters, in the first
approximation, the intensity distribution can be expressed in quadratic form as

Iðv; uÞ ¼ I0 � 1� 1

4
� v2 � GT

� �

� 1� 1

48
� u2 �GA

� �

: ð25-29Þ

It should be noted that, in addition to the stretching of the caustic intensity volume,
depending on the moments Mj, the centre of the volume suffers a shift along the
optical axis of amount

upeak ¼ �2 � Im M�
0M1

	 


Re M�
2M0

	 

� M1j j2

: ð25-30Þ

Figure 25-14 shows, for the special case of the ideal point-spread function, the quad-
ratic approximation of the intensity in the two directions.
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Figure 25-14: Ideal point-spread function in the transverse and axial

direction and quadratic approximation of the peak width.

For the assessment of the imaging quality, both the relative size of the focus vol-
ume and also the absolute height of the peak intensity, measured with the help of
the Strehl number DS, are relevant. The value of DS can be expressed with the help
of the moments as

DS ¼ M0j j2 � upeak � Im M�
0M1

	 

: ð25-31Þ

In addition, for practical reasons, the energy throughput of the system is an impor-
tant measure. If the pupil function is not only imaginary, a finite amplitude trans-
mission reduces the throughput of the system and therefore deteriorates the signal-
to-noise ratio.

Furthermore, the contrast of the imaging is influenced by enlarged side lobes of
the central focal peak.

In the case of a system with extended depth of focus, the uniformity of the inten-
sity distribution along the axis is a particularly important criterion for the applica-
tion.

25.4.3

Characterization of Extended Depth of Focus

If the amplitude in the image plane at z = 0 serves as a reference, a correlation of the
defocussed amplitude with this reference may serve as a quality measure [25-15]
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e2ðzÞ ¼ 1�
RR

U�
ref ðx; y; 0Þ �Uðx; y; zÞ dx dy









2

RR
Uref ðx; y; 0Þj j2 dx dy

� �2

� RR Uðx; y; zÞj j2 dx dy
� �2 : ð25-32Þ

If the peak value of the focal intensity is shifted along the optical axis, the reference
profile has to be chosen at another z position.

As a special form of scaling this correlation, the so called Hilbert space angle hH
can be used to characterize the extended depth of focus. It is defined with the help
of the intensity correlation as

cos hHðzÞ ¼
R
Iðx; zÞ � Iðx; 0Þ dx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

I2ðx; zÞ dx
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

I2ðx; 0Þ dx
p : ð25-33Þ

If the angle has a small value, the point-spread function profiles agree well and the
uniformity during defocusing is good.

From the viewpoint of information theory, it is usual to use the defocus criterion
according to Fisher. It describes a point of stationarity of the incoherent transfer
function as a function of the defocus and is defined by the equation

JðzÞ ¼ R ¶HOTFðv; zÞ
¶ z











2

dv : ð25-34Þ

25.4.4

Relation Between Axial and Transverse Resolution

For the ideal point-spread function, the lateral resolution is usually described by the
Airy radius

Dxairy ¼ 0:61 � k
n � sin h

: ð25-35Þ

The half-width at half-maximum is given numerically by

Dxfwhm ¼ 0:258 � k

n sin u
: ð25-36Þ

In the quadratic approximation of the central peak

IðxÞ ¼ I0 � 1 � x

Dx

� �2

þ :::

� �

ð25-37Þ

it follows that
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Dxquad ¼ k

p � sin u
: ð25-38Þ

Similarly, in the longitudinal direction, the depth is classically defined by the Ray-
leigh range

Dzrayleigh ¼ 2RE ¼ 2 � k
n � sin 2h

: ð25-39Þ

The half-width at half-maximum results in

Dzfwhm ¼ 0:886 � RE ¼ 0:886 � k
n � sin 2h

ð25-40Þ

and the quadratic approximation gives the value

Dzquad ¼ 2 �
ffiffiffi
3

p
� k

p � n � sin 2h
¼ 1:103 � k

n � sin 2h
: ð25-41Þ

Depending on these definitions, the ratio of the longitudinal to the transverse reso-
lution takes the values given in table 25-3.

Table 25-3: Ratio of the axial to the lateral resolution.

Definition Ratio g ¼ Dz
Dx

Airy/Rayleigh, zero points gideal ¼
3:28

n � sinh
FWHM gfwhm ¼ 3:43

n � sinh
Quadratic approximation gquad ¼ 3:47

n � sinh

As can be seen from the table, the ratios between the resolutions in the axial and
lateral direction only depend on the numerical aperture of the setup. As a conse-
quence, it can be seen that an isotropic focal volume is only possible with an ex-
tremely high numerical aperture of 3.4. This can only be realized in media with a
very high refractive index for an aperture angle near to 90�. This means that, in real-
ity, the focal volume always has a prolate elliptical form.

If the numerical aperture is eliminated in the above equations, it follows the sim-
ple relationship

Dzrayleigh
k

¼ 4n � Dxairy
k

� �2

ð25-42Þ

if the factor in the Airy diameter is approximated as one. This means that only the
refractive index can influence this ratio of the axial resolution to the square of the
lateral resolution, if the resolution values are scaled to the wavelength.
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25.4.5

Ambiguity Function as Defocussed Transfer Function

According to Duffieux, the incoherent transfer function can be written as an auto-
correlation of the pupil function P in the form

HOTFðvÞ ¼
R
P xp þ

k � f � v
2

� �

� P� xp �
k � f � v

2

� �

dxp : ð25-43Þ

If in the pupil function here a defocusing term, z, is introduced,

PðxpÞ ¼ Pðxp; 0Þ � eip�k�z�v
2 ð25-44Þ

the transfer function then follows as

HOTFðv; zÞ ¼
R
P xp þ

k � f � v
2

� �

� P� xp �
k � f � v

2

� �

� e2p�i�
z
f
�xp �v

dxp : ð25-45Þ

This corresponds to the definition of the ambiguity function A [25-18]

HOTFðv; zÞ ¼ A v; v � tanjð Þ ð25-46Þ

if the rotation angle j is introduced by

tanj ¼ z

k
� n � sin 2h : ð25-47Þ

The interpretation of this equation shows that the ambiguity function is a represen-
tation of the transfer function for defocussed systems, the defocussing is given by
the rotation angle j. Figure 25-15 shows this in one dimension. A section through
the function distribution under the angle j gives the transfer function for the corre-
sponding value of defocus. This is shown in figure 25-16.

Figure 25-15: Ambiguity function as a transfer function for defocussed

systems. The rotation angle j corresponds to the value of defocus.
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Figure 25-16: Ambiguity function as a transfer function for defocused

systems. With increasing defocusing, an increasing number of zeros

are crossed in the transfer function.

25.4.6

Image Multiplexing

Application of a linear grating in the pupil plane causes multiple reproduction of
the object pattern in the image plane (figure 25-17a). Multiplication of the object
spectrum by a grating of period d and shape function g(m) for the profile of each
period,

u1 mð Þ ¼ u0 mð Þ � comb
m

d

� �

� g mð Þ ð25-48Þ

leads to an image amplitude given by

U1 xð Þ ¼ dj j �U0 xð Þ � comb d � xð Þ �G xð Þ : ð25-49Þ

The image pattern is thus a repeated function of the object with intensities ~G2(x),

the Fourier transform of the shape function g(m) of the grating. To obtain identical
image intensities for each copy, special gratings have been developed, now fre-
quently called Dammann gratings [25-19].

As shown in chapter 23 in more detail, high-NA imaging systems, in particular,
suffer from small depth of focus. It was proposed therefore to apply pupil filters for
enhancing the depth of focus. One method proved more popular than the others
because it is simple to implement. The depth of focus is enhanced by multiple focus
positions z and –z, centred at the ideal focus z = 0. With quadratic phase change due
to defocus z4 and the application of eq. (20-39) the coherent image amplitude is
obtained by
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Figure 25-17: a) In-line image multiplexing by application of a linear grating

in the pupil plane. b) Imaging with extended depth-of-focus by application of a

Fresnel Zone Plate in the pupil plane.

U x; y; zð Þ ¼ RR t mx; my
	 


� h mx; my
	 


� ei2pNA2

4 z� 2r2�1ð Þ � e2pi mxxþmyyð Þdmxdmy ð25-50Þ

with r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2x þ m2y

q

[25-20]. The pupil function for two image positions with defocus
– dz can be written as

PðrÞ ¼ 1

2
eip

NA2

2 z� 2r2�1ð Þ þ e�ipNA2

2 z� 2r2�1ð Þ
h i

¼ cos pNA2z � r2 � pNA2

2
z

� �

: ð25-51Þ

Figure 25-18 illustrates the phase filter for NA = 1 for several z. Such phase filters
have been approximated by binary phase filters [25-21]. As can easily be seen, pupil
filters according to eq. (25-51) are equivalent to binary phase Fresnel lenses of low
power, producing –1st diffraction orders with small defocus (figure 25-17b). The
interpretation of pupil filters for longitudinal image multiplexing as Fresnel diffrac-
tion gratings offers a wide variety of special filters for depth of focus enhancement.
Similar filters have been described by polynomial expansions of eq. (25-51) [25-22].
However, pupil filters of this type are not required since the image positions can
also be stepped through [25-21] and integrated over time, or, for scanning imaging,
by tilting the detector plane.
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Figure 25-18: Pupil filters for depth of focus enhancement by focus plane doubling.

25.4.7

Fundamental Relationships

There are some fundamental relationships between the limits of resolution and the
caustic parameters in general, which can be deduced from simple analytical treat-
ment of the diffraction integral und Fourier optics [25-23], [25-24]. These are:

1. In the case of a transverse super resolution, the Strehl number must neces-
sarily be smaller than one. This decrease in the Strehl ratio and therefore the
contrast of the imaging setup is independent of the functional realization of
the complex mask.

2. The largest Strehl ratios are obtained for pure phase masks.
3. There is no principal limit known for the improvement of the lateral resolu-

tion. But the decrease in the Strehl number for increasing resolution, results
in a limited practical benefit of this type of arrangement.

4. The improvement in the axial resolution has a factor of two for amplitude
masks and 2.5 for phase masks as a principal limit.

5. Pure phase masks always work asymmetrically around the ideal image plane,
while transmission masks do not.

25.4.8

Calculation of Masks

There are several possible ways to determine pupil phase masks for special purposes
concerned with the modification of the point-spread function in three dimensions
[25-25].
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For some simple special cases, an optimization criterion can be evaluated by first
principles. If the uniformity of the axial distribution of the caustic is required, then
from the stationary phase method, a radial symmetric phase mask with a logarith-
mic form can be obtained. If, on the other hand, it is assumed that the modulation
transfer function has a stationary point, a cubic curve of the phase is obtained in
one dimension.

These solutions are usually restricted to some special circumstances such as a
one-dimensional system, rotational symmetry, paraxial imaging, a small amount of
defocus, considering only the full width at half maximum of the caustic intensity
function, or something else.

For practical applications, it is often recommended that solutions of this kind
should be improved by numerical methods to take some real conditions into
account. But the use of the simple solutions often gives a good starting point for
general optimization algorithms.

In reality, many conditions and assumptions of these basic calculations are not
fulfilled. Some of these occurring in practice are, for example:

1. There are several wavelengths in use.
2. The pupil is not exactly circular.
3. It is not possible to locate the mask exactly in the pupil plane for technical

reasons.
4. There are pupil aberrations which have to be taken into account.

To get the best solution over all the conditions valid in the considered system, a
numerical least-squares fit optimization can help to obtain a mask with the best per-
formance. On one hand, it is possible to describe the pupil by a complex discretized
function, which is calculated with the help of an algorithm of the Gerchberg-Saxton
type [25-25], [25-26] or an equivalent numerical computation scheme.

Other methods describe the pupil function by simple appropriate functional
forms such as polynomial expansions and then optimize a few parameters.

25.5

Special Pupil Masks

25.5.1

Introduction

Apart from the desired effect of a complex pupil mask, there are several different
possible ways to perform point-spread function engineering. The first attempt is to
introduce a pure imaginary phase filter in the pupil of an optical system. The advan-
tage of this kind of mask is the transmittance, since there are no absorption effects
to attenuate the energy of the imaging.

The second form is a purely absorbing filter mask in the pupil. This offers some
advantages; in particular, an unwanted shift of the image plane can be avoided.
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In the most general case, the pupil filter is constructed as a complex mask with
phase and absorbing effects. In this case, the greatest degrees of freedom can be
used to shape the focal caustic. The structuring of the pupil function to modify the
intensity distribution in the image space is sometimes called wavefront coding.

In principle, there are two different ways to attempt this. In the first case, the
shaped caustic is used directly for image formation. In the second and more com-
plex case, the primary image is detected with a digital sensor and the final image
formation is calculated in post-processing algorithms with the help of the knowl-
edge of the pupil mask. This more sophisticated form of digital image formation
offers the possibility of generating quite new imaging aspects.

25.5.2

Phase Masks According to Toraldo

One of the oldest methods of introducing pupil masks follows the proposal of Tor-
aldo di Francia [25-3], [25-27], [25-28]. The pupil is modified using a system of digital
phase rings with phase steps of p. Depending on the number of the radii and the
values of the ring boundaries, different effects can be achieved.

The simplest system of this kind is the well known Fresnel zone plate, which pro-
duces a focussing effect in different orders, according to the principle of grating dif-
fraction. These radii correspond to the radii of the Fresnel zones, so the sign of the
destructive interference zones are inverted by the phase plate. Figure 25-19 illus-
trates this simple example.

Figure 25-19: Fresnel zone plate as a simple phase mask according to the principle

of Toraldo di Francia.

If, in the more general case, the ring radii are given by ej as the relative values in
respect to the outer radius of the pupil circle with the phase values Uj, one gets a
system, as illustrated in figure 25-20.
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Figure 25-20: General phase mask according to the principle of Toraldo di Francia.

In this case, the field in the ideal image plane is given by the equation

UðrÞ ¼
Xn

j¼1

e2p�iUj � e2j �
2J1 kr sin u¢ej
	 


kr sin u¢ej
� e2j�1 �

2J1 kr sin u¢ej�1

	 


kr sin u¢ej�1

� �

ð25-52Þ

where u¢ is the aperture angle in the image space.
As an example, if three rings are chosen with relative separating radii e1 = 0.35

and e2 = 0.62 and a phase step p between neighboring zones [25-29], [25-30], an
extended depth of focus is achieved, as indicated in figure 25-21.

Figure 25-21: Phase mask with three zones according to the principle of Toraldo

di Francia, with extended depth of focus.

25.5.3

Logarithmic Phase Mask

If the condition of a symmetric extended depth of focus for a constant intensity
along the optical axis with the help of the method of stationary phase is assumed,
one gets the following equation, where A, B and uimage are parameters describing
the demands [25-31]

PðxpÞ ¼ A � signðxpÞ � a2 � x2
p � log xp




þ B

	 

� a � xp

f
� uimage : ð25-53Þ
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If a depth of focus Dz is required, an explicit form of the phase mask is given by

ULogðrÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ f 2
p

k
þ r2

2k
� 1

f þ Dz=2
� 1

f

� �

þ a2

2kDz
� ln 1� 2f Dz

a2
þ 2r2f � Dz2

a4
þ 2Dz

a2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ f � fr2

a2

� �2
s2

4

3

5 :

ð25-54Þ

Figure 25-22 shows the distribution of the phase for this kind of mask. The resulting
intensity distribution in the image space is shown in figure 25-23 for a value of
Dz = 10RE. As can be seen from the curves, the uniformity of the intensity along the
axis is far from being perfect. In particular, it can be stated that the form of the
caustic focal volume has a form like a cone with a transverse broadening in the
intra-focal direction towards the system.

Figure 25-22: Phase mask with a logarithmic distribution of the phase.

Figure 25-23: Focal intensity profile for a phase mask with a logarithmic

distribution of the phase and a desired depth of focus of Dz = 10 RE.
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25.5.4

Chirped Ring Pupil

It can be demonstrated in a very elementary way, as shown in chapter 25.4.6 in form
of the image multiplexing principle, that the axial intensity distribution is equal to
the Fourier transform of the pupil function, expressed by the squared coordinate rp

2.
If the pupil is divided into single ring zones, every zone can be apodized by a purely
transmission function with a functional dependence proportional to cos(a rp

2) to
generate a sinc-formed intensity distribution in the image space, shifted along the
axis in a controlled manner [25-32]. If the various sinc functions are arranged at an
appropriate distance, the superposition of all these contributions forms a caustic
with an extended depth of focus. This idea is illustrated in figure 25-24.

Figure 25-24: Chirped amplitude pupil for extended depth of focus.

The amplitude can be described by a convolution in the form

UðzÞ ¼
Xm

n¼�m

d z� n � d zð Þ � sincðzÞ ð25-55Þ

if it is assumed, that 2m+1 single sinc functions are superimposed. From this
expression, the pupil function is derived by the chirp function

PðrpÞ ¼ 1

2m þ 1
� 1þ 2 �

Xm

n¼1

ð�1Þn � cos 2p � n � r2p
� �

" #

: ð25-56Þ
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This distribution shows a sharp peak at the relative pupil radius 1=
ffiffiffi
2

p
. Figure 25-25

shows the typical behaviour of this function for m =8. One of the major drawbacks of
this attempt is the fact that, for a sufficiently high depth of focus, the value of m must
also be sufficiently large and then the integral transmission of the pupil reduces to

T ¼ 1

ð2m þ 1Þ2
: ð25-57Þ

For the above example, with m = 8 and a corresponding extension of the depth of
focus of approximately a factor of 8, a transmission of T = 0.34 % follows, which is
rather low. But, as figure 25-26 shows, the performance of the mask concerning the
focus shaping is excellent in both the axial and the transverse directions. As every
ring zone acts at another position, the lateral resolution is given by the typical prop-
erties of a ring aperture. This can be seen very clearly in the picture in the middle of
figure 25-26, the low convergence of the outer diffraction rings decreases the con-
trast of the imaging system significantly.

Figure 25-25: Chirped cos-amplitude mask for extended depth of focus generation.

Figure 25-26: Intensity distribution of a chirped cos-amplitude mask for

extended depth of focus generation.
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25.5.5

Complex Filter Described by Zernike Expansions

In a very general attempt, the pupil mask can be described by Zernike expansions,
to allow arbitrary profiles for the transmission and the phase function.

Figure 25-27 shows one example of a complex pupil filter of this kind, which gen-
erates a caustic in the image space with an improved axial resolution of approxi-
mately 40 %. Figure 25-28 shows the corresponding intensity distribution. As can be
seen in the picture in the middle of the figure, the transverse resolution is hardly
affected by the mask.

Figure 25-27: Complex decomposed Zernike mask for high axial resolution.

Figure 25-28: Intensity distribution of the complex decomposed Zernike

mask for high axial resolution of figure 25-27.

As a second example, the mask in figure 25-29 exhibits a super resolution effect
in the transverse direction, with an improved lateral resolution of 44 %. This is
shown in figure 25-30.
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Figure 25-29: Complex decomposed Zernike mask for high lateral resolution.

Figure 25-30: Intensity distribution of the complex decomposed Zernike

mask for high lateral resolution of figure 25-29.

As a third example, figures 25-31 and 25-32 show a complex mask, described by a
Zernike expansion for the phase and the amplitude function, which delivers an
extended depth of focus with a factor of approximately 7.

Figure 25-33 shows an example of the modulation transfer function as a function
of the defocussing z for the above system with and without the mask. It can be seen
that, for the normal system as shown in figure a, the transfer function decreases
very slowly for quite low defocussing values. In the case of the system with the
mask, the slow-down of the transfer function with the spatial frequency is quicker,
but it demonstrates a rather good uniformity in the defocus range.
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Figure 25-31: Complex decomposed Zernike mask for an enlarged depth of focus.

Figure 25-32: Intensity distribution of the complex decomposed Zernike

mask for an enlarged depth of focus of figure 25-31.

Figure 25-33: Modulation transfer function as a function of the defocussing z

of a conventional system and a system with an extended depth of focus, for comparison.
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25.5.6

Cubic Phase Plates for Extended Depth of Focus

One of the best known examples for obtaining a system with an enlarged extended
depth of focus is the insertion of a cubic phase plate in the pupil of an optical system
[25-33], [25-34], [25-15]. The pupil mask generates a primary image of poorer quality,
but after deconvolution of the digital detected image with the known transfer func-
tion, an image of quite good quality can be obtained, which is in first approximation
independent of the defocussing in a certain range.

If x and y are the normalized pupil coordinates and a is a parameter which scales
the strength of the pupil filter, the system works with the pure imaginary pupil
mask of the form

Pmaskðxp; ypÞ ¼ ei�a� x3pþy3pð Þ : ð25-58Þ

In the easiest implementation, the pupil boundary is formed as a quadratic opening,
so the coordinate directions x and y are fully decoupled. Figure 25-34 shows the
corresponding phase surface.

Figure 25-34: Phase function of a cubic phase plate as a contour representation

and in form of a perspective sketch.

The parameter a defines the effect of the filter and determines the depth of focus,
which is reached with the mask. Typical values of this parameter are in the range
a > 20.

Figure 25-35 shows the form of the point-spread function of a system with a cubic
phase plate. As can be seen, the phase distortion generates a point-spread function
with a very large extent, which resembles a coma-type point-spread function in the x
and y directions. In reality, the extension of the depth of focus is large enough, if the
parameter a is large. This then causes a very broad point-spread function, so the
primary image is of very poor quality.

Figure 25-36 illustrates the form of the corresponding modulation transfer func-
tion. The transfer is very high along the coordinate directions, but decreases very
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quickly in the diagonal directions. The long range of a nearly constant modulation
along the axes is typical. If the system should be deconvolved over a large range of
defocus, the transfer function is not allowed to have zero points. Therefore, a low
but almost constant value is desired for the curve of the modulation as a function of
the defocus.

Figure 25-35: Point-spread function and modulation transfer function of a

system with a cubic phase plate.

Figure 25-36: Point-spread function and modulation transfer function of a

system with a cubic phase plate.
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If the phase function in only one dimension is described by only one simple poly-
nomial term in the form

UðxpÞ ¼ B � xa
p ð25-59Þ

with the coefficient a, then using the method of stationary phases, one gets the
ambiguity function

Aðv; v � tanjÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p

12 a � vj j

r

� ei� a�v3
4 �p2v2 tan 2j

3a� v
	 


: ð25-60Þ

It can be seen that, for large values of the parameter a, this function can be approxi-
mated by

Aðv; v � tanjÞ »
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p

12 a � vj j

r

� ei�a�v
3

4 ð25-61Þ

and therefore it has no dependence on the defocus parameter j. Figure 25-37 shows
the change in the form of the absolute value of the ambiguity function with increas-
ing parameter, a. It can be seen that, for large a, the form of the distribution sup-
ports sufficiently large values of the frequency and large defocussing, which is pro-
portional to a rotation angle around the origin, see figure 25-16 for an explanation.

The analytical calculation for this simple one-dimensional case shows that the
invariance of the point-spread function on the defocus is only approximately valid
and that, in reality, there are some effects which deteriorate the expected ideal per-
formance. But the advantage of the method in real imaging can be seen in figure
25-38. There, a system is shown with an object, having a large depth so that in the
conventional image only some details are seen sharply. If the cubic phase mask is
inserted, the primary image is much worse, but the deconvolution delivers an
image, which shows the details of the object very sharp in nearly all planes. Figure
25-39 shows the same effect with the help of a simulation. Here, the advantage of
the system with the mask in comparison to conventional imaging can be seen very
clearly. In the right-hand side picture of the first row of this figure, the detected pri-
mary picture with the mask shows a significant loss of symmetry. This is one draw-
back of the cubic mask, with its odd phase function. The point-spread function is
broadened extremely anisotropically. This corresponds to an offset in the image and
causes a jump in the image location. It should be noticed that, for this example cal-
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system with cubic phase plate and increasing value of the parameter a.
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culation, a circular pupil is assumed. This causes some significant differences in the
form of the distribution of the point-spread function in the centre region, in compar-
ison with the square pupil of figure 25-35.

Figure 25-38: Experimental demonstration of the influence of the cubic phase plate

with and without deconvolution in comparison with traditional image formation [25-35].

Figure 25-39: Simulated demonstration of the influence of the cubic phase plate

with and without deconvolution in comparison with traditional image formation.



Figure 25-40: Real and imaginary part of the optical transfer function for a system

with a cubic phase mask of constant strength and different defocussing coefficients c4.

If an optical system containing a cubic phase plate is defocussed, the phase func-
tion is composed of the two terms

UðxpÞ ¼ a � x3
p � c4 � 2x2

p � 1
� �

ð25-62Þ

where the second term describes the defocussing and is formulated in the usual
Zernike convention. In an interesting case, these two function compensate each
other. The modulation takes a nearly constant value as a function of the defocussing,
but the complex optical transfer function oscillates very quickly. This corresponds to
a large variation in the phase transfer function and causes the lateral offset dis-
cussed above. Figure 25-40 shows a representation of the complete complex beha-
viour of the transfer function in a 3D-diagram. The complex vector of the optical
transfer function rotates around the axis, its absolute length remains nearly con-
stant, which corresponds to an invariant contrast. Figure 25-41 shows another repre-
sentation, where on the left side, the modulation is shown with a growing defocuss-
ing parameter c4 and on the right side, only the real part is projected onto the axis.
This discussion shows that the phase of the optical transfer depends on the value of
the defocus. Therefore, the object details with larger frequency components cannot
be reconstructed correctly. This causes a loss of resolution and imaging artefacts,
which occur for larger defocussing values. For systems which are not diffraction-
limited, this may not be a serious problem, but for microscopical applications, the
imaging shows these disadvantages.
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25.5.7

Structured Illumination

The principle of multiplexing in the frequency domain can be used to enlarge the
resolution of an imaging system. If the object is illuminated with a grating-typed
structured illumination of the form [25-36], [25-37], [25-38]

ILðx; yÞ ¼ 1þ DI � cos vo � x þ joð Þ ð25-63Þ

with a grating frequency m, this carrier frequency transforms the object spectrum in
the Fourier space to both frequency arms +mo and –mo. This is shown in figure 25-42.

Figure 25-42: Principle of the carrier frequencies and the shift of the object spectrum.
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Figure 25-41: Absolute value and real part of the optical transfer function for a system

with a cubic phase mask of constant strength and growing defocussing coefficient c4.



If the detection of the image is filtered, the carrier frequency can be removed and
the object is reconstructed. If the projection of the grating is coherent and the imag-
ing is incoherent, the imaging process can be described in one dimension by the
equation

I x ¢ð Þ ¼ R
IL xLð Þ � R gL xL þ xoð Þ � t xoð Þ � gpsf x þ xoð Þ dxo









2

dxL ð25-64Þ

where t is the object transmission function, gL is the coherent transfer function of
the illumination system and gpsf is the amplitude point-spread function of the imag-
ing system. If a sinusoidal grating is assumed, this equation gives the image signal

Iðx ¢Þ ¼ Ioðx ¢Þ þ Isðx ¢Þ � sinjo þ Icðx ¢Þ � cosjo : ð25-65Þ

The information of the object is coded in this distribution and is contained in the
expression

Iimage ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

I2s þ I2c
p

: ð25-66Þ

The extraction of the desired information is possible, if the imaging process is per-
formed for several values of the illumination phase angle jo. A post-processing than
eliminates the angle. If, for example, the angle takes the three values

jo ¼ 0 =
2p

3
=
4p

3
ð25-67Þ

which correspond to the generation of three images with a slightly shifted grating,
the three images can be used to calculate the true image with the help of the equa-
tion

Iimage ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

I1 � I2ð Þ2þ I1 � I3ð Þ2þ I2 � I3ð Þ2
q

: ð25-68Þ

Figure 25-43 shows a calculated example for resolution enhancement using a struc-
tured illumination in the described manner. A single image for one concrete value
of jo is already coded by the illumination. The imaging without the grating illumi-
nation cannot resolve the object grating, which is rotated by a small amount.

The grating illumination causes a mulitplexing of the frequencies in the Fourier
space. In the extreme case, the resolution can be enlarged by a factor of two. This is
shown in figure 25-44 and occurs if the directions of the frequency vectors of the
grating and the biggest object frequency are opposed.
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Figure 25-43: Illustration of the gain in resolution for the imaging of a grating

with a period near the limiting frequency, by structured illumination, and post-

processing by calculation.

Figure 25-44: Extreme case of the grating projection

with a doubling of the resolution.

To understand the method in the spatial domain, figure 25-45 shows the genera-
tion of the diffraction orders in the object plane. The principle resembles the resolu-
tion enhancement in microscopy due to a skew illumination (see the next chapter).
Here the skew direction comes from the first diffraction order of the illumination
grating.
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Figure 25-45: Illustration of the enhanced resolution of the grating

projection in the spatial domain.

25.6

Selected Practical Applications for Pupil Filtering Techniques

25.6.1

Phase Contrast Filtering, Dark-field Illumination

The images of phase objects are typically hardly visible in optical imaging. With the
square of the transmission function

T xð Þj j2¼ Aeij xð Þ




2¼ A2 ð25-69Þ

in the incoherent image, according to eq. (21-56), phase structures cannot be
resolved at all. However, even weak phase objects can be made visible by pupil filter-
ing. The transmission function weak phase object can be expanded into a power
series:

T xð Þ ¼ Aeij xð Þ ¼ Aþ iAj xð Þ þ ::: ð25-70Þ

The object spectrum is then given by

t mð Þ ¼ Ad 0ð Þ þ iAF½j� mð Þ : ð25-71Þ

The spectrum thus consists of a dominating real part, given by the “zero order”, and
an imaginary part, given by the Fourier transform of the phase j(x). The phase
function can thus be made visible after suppressing the zero order by a pupil filter.
After convolution with the effective light source, the first term leads to an identical
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image of the light source in the entrance pupil – as illustrated in figure 25-46 for
illumination with a small axial light source. As a consequence, complementary
source-pupil masks are applied as phase-contrast pupil filters [25-39], [25-40]. The
direct part from the light source can thus be effectively filtered out by the application
of a pupil filter of the same shape as the light source. The image intensity is then
given by

I xð Þ ¼ A2 j xð Þj j2 : ð25-72Þ

Figure 25-46: Phase contrast imaging for imaging of weak phase objects:

a) with central pupil obscuration; and b) for dark-field illumination.

Since the contrast enhancement is achieved by filtering the zero diffraction order
or image of the effective light source, the same effect can alternatively be achieved
by dark-field illumination, i.e., when the effective light source image is outside of
the entrance pupil (figure 25-46b) [25-41]. As consequence, the zeroth diffraction
order cannot pass the lens and only higher diffraction orders contribute to the
image. Dark-field illumination in combination with pupil filters was proposed in
order to produce colour effects in microscopic images when, e.g., the background
light passes a different colour section of a pupil filter than does the scattered light of
the object (Rheinberg Differential Colour Illumination [25-42]).

For illustration, figure 25-47 shows an x–z scan through the amplitude distribu-
tion of the image of a rectangular phase object of 3k diameter with strong phase
(j=p) and weak phase (j=p/10), obtained in the focal region of a ideal system of
NA = 0.4. The strong phase shift is easy to be recognized, while the weak phase shift
causes only a weak disturbance in the wavefronts.

25.6 Selected Practical Applications for Pupil Filtering Techniques 451



Figure 25-47: Amplitude distribution (x–z scan) of the image of phase structures of phase j.

In figure 25-48, the simulation results for the image formation of the phase struc-
ture are compared for coherent illumination, conventional bright-field illumination
with r= 0.7 and annular dark-field illumination with rin= 1.1 and rout= 1.3 (at
NA = 0.4). While, for the strong phase shifts, the contrast for dark-field and bright-
field is equal in both cases V ~ 90%, the weak phase shifter is not resolved in the
conventional illumination settings with r= 0.05 and r= 0.7, but imaged with again a
high contrast of V ~ 90% by dark-field illumination.

Figure 25-48: Comparison of the images (x–z scans) of a strong and a weak phase

shifter with coherent, incoherent conventional and annular dark-field illumination.
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According to Zernike, instead of an opaque filter to block the zero order, a phase
filter of the shape of the light source and phase given by an odd multiple of p/2 is
applied [25-43]. One obtains finally for the transmitted spectrum

t¢ mð Þ ¼ h mð Þ � t mð Þ ¼ Ad 0ð Þei
2nþ1ð Þ
2 p þ AF½eij xð Þ� : ð25-73Þ

For the intensity it follows

I xð Þ ¼ Aei
p
2þj xð Þ½ �









2

» A2 i 1þ j xð Þ½ �j j2 » 1þ 2 � j xð Þ : ð25-74Þ

In contrast to eq. (25-72), the phase function now influences the intensity linear.

25.6.2

Frequency Doubling

Diffraction gratings show typically strong 0th and 1st diffraction orders, while, e.g.,
the 2nd diffraction orders vanish. With the image period given by the minimum dis-
tance of diffraction orders in the entrance pupil, application of a filter to block the
zero diffraction order may lead to a grating image of doubled frequency:

I xð Þ ~ cos 2p
2

d
x

� �

: ð25-75Þ

Consequently, a central pupil obscuration may lead to a doubled image frequency,
as long as both of the 1st diffraction orders pass the lens aperture. For frequency
doubling, phase gratings can also be applied, when the phase of the grating is
selected appropriately to cancel the zero diffraction order and only the two 1st dif-
fraction orders contribute to the image. Frequency doubling by phase masks or
pupil filtering has been proposed for optical lithography in order to reduce the
expenses for lithography masks [25-44], [25-45], [25-46].

In general, images of phase objects have low contrast for incoherent illumination.
With phase contrast imaging, the contrast can be enhanced [25-41]. The effect of
phase contrast filtering is illustrated for the example of annular dark-field illumina-
tion for the imaging of a phase grating of four periods with period d = 3k. Figure
25-49 illustrates, for the amplitude distribution through the focus, the phase shift
according to a strong phase grating with j=p and a weak phase grating with phase
j=p/5. Figure 25-50 illustrates the images under different illumination conditions.
All resolved images exhibit frequency doubling. Both gratings are imaged with iden-
tical contrast under annular dark-field illumination (V ~ 59%). Figure 25-51 illus-
trates the 3D-transfer function for the illumination setting and the transmitted grat-
ing spectrum. With dark-field illumination, the spectrum read-out is laterally almost
invariant and thus for thin objects many images, which are almost identical, are
superposed.

25.6 Selected Practical Applications for Pupil Filtering Techniques 453



Figure 25-49: Amplitude distribution of on-axis illuminated phase grating of

period d = 3k (NA = 0.8).

Figure 25-50: Intensity distribution of a phase grating with four periods of

period d = 3k (NA = 0.8).
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Figure 25-51: a) Dark-field 3D MTF for NA = 0.8 and rin =1.1 – rout= 1.25;

b) transmitted frequency spectrum of a phase grating with period 3k.

25.6.3

Defect Filtering

The transmission function of a deteriorated periodic object can be given as a bilinear
superposition of the ideal object transmission and the transmission function of the
error:

T xð Þ ¼ Tideal xð Þ þ Terror xð Þ : ð25-76Þ

To detect the errors, it is advantageous to block the diffraction orders of the ideal
object by a pupil filter, such that

u1 mð Þ ¼ h mð Þ � tideal mð Þ þ terror mð Þ½ � ¼ terror mð Þ : ð25-77Þ

with

h mð Þ ¼ 1 tideal mð Þ ¼ 0
0 tideal mð Þ „ 0 :

�

ð25-78Þ

Figure 25-52: Defect detection by spatial filtering technique: Grating with errors,

frequency spectrum and filtered image.
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This method is especially applicable for defect analysis in periodic objects like grat-
ings (see figure 25-52 for an illustration) [25-47]. As pupil filters, spatial modulators
and non-linear crystals have been proposed. In general, difference filters in the
pupil plane can be applied to suppress or enhance certain object details.

25.6.4

Ronchi Test

The Ronchi test was introduced for the metrology of the aberrations of optical sys-
tems and is also applied to the metrology of optical surfaces [25-48], [25-49]. Here it
is described as a special example of image multiplexing for the imaging of phase
objects [25-50]. To simplify the discussion, an ideal system is assumed with trans-
mission function h(m) = 1.

Figure 25-53: Setup of a Ronchi Test for an imaging optical system.

The transmission function of a phase object is given by

T xð Þ ¼ A xð Þ � eij xð Þ ð25-79Þ

with A(x) » 1. After multiplication to the illumination distribution S(x) and Fourier
transformation, the distribution in the entrance pupil is obtained:

u0 mð Þ ¼ t mð Þ � s mð Þ: ð25-80Þ

The field distribution is then multiplied to the filter function of the Ronchi grating:

u1 mð Þ ¼ u0 mð Þ � ronchi m

d

� �

: ð25-81Þ

In the image plane, we finally obtain

U1 xð Þ ¼ d

2
�U0 xð Þ � comb d � xð Þ � sinc d

2
� x

� �

: ð25-82Þ
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After expansion of the weighted comb function we obtain

U1 xð Þ ¼
X

m

cm �U0 x �m

d

� �

ð25-83Þ

with the diffraction amplitudes cm ¼ 0:5 � sinc m=2ð Þ. The first diffraction ampli-
tudes cm and efficiencies gm are summarized in table 25-4.

Table 25-4: Diffraction amplitudes and efficiencies of a Ronchi grating.

Order m 0 1 2 3

Amplitude Amplitude cm 0.5 1/p= 0.32 0.0 –1/3p= –0.11

Efficiency gm 25 % 10 % 0 % 1 %

The image intensity is thus given by a series expansion:

I xð Þ ¼
X

m

cm �U0 x �m

d

� �












2

¼
X

m;n

cmc
�
n �U0 x �m

d

� �

�U�
0 x � n

d

� �

: ð25-84Þ

With k=m – n we obtain

I xð Þ ¼
XN

k¼0

ik xð Þ : ð25-85Þ

After insertion of the transmission function and the coherence function, CS, ik(x)
can be written as

i0 xð Þ ¼
X

m

cm � T x �m

d

� �







2

�CS x �m

d
; x �m

d

� �

; ð25-86Þ

ik xð Þ ¼ 2
X

m

Re cmc
�
m�k � CS x �m

d
; x �m � k

d

� �

� T x �m

d

� �

� T� x �m � k

d

� �� �

:

ð25-87Þ

For an incoherent source, the coherence function CS according to eq. (21-37) is
given by the Fourier transform of the intensity of the effective light source:

CS x1; x2ð Þ ¼ S x1ð Þ � S� x2ð Þ ¼ R s mq
	 





2 � ei2pmq x1�x2ð Þdmq ð25-88Þ

As a consequence, the coherence function CS(x1,x2) is constant for x1 = x2 and eqs.
(25-86), (25-87) can be simplified to
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i0 xð Þ ¼ CS 0; 0ð Þ �
X

m

cm � T x �m

d

� �







2

; ð25-89Þ

ik xð Þ ¼ 2 � CS 0;
k

d

� �

�
X

m

Re cmc
�
m�k � T x �m

d

� �

� T� x �m � k

d

� �� �

: ð25-90Þ

For phase objects, the image intensity is thus given by a constant background inten-
sity i0 superposed by multiple interference patterns formed by shifted images of the
object. With amplitude A = 1 and real diffraction efficiencies cm of the grating, we
obtain

ik xð Þ ¼ 2 � CS 0;
k

d

� �

�
X

m

Re cmc
�
m�k � A x �m

d

� �

� A� x �m � k

d

� �

� ei j x�m
dð Þ�j x�m�k

dð Þ½ �
� �

¼ 2 � CS 0;
k

d

� �

�
X

m

cmcm�k � cos j x �m

d

� �

� j x �m � k

d

� �� �

:

ð25-91Þ

Figure 25-54: Coherence and Wigner distribution function of a Ronchi Test

with grating period d = k/NA for an ideal optical system for coherent illumination.

Coherence function in: a) the object; and b) the image plane, and Wigner

distribution function in: c) the object plane; and d) the image plane.

The intensity ik is thus given by a superposition of interference patterns equiva-
lent to a shearing interferometer with a lateral shear of k/d. Figure 25-54 illustrates
the Ronchi test for the coherence transfer function and the Wigner distribution
function for the example of a constant phase object of finite width. The image inten-
sity is given by the diagonal elements of the coherence function, I(x) =Ci(x,x). The
coherence function in the image plane Ci(x1,x2), shown in figure 25-54b, is formed
by a superposition of several copies of the coherence function of the object, shown
in figure 25-54a. The copies of the object coherence function are shifted in accor-
dance with the Ronchi grating period. As can be seen in figure 25-54b, with the
Ronchi grating period d = k/NA the first diffraction order overlaps 50% with the
zero order. For a phase object with constant phase j(x) =j0, the interference pattern
ik is also constant and the image intensity I(x) depends only on the number of dif-
fraction orders. The Wigner distribution function WDF of the amplitude distribu-
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tion in the image plane, shown in 25-54d, is given by a periodic repetition of the
WDF in the object plane, shown in 22-54c. According to eq. (25-91), the interference
pattern in the image plane is formed by a superposition of the phase functions j(x)
of the object transmission function, shifted by multiples of 1/d. As a consequence,
object frequencies given by multiples of the frequency 1/d are not resolved. The
Wigner distribution function in the image plane, shown in figure 25-54d, vanishes
for multiples of the shear frequency 1/d.

Figure 25-55 compares the Ronchi test with the Ronchi grating period d = 8k/NA
for the example of an ideal phase object and a phase object given by a phase distribu-
tion ~ x3 as described by coma aberration (Z7).

Figure 25-55: Coherence and Wigner distribution function of a Ronchi Test

with grating period d = 8k/NA for an ideal optical system and with coma (Z7 = k)

for coherent illumination. Coherence function in: (a) the object; and (b) the image plane,

and Wigner distribution function in: (c) the object; and (d) the image plane.

The visibility of the interference ik of order k depends on the coherence function
CS(0,k/d). After consideration of the zeroth and first diffraction orders only, we
obtain

i0 xð Þ ¼ CS 0; 0ð Þ � c20I0 xð Þ þ c21I0 x � 1

d

� �

þ c2�1I0 x þ 1

d

� �� �

; ð25-92Þ

i1 xð Þ ¼ 2 � CS 0;
1

d

� �

� Re c1c
�
0 � T x � 1

d

� �

� T� xð Þ þ c0c
�
�1 � T xð Þ � T� x þ 1

d

� �� �

;

ð25-93Þ

i2 xð Þ ¼ 2 � CS 0;
2

d

� �

� Re c1c
�
�1 � T x � 1

d

� �

� T� x þ 1

d

� �� �

: ð25-94Þ
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Figure 25-56: Coherence function with a source s(m) given by rect functions with different widths.

The visibility of the interference patterns ik is thus determined by the coherence
function at k/d. As shown in figure 25-56, with different sizes, and incoherent
source distributions described by a rect function, different interference patterns of
order k can be selected. For an effective light source given by a rect function of width
d/2 with

s mð Þ ¼ rect
2 � m
d

� �

ð25-95Þ

the normalized coherence function is given by

CS 0; xð Þ ¼ sinc
d

2
x

� �

: ð25-96Þ

As a consequence, CS(0,k/d) vanishes for even k > 0. Since the coherence between
point distances 2/d vanishes, and the interference i2(x) is dampened. After insertion
of the transmission function and for a source distribution of width d/2 it follows for
the interference pattern i1(x) in the image plane that

i1 xð Þ ¼ C � cos j xð Þ � j x � 1

d

� �� �

þ cos j x þ 1

d

� �

� j xð Þ
� �� �

: ð25-97Þ

The interference pattern of first order is thus equivalent to a shearing interferometer
with lateral shear of –1/d. Examples of interference patterns for phase functions
given by different Zernike aberrations are illustrated in figure 16-49. Figure 25-57
illustrates the impact of an incoherent source with extension di = d/2 in comparison
to coherent illumination for the example illustrated in figure 25-55.

As can be shown, the second-order interference pattern is also vanishing for
effective light sources equivalent to the Ronchi grating applied as a pupil filter in
eq. (25-81) [25-51].
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The Ronchi test is frequently applied to the metrology of optical systems. The
source is placed in the object plane of the optical system and the grating in the
image plane (see figure 25-58). With an additional lens, e.g. that of a microscope,
the pupil plane is image on a CCD camera, where the interferogram is recorded.

Figure 25-58: Ronchi aberration test of an optical system with grating as source distribution.

Figures 25-59 and 25-60 illustrate the Ronchi test of a test setup according figure
25-58 for the Wigner distribution function. The Wigner distribution function in the
exit pupil We is compared with the Wd in the detector plane for the example of dis-
tortion (Z2) and coma (Z7) of different magnitudes, respectively.
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Figure 25-57: Coherence and Wigner distribution function of a Ronchi Test

with grating period d = 8k/NA for an ideal optical system and with coma (Z7 = k) for

different extensions di of the light source: a) coherent illumination; and b) di = d/2.



Figure 25-59: Wigner distribution function in the exit pupil (a) and the detector plane

(b) for different amounts of distortion dx ~ Z2/NA.

Figure 25-60: Wigner distribution function in the exit pupil a) and the detector plane

b) for different amounts of distortion Z7.

In figure 25-61 Ronchigrams for three simple aberration types are shown for
illustration.
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Figure 25-61: Ronchigrams for some simple aberrations.

25.7 Literature 463

25.7

Literature

25-1 W.T. Welford, J. Opt. Soc. Am. 50, 749
(1960), Use of annular apertures to increase
depth of focus.

25-2 S.T. Yang, R.L. Hsieh, Y.H. Lee, R.F.W.
Pease, G. Owen, SPIE 1264, 477 (1990),
Effect of central obscuration on image for-
mation in projection lithography.

25-3 G.Toraldo di Francia, Nuovo Cimento 9,
Suppl., 426 (1952), Super-gain antennas and
optical resolving power.

25-4 S. Fujiwara, J. Opt. Soc. Am. 52, 287 (1962),
Optical properties of conic surfaces.I.
Reflecting cone.

25-5 T. Asakura and S. Nagai, Jpn. J. Appl. Phys.
10, 879 (1971), Further studies of far-field
diffraction by modified annular and annulus
apertures.

25-6 H.F.A. Tschunko, Appl. Opt. 18, 3770 (1979),
Imaging performance of annular apertures.
3: Apodization and modulation transfer
functions.

25-7 Z.S. Hegedus, V. Sarafis, J. Opt. Soc. Am.
A 3, 1892 (1986), Super resolving filters in
confocally scanned imaging systems.

25-8 R. Arimoto et al., Appl. Opt. 31, 6653 (1992),
Imaging properties of axicon in a scanning
optical system

25-9 Ch. Hofmann, Die optische Abbildung (Aka-
demische Verlagsgesellschaft, Leipzig, 1980)

25-10 D. A. Holmes, J. E. Korka and P. V. Avizonis,
Appl. Opt. 11, 565 (1972), Parametric study
of apertured focused Gaussian beams.

25-11 E. Marom, B. Chen and O. G. Ramer, Opt.
Eng. 18, 79 (1979), Spot size of focused trun-
cated Gaussian beams.

25-12 R. Jozwicki, Optica Acta 30, 1011 (1983),
Parametric analysis of truncated Gaussian
beams.

25-13 Melles Griot Optics Guide, www.melles-
griot.com

25-14 M. Born and E. Wolf, Principles of Optics
(Cambridge University Press, Cambridge,
1999).

25-15 P. T
r
k and F.-J. Kao, Optical Imaging and
Microscopy (Springer, Berlin, 2003), chap-
ters 4 and 5.

25-16 M. Yun, L. Liu, J. Sun and De’an Liu, J. Opt.
Soc. Am. A 22, 272 (2005), Three-dimen-
sional super resolution by three-zone com-
plex pupil filters.

25-17 D.M. de Juana, J. E.Oti, V. F. Canales andM.
P.Cagigal, Opt. Lett 28, 607 (2003), Design of
super resolving continuous phase filters

25-18 K.-H. Brenner, AW. Lohmann and J. Ojeda-
Castaneda, Opt. Commun. 44, 323(1983),
The ambiguity function as a polar display of
the OTF.

25-19 H. Dammann and K. G
rtler, Opt. Com-
mun. 3, 312 (1971), High-efficient in-line
multiple imaging by means of multiple
phase holograms.

25-20 G. H�usler, Opt. Commun. 6, 38 (1972),
A method to increase the depth of focus by
two-step image processing.



25 Special System Examples and Applications464

25-21 H. Fukuda, T. Terasawa and S. Okazaki,
J. Vac. Sci. Technol. B 9, 3113 (1991), Spatial
filtering for depth of focus and resolution
enhancement in optical lithography.

25-22 R. Hild, M.J. Yzuel, J.C. Escalera and J. Cam-
pos, Opt. Eng. 37, 1353 (1998), Influence of
non-uniform pupils in imaging periodical
structures by photolithographic systems.

25-23 T. R. Sales and. G. M. Morris, Opt. Lett. 22,
582 (1997), Fundamental limits of optical
super resolution.

25-24 T. R. Sales, Phys. Rev. Lett. 81, 3844 (1998),
Smallest focal spot.

25-25 H. J. Caulfield (Ed.), Optical Information
Processing: A Tribute to Adolf Lohmann
(SPIE Press, Bellingham, 2002), chapter 13

25-26 J. R. Fienup, Appl. Opt. 21, 2758 (1982),
Phase retrieval algorithms: a comparison.

25-27 M. Martinez-Corral, M. T. Caballero,
E. H. Stelzer and J. Swoger, Optics Express
10, 98 (2002), Tailoring the axial shape of
the point-spread function using the Toraldo
concept.

25-28 C. J. Shepard, G. Calvert and M. Wheatland,
J. Opt. Soc. Am. A 15, 849 (1998), Focal dis-
tribution for super resolving Toraldo filters.

25-29 H. Wang and F. Gan, Appl. Opt. 41, 5263
(2002), Phase-shifting apodizers for increas-
ing focal depth.

25-30 H. Wang and F. Gan, Appl. Opt. 40, 5658
(2001), High focal depth with a pure phase
apodizer.

25-31 X. Liu, X. Cai and C. P. Grover, Proc. SPIE
5174, 51 (2003), Extending the focal depth of
an optical tracking system using a phase
pupil plate.

25-32 J. Ojeda-Castaneda and L. R. Berriel-Valdos,
Appl. Opt. 29, 994 (1990), Zone plate for
arbitrarily high focal depth.

25-33 S. S. Sherif, W. T. Cathey and E. R. Dowski,
Appl. Opt. 43, 2709 (2004), Phase plate to
extend the depth of field of incoherent
hybrid imaging systems.

25-34 W. T. Cathey and E. R. Dowski, Appl. Opt.
41, 6080 (2002), New paradigm for imaging
systems.

25-35 E. R. Dowski, pubication with permission.
25-36 V. Solomon, Z. Zalevsky and D. Mendlovic,

Appl. Opt. 42, 1451 (2003), Super resolution
by use of code division multiplexing.

25-37 M. G. Gustafsson, D. A. Agard and
J. W. Sedat, Proc. SPIE 3919, 141 (2000),
Doubling the lateral resolution of wide-field
fluorescence microscopy using structured
illumination

25-38 W. Lukosz, J. Opt. Soc. Am. 56, 1463 (1966),
Optical systems with resolving powers
exceeding the classical limit.

25-39 Rhodes, M. Koizumi, Proc. IEEE of the
Tenth optical Computing Conference 1983,
32 (1983), Image enhancement by partially
coherent imaging.

25-40 G. Indebetouw and Ch. Varamit, J. Opt. Soc.
Am. A 2, 794 (1985), Spatial filtering with
complementary source-pupil masks.

25-41 T. Noda, S. Kawata and S. Minami, Appl.
Opt. 29, 3810 (1990), Three-dimensional
phase contrast imaging by an annular illu-
mination microscope.

25-42 G.H. Needham, The Practical Use of the
Microscope, (Thomas Publications, 1958).

25-43 F. Zernike, Z. Tech. Phys. 16, 454 (1935),
Das phasenkontrastverfahren bei der mik-
roskopischen Beobachtung.

25-44 H. H�nsel and W. Polack, German Demo-
cratic Republic Patent No. 126.361 (1976),
Verfahren zur Herstellung einer Phasen-
maske mit Amplitudenstruktur.

25-45 M. D. Levenson et al., IEEE Trans. Electron
Devices ED-29, 1828 (1982), Improving
resolution in photolithography with a phase-
shifting mask.

25-46 T. Jewell and D. L. White, J. Lightwave Tech-
nol. 7 (9), 1386 (1989), Spatial frequency
doubling lithography SFDL.

25-47 N.N. Axelrod, US 3,658,420 (1969), Photo-
mask inspection by spatial filtering.

25-48 V. Ronchi, Appl. Opt. 3, 437 (1963), Forty
years of history of a grating interferometer.

25-49 A. Cornejo, Appl. Opt. 9, 1897 (1970),
D. Malacara, Ronchi test of aspherical
surfaces, analysis and accuracy.

25-50 R. Barakat, J. Opt. Soc. Am. 59, 1432 (1969),
General diffraction theory of optical aberra-
tion tests, from the point of view of spatial
filtering.

25-51 A. Cornejo-Rodriguez, Ronchi Test, in Opti-
cal Shop Testing, ed. D. Malacara, p. 283
(Wiley, New York, 1978).



465

26.12 Literature 520

26.1 Introduction 467

26.2 Polarization States 467

26.2.1 Representation of Polarization States 468

26.2.2 Jones Vector 468

26.2.3 Ellipse of Polarization 470

26.2.4 Orthogonal Jones Vectors 471

26.2.5 Jones Vectors in Different Bases 472

26.2.6 Unpolarized Light 472

26.2.7 Partial Polarization 473

26.2.8 Polarization Matrix 473

26.2.9 Stokes Vector 475

26.2.10 Poincar� Sphere 478

26.3 Jones Matrix 479

26.3.1 Definition 479

26.3.2 Jones Matrix Acting on a Jones Vector 480

26.3.3 Succession of Jones Matrices 480

26.3.4 Jones Matrix Acting on a Polarization Matrix 481

26.3.5 Examples of Jones Matrices 481

26.3.6 Rotated and Mirrored Jones Matrix 482

26.3.7 Jones Matrix for Different Basis Polarization States 483

26.3.8 Eigenpolarizations of a Jones Matrix 483

26.3.9 Jones Matrix of a Retarder 484

26.3.10 Jones Matrix of a Partial Polarizer 487

26.3.11 Pauli’s Spin Matrices 489

26.3.12 Jones Matrix Decomposition 489

26.4 M�ller Matrix 491

26.4.1 Definition 491

26.4.2 Examples 492

26.5 M�ller–Jones Matrix 493

26.6 Light in Anisotropic Media 494

26.6.1 Anisotropic Media 494

26

Polarization



26 Polarization

26.6.2 Principal Refractive Indices of an Anisotropic Medium Without Spatial
Dispersion and Optical Activity 495

26.6.3 Fresnel Ellipsoid 496

26.6.4 Index Ellipsoid 497

26.6.5 Types of Birefringent Media 497

26.7 Eigenwaves in Anisotropic Media 501

26.7.1 Plane Waves in Anistropic Media 501

26.7.2 Eigenwaves and their Polarization 502

26.7.3 Properties of the Eigenpolarizations 506

26.7.4 The Intersection Ellipse 506

26.8 Jones Matrix of Propagation 507

26.9 Jones Matrices of Propagation for Common Media 508

26.9.1 Eigenpolarizations and -values 508

26.9.2 Coordinate Systems 509

26.9.3 Uniaxial Crystal 509

26.9.4 Biaxial Crystal 510

26.9.5 CaF2 with Spatial Dispersion at k= 193 nm 511

26.10 Beam-splitting in an Anisotropic Medium 511

26.11 Examples of Polarization-optical Elements 516

26.11.1 Quarter-wave and Half-wave Retarder 516

26.11.2 Babinet–Soleil Compensator 516

26.11.3 Faraday Rotator 518

26.11.4 Brewster Plate 519

26.12 Literature 520

466



26.2 Polarization States

26.1

Introduction

The originators of wave optics, Huygens, Young and Fresnel, began with the
assumption that light is a scalar wave, which was in perfect agreement with the
physical knowledge of their time. In 1808, however, Malus discovered that light,
which had been reflected from transparent media, lost its symmetry around the
propagation direction: It was “polarized” [26-1]. 130 years before him, Huygens was
close to the discovery of polarization as he was investigating the birefringence of
calcite [26-2].

Light is a transverse electromagnetic wave – in the classical limit – and obeys
Maxwell’s equations. For this reason it can be polarized. The resulting mode of
vibration of the electric field vector is called “polarization”. The impact of the polar-
ization on optical imaging has two sources: a) The contrast of interference depends
on the mutual polarization of the contributing waves. b) The interaction with media
and interfaces is governed by the electromagnetic boundary conditions.

The first statement means that “polarization matters”. We can neglect it only
under special conditions. The second statement has the consequence that interac-
tion with media and interfaces may change the state of the polarization. Reflection
and transmission at interfaces and coatings and birefringence are the most impor-
tant causes for polarization effects in common optical systems.

26.2

Polarization States

During propagation, the electric field vector changes its orientation and magnitude
and describes a certain trajectory in 3D-space (figure 26-1). A propagating wave is
transverse, i.e. the electric field vector, at each instant in time, is perpendicular to
the propagation direction. The trajectory is periodic with the free space wavelength
k, i.e., it repeats itself every wavelength.

Figure 26-1: Example of the curve of the electric field vector during propagation.

The polarization state of a plane electromagnetic wave is given by the curve which
the electric field vector follows in a plane which is transverse to the direction of
propagation (the xy-plane in figure 26-1). Polarization states may be completely or
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26 Polarization

partially polarized ranging from completely polarized to completely unpolarized.
The polarized part is in general elliptically polarized. This section is concerned with
the mathematical description of the polarization states.

26.2.1

Representation of Polarization States

Parameter Properties

1 Ellipse of polarization Ellipticity e , orientation w Complete polarization only

2 Complex parameter parameter f Complete polarization only

3 Jones vector Components of~EE Complete polarization and phase

4 Stokes vector Stokes parameter S0–S4 Partial polarization

5 Poincare sphere Points on and inside unit sphere Graphical representation only

6 Coherency matrix 2 � 2-matrix C Partial polarization

26.2.2

Jones Vector

Jones vectors [26-3] can describe completely polarized fields only. They denote the
polarization state of light in isotropic media by a complex two-component vector.

~EE ¼ Ex

Ey

� �

������


������


Axe
ijx

Aye
ijy

)

Complex scalar quantities: ð26-1Þ

Two components are sufficient because of the transverse nature of the fields.
Because the components are complex, Jones vectors are, strictly speaking, not vec-
tors but phasors.

The Jones vector contains the state of polarization, the amplitude, and the phase
of the wave. If we are interested in the polarization state only, a global phase can be
extracted by defining a phase-reduced Jones vector

~EEred ¼ e�ijg~EE: ð26-2Þ

A common definition of a phase-reduced Jones vector is obtained by extracting the
mean of the x- and y-polarized phase

jg ¼
jx þ jy

2
: ð26-3Þ

yielding

~EEred ¼
Axe

i
jx�jy

2

Aye
�i

jx�jy

2

 !

: ð26-4Þ
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Table 1: Simple polarization states

Polarization state Jones vector E-vector

Linear ~EEred ¼
A
B

� �

; A;B ˛Re

Left-handed circular 1
i

� �

; i:e: jy � jx ¼
p

2

Right-handed circular 1
�i

� �

; i:e: jy � jx ¼ �p

2
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It should be kept in mind that this is only a special case. It makes sense if both
components have at least nearly identical amplitudes. If the amplitudes are extreme-
ly different, the phase value of the smaller amplitude will, in general, be known
with much less accuracy than the phase of the higher amplitude and the above defi-
nition of the global phase is correspondingly inaccurate. In general, the global
phase of a phase-reduced Jones vector is unknown.

The intensity corresponding to a Jones-vector is

I ¼ n Exj j2þn Ey





2
; ð26-5Þ

where n is the refractive index of the medium in which the wave is propagating.
Some elementary polarization states are listed in table 1.

Linear polarization: The phases of Ex and Ey are equal. Therefore, the phase-
reduced Jones vector is real. The orientation w is a constant with the value

w ¼ atan
Ey

Ex

: ð26-6Þ

Left-handed circular polarization: Ey advances Ex by p/2 in phase. Looking
towards the direction of propagation, ~EE is traversing a circle anti-clockwise.

Right-handed circular polarization: Ey lags behind Ex by p/2 in phase. Looking
towards the direction of propagation, ~EE is traversing a circle clockwise.

26.2.3

Ellipse of Polarization

The general state of a completely polarized wave is elliptical, i.e., for an arbitrary
phase and amplitude difference the electric field rotates elliptically around the prop-
agation direction.

Figure 26-2: Elliptical polarization state.

The ellipse is characterized by two quantities: Its orientation w is [26-4]

tan ð2wÞ ¼ 2 Exj j Ey






Exj j2� Ey





2 cosd ð26-7Þ
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and the ellipticity e as the quotient of the long and the short axis

e ¼ tan v ¼ –
b

a
ð26-8Þ

with

sin ð2vÞ ¼ 2 Exj j Ey






Exj j2þ Ey





2 sin d ð26-9Þ

and d as the phase difference of the x- and y-component of the Jones vector

d ¼ argðEyÞ � argðExÞ: ð26-10Þ

The sign of the ellipticity is positive for a left-handed polarization (d = p/2) and neg-
ative for a right-handed one (d = –p/2).

26.2.4

Orthogonal Jones Vectors

Two Jones vectors are orthogonal if their interference contrast is zero. Superposing
two waves in orthogonal polarization states results in a straightforward addition of
their intensities. Mathematically this corresponds to a vanishing inner product
defined as

~EE1;~EE2

D E

¼ ~EE1 �~EE
�
2 ¼ Ex;1E

�
x;2 þ Ey;1E

�
y;2: ð26-11Þ

Consequently, two orthogonal states~EE and~EEorth obey

~EE �~EE�
orth ¼ 0 ð26-12Þ

resulting in a simple expression for the components of the orthogonal state in terms
of the components of the original one as

Eorth
x ¼ E�

y ;

Eorth
y ¼ �E�

x :
ð26-13Þ

Linear x-polarization is orthogonal to linear y-polarization and left-circular polariza-
tion is orthogonal to right-circular polarization.

If the norm of two orthogonal Jones vectors is equal to one, they form an ortho-
normal set.

471



26 Polarization

26.2.5

Jones Vectors in Different Bases

Two orthonormal Jones vectors form a basis for all completely polarized states, i.e.,
every Jones vector can be represented as the sum of two arbitrary orthonormal
states. In explicit notation

~EE ¼ a~EEB þ b~EE
orth

B ð26-14Þ

and in vector notation

~EE ¼ a
b

� �

B

: ð26-15Þ

The transformation from the Cartesian xy-basis into an arbitrary basis ~EEB;~EE
orth

B

� �

is
performed by multiplication with a transfer matrix where the columns are formed
by the basis vectors in xy-coordinates

~EEðbasis BÞ ¼ ~EEB;~EE
orth

B

h i

~EEðbasis xyÞ: ð26-16Þ

Example: The transfer matrix from linear xy-basis states into left and right-circular
basis states is

~EEB;~EE
orth
B

h i

¼ 1
ffiffiffi
2

p 1 i
i 1

� �

: ð26-17Þ

26.2.6

Unpolarized Light

If light is unpolarized, every possible polarizer (linear, circular, elliptical) transmits
50% of the incident intensity. This is equivalent to the statement that every polariza-
tion state contains half of the overall intensity.

Unpolarized light cannot be represented by a single Jones vector because Jones
vectors describe completely polarized states, by definition. But it can be represented
in the Jones vector calculus by the incoherent superposition of two orthogonal polar-
ization states of equal intensity. In formal notation we may write

Intensity of unpolarized light = 0:5 ~EE
�
�
�

�
�
�

2

þ 0:5 ~EEorth

�
�
�

�
�
�

2

: ð26-18Þ
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26.2.7

Partial Polarization

Partially polarized light is a superposition of polarized and unpolarized light. The
degree of polarization is defined as the intensity of the polarized part divided by the
overall intensity

g ¼ Ipol
Ipol þ Iunpol

; ð26-19Þ

i.e., an amount g of the intensity is in the polarized state and an amount 1 – g is in
the unpolarized state.

Increasing the degree of polarization is known as “polarizing”, decreasing the
degree of polarization is called “depolarizing”.

Partially polarized light can also be represented by the superposition of orthogo-
nal Jones vectors.

Intensity of partially polarized light =
1þ g

2
~EE
�
�
�

�
�
�

2

þ 1� g

2
~EEorth

�
�
�

�
�
�

2

: ð26-20Þ

26.2.8

Polarization Matrix

A convenient way of describing partially polarized light mathematically is the coher-
ence matrix P, or polarization matrix (both names are used synonymously). It is the
mean value in time of the dyadic product of the Jones vector with its complex con-
jugate.

P ¼ ~EE �~EE�D E

¼
ExE

�
x

� �
ExE

�
y

D E

EyE
�
x

� �
EyE

�
y

D E

0

@

1

A ¼ Pxx Pxy

P�
xy Pyy

� �

; ð26-21Þ

with the bracket defined as

f ðtÞh i ¼ 1

T

RT

0

f ðtÞdt ð26-22Þ

where Tdenotes a time interval that is large compared with the inverse frequency.
The diagonal elements contain the intensity of the individual components while

the non-diagonal elements contain their correlation. The latter are the complex con-
jugate of each other.



Properties of the Polarization Matrix

a) P is hermitian, i.e. P = P+ (+= complex conjugate of the transposed matrix), as

follows from eq. (26-21) by inspection.

b) The intensity of the wave equals the trace of P

I0 ¼ trace Pð Þ ¼ Pxx þ Pyy ¼
D

ExE
�
x

E

þ
D

EyE
�
y

E

ð26-23Þ

because the diagonal elements contain the intensity of the components.

c) For completely unpolarized light the correlation between Ex and Ey is zero, i.e.,

the off-diagonal elements of the polarization matrix are zero. The intensities of

the x- and y-components must be equal irrespective of the particular choice of

coordinate system. Therefore the coherency matrix of unpolarized light is pro-

portional to the identity matrix

Punpol ¼ A
1 0
0 1

� �

: ð26-24Þ

d) For completely polarized light the polarization matrix contains only the compo-

nents of the Jones vector

Ppol ¼
Exj j2 ExE

�
y

E�
xEy Ey





2

 !

: ð26-25Þ

e) The polarization matrix of the orthogonal polarization state follows from eq.

(26-13) as

Ppol ¼
Ey





2 �ExE

�
y

�E�
xEy Exj j2

 !

: ð26-26Þ

f) Partially polarized light is composed of polarized light with an unpolarized back-

ground, i.e., the polarization matrix can be represented as the sum of the coher-

ency matrices for polarized and unpolarized light

P ¼ Ppol þ A I with A ¼ traceðPÞ � traceðPpolÞ
2

¼ I0 1� gð Þ: ð26-27Þ

g) The amount A of unpolarized light can be derived from the solution of a quadratic

equation. Computing the determinant of the polarization matrix yields

det Pð Þ ¼
D

ExE
�
x

ED

EyE
�
y

E

�
D

ExE
�
y

E







2

¼
�

Aþ Exj j2
��

Aþ Ey





2
�

� Exj j2 Ey





2

ð26-28Þ
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(where we have made use of the fact that the non-diagonal elements of P and

Ppol are equal, which yields ExE
�
y

D E







2

¼ Exj j2 Ey





2
) and from (26-27)

trace Ppol

	 

¼ trace Pð Þ � 2A: ð26-29Þ

Inserting (26-29) into (26-28) yields a quadratic equation for A

A2 � A
D

ExE
�
x

E

þ
D

EyE
�
y

E� �

þ
D

ExE
�
x

ED

EyE
�
y

E

�
D

ExE
�
y

E







2

¼ 0 ð26-30Þ

where the terms in brackets correspond to the trace and the determinant of the

polarization matrix P, i.e.,

A2 � A trace Pð Þ þ det Pð Þ ¼ 0 ð26-31Þ

with the solution

A ¼ trace Pð Þ
2

1–

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 4 det Pð Þ
trace2 Pð Þ

s !

: ð26-32Þ

The square-root varies between 0 for completely unpolarized light (trace

(P) = 2A, det (P) = A2) and 1 for completely polarized light (det (P) = 0). For the

latter case A must be equal to zero, i.e., only the negative sign in eq. (6.31)

makes sense. With decreasing degree of polarization, A must increase monoto-

nously. This requires the negative sign to be valid for all values of A.

h) The degree of polarization is

g ¼ trace Ppol

	 


trace Pð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 4 det Pð Þ
trace2 Pð Þ

s

: ð26-33Þ

i) The polarization matrix defines the polarization of the field completely, but the

information about the global phase is lost.

26.2.9

Stokes Vector

The Stokes vector is formed from the components of the coherency matrix. It has
four real components with a distinct physical meaning:

~SS ¼

�
ExE

�
x

�
þ
�
EyE

�
y

�

�
ExE

�
x

�
�
�
EyE

�
y

�

�
ExE

�
y

�
þ
�
EyE

�
x

�

i
�
EyE

�
x

�
�
�
ExE

�
y

�� �

0

B
B
B
B
@

1

C
C
C
C
A

¼
S0

S1

S2

S3

0

B
B
@

1

C
C
A
: ð26-34Þ
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. The first element S0 is the overall intensity

. The second element S1, is equal to the difference of the intensity transmitted
by a linear x-polarizer and the intensity transmitted by a linear y-polarizer.

. The third element S2 is equal to the difference of the intensity transmitted by
a +45� and –45� oriented polarizer, respectively.

. The fourth element S3 is equal to the difference of the intensity transmitted
by a right-handed circular polarizer and a left-handed circular polarizer,
respectively.

. There is a 1:1 relationship between the elements of the polarization matrix
and the Stokes vector.

It is clear that there is no orthogonal polarization state for unpolarized light.
Therefore, we call two polarization states orthogonal if their polarized parts are or-
thogonal. The orthogonal Stokes vector is obtained from the original one according
to

~SSorth ¼

ExE
�
x

� �
þ
�
EyE

�
y i�

EyE
�
y i � ExE

�
x

� �

�
�
ExE

�
y

�
� EyE

�
x

� �

�i EyE
�
x

� �
�
�
ExE

�
y i

� �

0

B
B
B
B
@

1

C
C
C
C
A

¼
S0

�S1

�S2

�S3

0

B
B
@

1

C
C
A
; ð26-35Þ

i.e., the sum of two Stokes vectors with orthogonal polarization states is non-zero
only in the first component. Or stated another way: The incoherent superposition of
two orthogonal polarization states of identical intensity provides unpolarized light.

An often used expression for the elements of the Stokes vector is obtained from
the instantaneous amplitudes Ax and Ay of the fields (Ex and Ey) and their instanta-
neous phase difference d

~SS ¼

A2
x

� �
þ
�
A2

yi
A2

x

� �
�
�
A2

yi
2
�
AxAy cosdi

2
�
AxAy sin di

0

B
B
B
@

1

C
C
C
A
: ð26-36Þ

Accordingly, in the case of a completely polarized state, the Stokes vector compo-
nents can be obtained from the Jones vector from

~SS ¼


Ex



2þ

Ey



2


Ex



2þ

Ey



2

2

Ex




Ey


 cosd

2 Exj j Ey




 sin d

0

B
B
B
@

1

C
C
C
A
: ð26-37Þ

This relation can be reversed to obtain the Jones vector components from the Stokes
vector
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Ex


¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S0 þ S1

2

r

;


Ey


¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S0 � S1

2

r

;

d ¼ arctan
S3

S2

� �

:

ð26-38Þ

The relation of the parameters of the polarization ellipse to the Stokes vector compo-
nents is

S0 ¼ a2 1þ tan 2vð Þ ;
S1 ¼ S0 cos 2v cos 2w ;

S2 ¼ S0 cos 2v sin 2w ;

S3 ¼ S0 sin 2v

ð26-39Þ

and the inverse relations are

v ¼ 1

2
arcsin

S3

S0

� �

;

w ¼ 1

2
arctan

S2

S1

� �

;

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S0

1þ tan 2v

s

:

ð26-40Þ

From the fact that the determinant of the polarization matrix is always positive one
obtains

S2
0 ‡ S2

1 þ S2
2 þ S2

3: ð26-41Þ

The degree of polarization of a Stokes vector is given by

g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2
1 þ S2

2 þ S2
3

p

S0

: ð26-42Þ

The following table provides some examples of common Stokes vectors

Polarization S0 S1 S2 S3

Unpolarized 1 0 0 0

Completely x-polarized 1 1 0 0

Completely y-polarized 1 –1 0 0

Right circularly polarized with degree 0.6 1 0 0 0.6
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26.2.10

Poincar� Sphere

Consider Stokes vectors for which the degree of polarization g is equal. For these the
squared sum of the components 1–3 divided by the element S0 is constant

S2
1

S2
0

þ S2
2

S2
0

þ S2
3

S2
0

¼ g: ð26-43Þ

The three components define the surface of a sphere of radius g, the Poincar� sphere.

Figure 26-3: Poincar� sphere defined by the Stokes vector~SS:

Figure 26-4: Polarization states on the Poincar� sphere.

26 Polarization478



Polarization states with an equal degree g of polarization are situated on the same
sphere. The polarization state corresponds to a particular point on this sphere.

For orthogonal polarization states, S1–S3 are of opposite sign. Therefore orthogo-
nal states are located on opposite points of the sphere. The position of x/y linear,
– 45� linear and L/R circular are depicted in figure 26-4. Here, the left and right-cir-
cular state is represented by the poles of the sphere.

A distribution of polarization states as they appear within a Jones-pupil (cf. sec-
tion 25.7) can be characterized by a distribution over the Poincar� sphere as illustrat-
ed in figure 26-5.

Figure 26-5: Example for a distribution of polarization states on the Poincar� sphere

(Jones vectors after traversing a 111 CaF2 plate with intrinsic birefringence).

26.3

Jones Matrix

26.3.1

Definition

Polarization optical elements change the polarization of the transmitted wave, i.e.,
they change the degree of polarization and/or the polarization state.

A non-depolarizing element cannot decrease the degree of polarization. It can
either increase it or leave it constant. The action of non-depolarizing elements on
polarized states is described by a complex 2 � 2-matrix – the Jones matrix [26-3]:
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J ¼ Jxx Jxy
Jyx Jyy

� �

: ð26-44Þ

The Jones matrix transforms Jones vectors or polarization matrices.
A global phase factor has no effect on the polarization state. Frequently one is not

interested in the complete Jones matrix but in one that is known up to a phase fac-
tor, i.e., a Jones matrix that is defined by

J ¼ expfij0g
Jxx Jxy
Jyx Jyy

� �

ð26-45Þ

with an unknown j0. It is called a phase-reduced Jones matrix.

26.3.2

Jones Matrix Acting on a Jones Vector

The action of a Jones matrix on a completely polarized state is described by a multi-
plication with the corresponding Jones vector (figure 26-6)

~EEout ¼ J~EEin: ð26-46Þ

Figure 26-6: Change of polarization state due to a Jones matrix.

Therefore, the diagonal elements of the Jones matrix describe the change in the
incident polarization state while the non-diagonal elements denote the cross-polar-
ization, i.e., the excitation of the component that is orthogonal to the incident one.

26.3.3

Succession of Jones Matrices

The propagation of a Jones vector through a succession of N polarization optical ele-
ments (figure 26-7) can be described by a multiplication of the Jones vector with the
product of the corresponding Jones matrices. It is important, however, to use the
correct order (unlike the scalar product, the matrix product is sensitive to the order)

~EEout ¼ JNJN�1 � � � J2J1~EEin: ð26-47Þ



Figure 26-7: Jones vector propagation through a succession of systems described

by their Jones matrices.

26.3.4

Jones Matrix Acting on a Polarization Matrix

The action of a Jones matrix on a partially polarized state is described by a two-sided
multiplication according to

Pout ¼ JPinJ
þ: ð26-48Þ

Because a Jones vector transforms according to (26-46) the corresponding polariza-
tion matrices obey

Pout ¼ ~EEout �~EE
þ
out

D E

¼ J~EEin � J~EEin

� �þD E

¼ J ~EEin �~EE
þ
in

D E

Jþ ¼ JPinJ
þ: ð26-49Þ

The “+” denotes the adjoint matrix, i.e. the complex-conjugate transpose. More expli-
citly:

Pout
xx Pout

xy

Pout
yx Pout

yy

� �

¼ Jxx Jxy
Jyx Jyy

� �
Pin
xx Pin

xy

Pin
yx Pin

yy

� �
J�xx J�yx
J�xy J�yy

� �

: ð26-50Þ

Due to the multiplication with the adjoint matrix, any global phase factor in the
Jones matrix cancels. J can also be replaced by the phase-reduced Jones matrix. This
is in accordance with the fact that the polarization matrix contains no information
about the phase of the field.

26.3.5

Examples of Jones Matrices

Before we continue with the properties and representations of Jones matrices, some
examples of “typical” and often applied polarization optical components will be
given. All the following matrices are valid for collimated light only. Actual elements
show a dependence of the Jones matrix on the direction of propagation that is not
addressed in these matrices. To do this, more realistic models must be applied, as
we will discover later.
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Name Matrix Description

Neutral element 1 0
0 1

� �

This is the identity matrix because the

output polarization state is identical to

the input state.

x-polarizer 1 0
0 0

� �

y-component of incident field is de-

leted.

y-polarizer 0 0
0 1

� �

x-component of incident field is de-

leted.

Partial x-polarizer 1 0
0 g

� �

The y-component is diminished by a

factor g < 1. The resulting degree of

polarization is
1� gð Þ2

1þ gð Þ2

Quarter-wave retarder 1 �i
�i 1

� �

Transforms the linear x-polarized state

into the right circular polarized state

Half-wave retarder 0 1
1 0

� �

Transforms the linear x-polarized state

into the linear y-polarized state

General retarder expf�i
Dj
2 g 0

0 expfiDj2 g

0

@

1

A
Introduces a phase-shift of Dj between

the x- and y-polarized components

Rotator cosa sina
� sina cosa

� �

Rotates a linear polarization state by the

angle a around the propagation direc-

tion.

26.3.6

Rotated and Mirrored Jones Matrix

Even the simple polarization optical elements of the section above can have different
angular orientations provided by a rotation around the ray direction and they can be
given in a mirrored coordinate system (figure 26-8).

Figure 26-8: a) Local coordinate system rotated by an angle a with respect to the

global coordinate system; b) local coordinate system mirrored with respect to the y-axis.

For a proper description of the action of a rotated component in the global coordi-
nate system, the incident polarization state has to be transformed into the local coor-
dinate system of the component and back again. This corresponds to the application
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of a transformation matrix and its inverse. For a rotation angle a we obtain for a
general Jones matrix J

Ja ¼ Rð�aÞJRðaÞ ¼ cosa � sina
sina cosa

� �
Jxx Jxy
Jyx Jyy

� �
cosa sina

� sina cosa

� �

: ð26-51Þ

The corresponding operation for the mirrored Jones matrix is

JM ¼ QyJQy ¼
�1 0
0 1

� �
Jxx Jxy
Jyx Jyy

� �
�1 0
0 1

� �

¼ Jxx �Jxy
�Jyx Jyy

� �

: ð26-52Þ

26.3.7

Jones Matrix for Different Basis Polarization States

The rotation and mirror operation are just special cases of a transformation into
another basic polarization state. If a Jones matrix is given for a particular choice of
basis polarization state (such as, for instance, left and right circular polarized) and
its action is to be described for another set of basis polarization states (for instance
xy-linear polarized) the same operation as in the section above is applied: The inci-
dent polarization state is transformed into the basis of the Jones matrix and back
again. According to section 26.2.5 the corresponding transfer matrix is obtained
from the new basis Jones vectors formulated in terms of the old basis Jones vectors.
Denoting the resulting transfer matrix by Twe obtain

JT ¼ T�1JT: ð26-53Þ

26.3.8

Eigenpolarizations of a Jones Matrix

The eigenpolarizations of a Jones matrix are those polarization states that are left
invariant by the Jones matrix. They follow from a solution of the eigenvalue prob-
lem

Jxx Jxy
Jyx Jyy

� �
Ex1 Ex2

Ey1 Ey2

� �

¼ C
1 0
0 D exp iDjf g

� �
Ex1 Ex2

Ey1 Ey2

� �

ð26-54Þ

with the Jones vectors ~EE1 and ~EE2 of the two eigenpolarizations and a diagonal matrix
of the eigenvalues. C is an arbitrary complex constant. D is the quotient of the
amplitudes of the eigenpolarizations and is by this means a measure of the polariz-
ing property of the element.

The eigenpolarizations of a plane wave reflected from a plane interface are those
linear polarizations that are perpendicular and parallel to the plane of incidence.
The eigenpolarizations of a uniaxial crystal retarder are parallel and perpendicular to
the crystal axis. In the general case, the eigenpolarizations are elliptical.
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26.3.9

Jones Matrix of a Retarder

A retarder has orthogonal eigenpolarizations on which it imposes a phase-shift Du
(figure 26-9). Du is called the “retardance”.

Figure 26-9: Illustration of the phase-shift between the x- and y-components

of the Jones vector caused by a linear retarder.

If the eigenpolarizations are linear, the retarder is called a linear retarder (this
case is illustrated in figure 26-9). A circular retarder has circular eigenpolarizations.

In the reference frame of the eigenpolarizations the Jones matrix is diagona

JR ¼ eij0

e�i
Du
2 0

0 ei
Du
2

0

@

1

A; ð26-55Þ

where j0 is a mean phase-shift imposed on both components simultaneously.
Two cases are of particular importance and will be discussed briefly in the follow-

ing: The rotated linear retarder and the circular retarder.
The Jones matrix of a linear retarder rotated by an angle a with respect to the glo-

bal coordinate system is

JR;a ¼ Rð�aÞJRRðaÞ

¼
cos Du

2 � i sin Du
2 cos 2a i sin Du

2 sin 2a

i sin Du
2 sin 2a cos Du

2 þ i sin Du
2 cos 2a

0

@

1

A: ð26-56Þ

For Du = p/2 and a = 45� the matrix represents a quarter-wave retarder under 45�
to the incident linear polarization vector. The output polarization state is circular.

For Du = p and a = 45� we obtain the Jones matrix of a half-wave retarder. This
element flips an incident linear polarization state at its axis.

The Jones matrix of a stack of retarders is unitary (because of vanishing absorp-
tion), i.e., J+ = J–1. It can be shown that any unitary matrix has the shape

JR�Stack ¼
aþ ib c þ id
�c þ id a� ib

� �

; a2 þ b2 þ c2 þ d2 ¼ 1: ð26-57Þ

The eigenvalues of the Jones matrix of a stack of retarders are [26-7]

k1;2 ¼ a–
ffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � 1
p

; ð26-58Þ



i.e., they depend solely on the real part of the diagonal elements.
The eigenvectors have the form

~EE ¼ cosw
eif sinw

� �

ð26-59Þ

with

tan f ¼ c

d
; tanw ¼ �b –

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� a2
p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ d2

p ð26-60Þ

The eigenvectors are linearly polarized if c = 0.
If retardance is present in an optical component and the incident polarization

state is not equal to an eigenpolarization, energy is transferred from the incident
polarization state into the orthogonal state. A Iinear polarized incident state of inten-
sity I0 is transformed by the retarder into an elliptical polarized state

Eout ¼ JR;a

ffiffiffiffi
I0

p

0

� �

¼
ffiffiffiffi

I0
p cos Du2 � i sin Du

2 cos 2a

i sin Du
2 sin 2a

0

@

1

A : ð26-61Þ

The intensity of light in the intended polarization state is diminished, i.e., a polariza-
tion loss occurs. A quantitative measure of the polarization loss is the intensity in
the orthogonal polarization state divided by the overall transmitted intensity.

DP ¼ I?
Ijj þ I?

: ð26-62Þ

The intensity of the component, which is polarized orthogonal to the incident one,
is

I?
I0

¼ sin 2 Du

2
sin 22a : ð26-63Þ

The dependence on both Du and a is sketched in figure 25.8.
The intensity of the orthogonal polarized component becomes a maximum for

orientations that are odd multiples of 45�.
A left-circular polarized incident field of intensity I0 provides an output Jones vec-

tor of

~EEout ¼ JR;a

ffiffiffiffi

I0
2

r

1
i

� �

¼
ffiffiffiffi

I0
2

r

cos
Du

2
1
i

� �

� e�i2a sin
Du

2
i
1

� �� �

; ð26-64Þ

i.e., a right-circular polarized component exits, which has a relative intensity of

I?
I0

¼ sin 2 Du

2
ð26-65Þ

and a phase-shift of –2a.
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Figure 26-10: Relative intensity of the orthogonal component after traversing a rotated

linear retarder.

In contrast to the linearly polarized incidence, the intensity of the orthogonally
polarized component is now independent of the orientation. The orientation deter-
mines instead the phase of the orthogonal component.

A revolving half-wave plate with a retardance of p transforms left-circular into
right-circular polarized light with phase 2a, i.e., it can be used as a variable phase-
shifter.

To describe the effect of a circular retarder on an incident linear polarized state,
its Jones matrix is conveniently transformed into xy-linear polarized states by the
application of (26-17) and (26-53)

JR;c ¼
1

2
1 i
i 1

� � e�i
Du
2 0

0 ei
Du
2

0

@

1

A
1 �i
�i 1

� �

¼
cos Du2 � sin Du

2

sin Du
2 cos Du

2

0

B
@

1

C
A ¼ R �Du

2

� �

ð26-66Þ

which results in a rotation matrix, i.e., a circular retarder of retardance Du rotates a
traversing linear polarization state by an amount –Du/2.
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26.3.10

Jones Matrix of a Partial Polarizer

If an unpolarized wave is incident on a partial polarizer it is afterwards partially
polarized. A partial polarizer has two eigenpolarizations belonging to eigenvalues of
different amplitude (figure 26-11). This phenomenon is also called diattenuation.

Figure 26-11: Illustration of the diattenuation between the x- and y-component

of the Jones vector caused by a partial polarizer with linear eigenpolarizations.

If the eigenpolarizations are linear, the partial polarizer is called a linear partial
polarizer (or linear diattenuator – this case is illustrated in the figure). For circular
eigenpolarizations it is called a circular partial polarizer.

In the reference frame of the eigenpolarizations its Jones matrix is diagonal

JP ¼ 1 0
0 A

� �

; ð26-67Þ

with a real quantity A < 1 describing the attenuation of the component orthogonal to
the transmitted one. 1 –A is the diattenuation of the element.

Incident unpolarized light attains a degree of polarization of (figure 26-12)

g ¼ 1� A2

1þ A2
: ð26-68Þ

Likewise, in the opposite way, we obtain the diattenuation from the degree of polar-
ization by the use of

A ¼
ffiffiffiffiffiffiffiffiffiffiffi

1� g

1þ g

s

: ð26-69Þ

The Jones matrix of a linear partial polarizer rotated by an angle a with respect to
the global coordinate system is

JP;a ¼ Rð�aÞJPRðaÞ

¼ 1þ Að Þ þ 1� Að Þ cos 2a 1� Að Þ sin 2a
1� Að Þ sin 2a 1þ Að Þ � 1� Að Þ cos 2a

� �

: ð26-70Þ
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Figure 26-12: Degree of polarization depending on the amplitude difference of

both eigenpolarizations of a partial polarizer.

Because the Jones matrix is purely real, a Iinear polarized incident state of inten-
sity I0 is transformed into an attenuated rotated linear polarized state

~EEout ¼ JP;a

ffiffiffiffi
I0

p

0

� �

¼ ffiffiffiffi
I0

p 1þ Að Þ þ 1� Að Þ cos 2a
1� Að Þ sin 2a

� �

:

The intensity of the component polarized orthogonal to the incident one is

I?
I0

¼ 1� Að Þ2 sin 22a: ð26-71Þ

The dependence on both A and a is sketched in figure 26-13.

Figure 26-13: Relative intensity of the orthogonal component after traversing

a rotated linear partial polarizer.
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26.3.11

Pauli’s Spin Matrices

Pauli’s spinmatrices forma basis for the complex 2 � 2matrices. They are defined as

s0 ¼
1 0
0 1

� �

; s1 ¼
1 0
0 �1

� �

; s2 ¼
0 1
1 0

� �

; s3 ¼
0 i
�i 0

� �

: ð26-72Þ

Interpreted as single Jones matrices they have a distinct physical meaning:

. s0 is the identity matrix, i.e., it represents the neutral Jones matrix.

. s1 applies a phase-shift of p to the y-component, i.e., it is a half-wave plate
where the y-axis is the fast axis.

. s2 exchanges the orientation of the x- and y-component. It replaces a state by
its mirror state

. s3 does the same with an additional phase-shift of +90� for the x and –90� for
the y-component.

26.3.12

Jones Matrix Decomposition

For analysis and synthesis of Jones matrices their decomposition into elementary
Jones matrices is very convenient (figure 26-14). The main idea is to write the Jones
matrix as a product of elementary matrices that correspond either to simple matrices
from a mathematical point of view or to simple polarization-optical components
from an experimental point of view.

Figure 26-14: Series of rotated Jones matrices.

This task is performed by the Jones matrix decomposition. Several decomposi-
tions exist. In the following we proceed from simple decomposition for special cases
to general ones.

a) The Jones matrix of a non-absorbing component preserves the norm of an inci-

dent Jones vector. Therefore it is unitary, i.e., the adjoint Jones matrix is equal to

the inverse Jones matrix

J�1 ¼ Jþ : ð26-73Þ

Any unitary matrix can be written as the product of a rotator and a rotated
retarder.
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J ¼ Rotator � Retarder ¼ RðbÞJ ¼ RðbÞRð�aÞJRRðaÞ ð26-74Þ

b) Furthermore, the Jones matrix of a non-absorbing (unitary) component can be

described as the product of two rotated quarter-wave retarders and one half-wave

retarder

J ¼ QWPða1Þ �HWPða2Þ �QWPða3Þ: ð26-75Þ

The task can be provided with any succession of the elements. A good review of

the elements and their derivation can be found in [26-8].

This combination is called Simon-Mukunda Polarization Gadget after its two in-

ventors. A useful special case is the combination of two half-wave retarders,

rotated against each other about an angle a:

1 0
0 �1

� �
cosa sina

� sina cosa

� �
1 0
0 �1

� �
cosa � sina

sina cosa

� �

¼ cos 2a� sin 2a �2 cosa sina

2 cosa sina cos 2a� sin 2a

� �

¼ cos ð2aÞ � sin ð2aÞ
sin ð2aÞ cos ð2aÞ

� �

:

ð26-76Þ

These are equivalent to a rotator with a rotation angle of 2a.

c) A general Jones matrix J containing eight independent real quantities can be de-

composed into two rotators, two retarders and a partial polarizer [26-9].

J ¼ Rða1ÞJRða2; b2ÞJPðr1; r2ÞJRð�a3; b2ÞRð�a4Þ ð26-77Þ

where JR denotes a rotated retarder according to eq. (26-51) and JP denotes a

partial polarizer.

d) The singular value decomposition (SVD) of a square complex matrix is based on

the following theorem: Any complex N�N matrix J can be written as the product

of a unitary N�N matrix U, a diagonal matrix D with real, positive elements (the

singular values) and the adjoint of a second unitary matrix V [26-12]

J ¼ UDVþ : ð26-78Þ

The SVD can be found as a standard routine in any scientific computer library.

e) The polar decomposition theorem for Jones matrices states that any Jones matrix

can be decomposed into a partial polarizer and a retarder [26-10]

J ¼ JRJP ¼ J¢PJR: ð26-79Þ

It can be derived from the singular value decomposition and – more importantly

– it can be easily computed. Inserting the identity matrix in the form U+U into

the right-hand side of the SVD (26-78) yields

J ¼ UDUþUVþ; ð26-80Þ



i.e.,the partial polarizer and retarder are

JP ¼ UDUþ; JR ¼ UVþ: ð26-81Þ

If we instead insert V+V in the left side of the SVD (26-78) we obtain the second

form

J ¼ UVþVDVþ; ð26-82Þ

i.e., the retarder and partial polarizer are

JR ¼ UVþ; JP ¼ VDVþ ð26-83Þ

JP and J¢P are hermitian because (UDU+)+ = U(UD)+ = UDU+. JR is unitary

because UV+(UV+)+ = UV+VU+ = 1.

26.4

M�ller Matrix

The Jones matrix calculus does not allow the description of a true depolarization,
i.e., a reduction of the degree of polarization. The reason for this fact is that the
Jones matrix is acting on single polarization states (Jones vectors), but to decrease
the degree of polarization we need to reduce the correlation between two orthogonal
states, and to achieve that, both states must be transformed together, i.e., instead of
a 2 � 2 matrix we would expect a 4 � 4 matrix.

26.4.1

Definition

The M�ller matrixM transforms the Stokes vectors.

~SSout ¼ M~SSin : ð26-84Þ

Accordingly it is a real 4 � 4 matrix

M ¼
M00 M01 M02 M03

M10 M11 M12 M13

M20 M21 M22 M23

M30 M31 M32 M33

0

B
B
@

1

C
C
A
: ð26-85Þ

It also describes – in contrast to a Jones matrix – depolarizing components (a Jones
matrix can only increase the degree of polarization or leave it constant).
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Comparing the matrix with the physical meaning of the Stokes vector compo-
nents, we can immediately deduce the physical meaning of the single components.

. The first column contains the effect on the overall intensity.

. The second column contains the effect on the xy-linearly polarized part.

. The third column contains the effect on the 45� linearly polarized part.

. The fourth column contains the effect on the circularly polarized part.

26.4.2

Examples

Name Matrix Description

Neutral element 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

0

B
B
@

1

C
C
A

Identity matrix. The output polariza-

tion state is identical to the input state

x-polarizer
1

2

1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

0

B
B
@

1

C
C
A

Because of Ix ¼ 1
2 S0 þ S1ð Þ, Iy ¼ 0

y-polarizer
1

2

1 �1 0 0
�1 1 0 0
0 0 0 0
0 0 0 0

0

B
B
@

1

C
C
A

Because of Iy ¼ 1
2 S0 � S1ð Þ, Ix ¼ 0

Quarter-wave retar-

der 1

2

1 0 0 0
0 1 0 0
0 0 0 1
0 0 �1 0

0

B
B
@

1

C
C
A

Transforms the linear x-polarized state

into the right-circular polarized state

Half-wave retarder
1

2

1 0 0 0
0 1 0 0
0 0 �1 0
0 0 0 �1

0

B
B
@

1

C
C
A

Transforms the linear x-polarized state

into the linear y-polarized state

General retarder
1

2

1 0 0 0
0 1 0 0
0 0 cosDj sinDj
0 0 � sinDj cosDj

0

B
B
@

1

C
C
A

Introduces a Dj phase-shift between

the x- and y-polarized component.

Depolarizer 1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0

B
B
@

1

C
C
A

Reduces the degree of polarization to

zero.
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26.5

M�ller–Jones Matrix

A M�ller–Jones matrix is a M�ller matrix that is equivalent to a Jones matrix. For
such a non-depolarizing M�ller matrix, additional relations must hold because a
M�ller matrix contains 16 independent real elements while a phase-reduced Jones
matrix contains only seven independent real elements. It can be shown [26-11] that
a modified inner product of two columns, in each case, must be zero:

M0kM0j �
X3

i¼1

MikMij ¼ 0; j; k ¼ 1; :::; 3; j „ k ;

M2
0k �

X3

i¼1

M2
ik þM2

00 �
X3

i¼1

M2
i0 ¼ 0; k ¼ 1; :::; 3 :

ð26-86Þ

These relations are used in [26-11] to determine whether a measured M�ller matrix
is actually a Jones matrix. To this end, the above relations must be valid within the
measurement accuracy.

A non-depolarizing M�ller matrix must leave the degree of polarization invariant.
Therefore it must satisfy the condition [26-18]

trace MTM
	 


¼ 4M2
00: ð26-87Þ

The M�ller–Jones matrix M can be reduced to its generating Jones matrix J by
means of the following relations.

Based on the relation between a Jones matrix J and the corresponding M�ller–
Jones matrix M with elementsMij and Pauli’s spin-matrices si [26-5]

Mij ¼ 0:5 trace JsjJsi

� �

; i; j ¼ 0; 1; 2; 3 : ð26-88Þ

We obtain 16 equations of the type

M00 ¼
1

2
Jxxj j2þ Jxy





2þ Jyx




2þ Jyy




2

� �

;

M10 ¼ ::: ;
ð26-89Þ

from which the Jones matrix elements can be calculated.
The amplitude of the Jones matrix elements follows from

Jxxj j ¼ 1
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M00 þM01 þM10 þM11

p

Jxy



 ¼ 1

ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M00 �M01 þM10 �M11

p

Jyx



 ¼ 1

ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M00 þM01 �M10 �M11

p

Jyy



 ¼ 1

ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M00 �M01 �M10 þM11

p

ð26-90Þ

26.5 M�ller–Jones Matrix 493



and the phase

arg Jxxð Þ ¼ 0

arg Jxy
	 


¼ arctan
�M03 �M13

M02 þM12

� �

arg Jyx
	 


¼ arctan
M30 þM31

M20 þM21

� �

arg Jyy
	 


¼ arctan
M32 �M23

M22 þM33

� �

:

ð26-91Þ

The previous two real relations can be combined to a complex one

Jxx ¼
1
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M00 þM01 þM10 þM11

p

Jxy ¼
1
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M00 �M01 þM10 �M11

M02 þM12ð Þ2þ M03 þM13ð Þ2

s

M02 þM12 � i M03 þM13½ �ð Þ

Jyx ¼
1
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M00 þM01 �M10 �M11

M20 þM21ð Þ2þ M30 þM31ð Þ

s

M20 þM21 þ i M30 þM31½ �ð Þ

Jyy ¼
1
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M00 �M01 �M10 þM11

M22 þM33ð Þ2þ M32 �M23ð Þ

s

M22 þM33 þ i M32 �M23½ �ð Þ :

ð26-92Þ

26.6

Light in Anisotropic Media

26.6.1

Anisotropic Media

A medium is called anisotropic if the refractive index depends on the direction of
propagation. Assuming the validity of Hook’s law; the relation between the induced
polarization and the electric field, and therefore between the displacement current
and the electric field, is linear.

It follows that in an anisotropic medium the relation between the displacement
current and the electric field is given by the linear tensor relation

Dj ¼
X

l

ejlEl þ
X

l;m

cjlm�mEl þ
X

l;m;q

ajlmq�m�qEl þ ::: ð26-93Þ

The first tensor product describes the anisotropy that depends on the electric field at
the considered spatial point itself. It is called birefringence and is governed by the
dielectric tensor of second order

e ¼ ðeikÞ: ð26-94Þ
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The following tensor products stem from a Taylor expansion of the electric field
around the considered point, i.e., they describe the fact that the displacement cur-
rent depends also on the field in an infinitesimal area surrounding the considered
point. This phenomenon is called “spatial dispersion” in analogy to (time) dispersion
where the displacement current at a given instant depends, not only on the electric
field at that instant, but on the field strength infinitesimally shortly before it.

The second tensor product relates a tensor of third order with the spatial deriva-
tive of the electric field. It yields the circular anisotropy or “optical activity”.

The third term is the product of a tensor of fourth order with the second spatial
derivative of the electric field. It provides the anisotropy caused by “spatial disper-
sion” also called “intrinsic birefringence”.

Considering monochromatic plane waves with propagation direction~kk

~EEð~rrÞ ¼ ~EE0exp i~kk �~rr
n o

ð26-95Þ

the spatial derivatives can be carried out and we obtain

Dj ¼
X

l

ejlEl þ i
X

l;m

cjlmkmEl �
X

l;m;q

ajlmqkmkqEl þ ::: ð26-96Þ

For a given propagation direction ~kk the higher-order tensors can be reduced to a
dielectric tensor of second order by the relation

e¢jl ¼ ejl þ i
X3

m¼1

cjlmkm�
X3

m¼1

X3

q¼1

ajlmqkmkq þ ::: : ð26-97Þ

It follows from the conservation of energy that for non-magnetic, lossless media, the
dielectric tensor is hermitian [26-14],

e¢ik ¼ e¢
�
ki: ð26-98Þ

26.6.2

Principal Refractive Indices of an Anisotropic Medium Without Spatial Dispersion and

Optical Activity

If the coordinate system is aligned with the principal axes of the medium, the dielec-
tric tensor becomes diagonal (a hermitian tensor can always be diagonalized)

e ¼
exx 0 0
0 eyy 0
0 0 ezz

0

@

1

A ¼
n2
x 0 0
0 n2

y 0
0 0 n2

z

0

@

1

A; ð26-99Þ

where eii and ni are the principal dielectric constants and the principal refractive
indices, respectively. From the diagonal elements follows the well-known distinction
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of three types of media: isotropic (n2=exx=eyy=ezz), uniaxial (no
2=exx=eyy, ne

2=ezz) and
biaxial (nx

2=exx, ny
2=eyy, nz

2=ezz).
In general, the electric field and the displacement are not parallel. It is only along

the principal axes that they are, in fact, parallel, i.e.,

Dx ¼ exxEx; Dy ¼ eyyEy; Dz ¼ ezzEz : ð26-100Þ

26.6.3

Fresnel Ellipsoid

From the equation for the energy density of the electric field

rE ¼ 1

2
~EE � ~DD ð26-101Þ

we obtain by insertion of the dielectric tensor

X3

i¼1

X3

j¼1

eijEiEj ¼ 2rE ¼ const: ð26-102Þ

This is the equation of an ellipsoid called the “Fresnel ellipsoid”. The fact that it is
actually an ellipsoid becomes more obvious by the transformation into the coordi-
nate system of the principal axes

exxE
2
x þ eyyE

2
y þ ezzE

2
z ¼ 2rE ¼ const: ð26-103Þ

Comparing this with the equation of an ellipse of the main axes a, b, and c

x2

a2
þ y2

b2
þ z2

c2
¼ 1: ð26-104Þ

The main axes of the Fresnel ellipsoid are formed by the reciprocals of the principal
refractive indices, i.e., by nx

–1, ny
–1, and nz

–1 (figure 26-15) which are proportional to
the phase velocity of light.

Figure 26-15: Fresnel ellipsoid.
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26.6.4

Index Ellipsoid

Instead of obtaining the displacement current from the electric field by multiplica-
tion with the dielectric tensor we can instead solve the inverse problem, i.e., obtain
the electric field by multiplication of the displacement current with the inverse of
the dielectric tensor. This tensor can also be diagonalized and it, too, yields an ellip-
soid, the so-called “index ellipsoid”.

In the coordinate system of the principal axes the equation follows from an inver-
sion of the diagonalized tensor, which is, of course, just the inverse of the diagonal
elements, and we obtain

D2
x

n2
x

þ
D2

y

n2
y

þD2
z

n2
z

¼ 2rE ¼ const: ð26-105Þ

Here, the main axes are given directly by the principal refractive indices.

26.6.5

Types of Birefringent Media

The epsilon tensor must obey the symmetries of the interaction of light with matter.

Isotropic Media

If all three principal refractive indices are equal, the medium is optically isotropic:

Figure 26-16: Index ellipsoid of isotropic media.

e ¼
n2 0 0
0 n2 0
0 0 n2

0

@

1

A ¼ n2
1 0 0
0 1 0
0 0 1

0

@

1

A : ð26-106Þ

The refractive index is independent of the polarization and therefore it is indepen-
dent of the direction of propagation.
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Isotropic media are media without internal order: Usually gases, fluids and amor-
phous solids like glass and fused silica. Any breaking of the symmetry such as an-
isotropic pressure applied to a solid body or the flow of a fluid may induce optical
anisotropy.

Cubic crystals like CaF2 and BaF2 are isotropic in terms of the second-order
dielectric tensor eij, but the fourth-order dielectric tensor is non-zero, i.e., they show
the phenomenon of spatial dispersion.

Uniaxial Media

Two different principal refractive indices, i.e., two axes of Fresnel’s ellipsoid are
identical:

Figure 26-17: Index ellipsoid of uniaxial media.

e ¼
n2
o 0 0
0 n2

o 0
0 0 n2

e

0

@

1

A : ð26-107Þ

The refractive index that appears twice is called the ordinary refractive index no and
the refractive index that appears only once is called the extraordinary refractive
index ne. The index ellipsoid becomes an ellipse of revolution. These media are
called uniaxial, because they posses one optical axis, i.e., one propagation direction
for which the refractive indices of both eigenpolarizations are equal (see section
26.7.2). If ne > no, the medium is called positive uniaxial, if ne < no it is called negative

uniaxial.
Tetragonal, hexagonal and trigonal crystals are uniaxial.

Examples of negative uniaxial media:

Material Crystal class k [nm] Refractive indices Dn = ne – no

Calcite (Ca2CO3) trigonal 589 no= 1.6584, ne = 1.4864 –0.172

Tourmaline tetragonal 589 no= 1.669, ne = 1.638 –0.031

Beryll hexagonal 589 no= 1.570, ne = 1.567 –0.007
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Examples of positive uniaxial media:

Material Crystal class k [nm] Refractive indices Dn

Cinnabar trigonal 589 no= 2.854, ne = 3.201 0.347

Rutil tetragonal 589 no= 2.6158, ne = 2.9029 0.287

Quartz (SiO2) trigonal 589 no= 1.5442, ne = 1.5533 0.0091

Ice (H2O) hexagonal 589 no= 1.309, ne = 1.313 0.004

MgF2 tetragonal 157 no= 1.468, ne = 1.482 0.014

Biaxial Media

Three different principal refractive indices, i.e. all three axes of Fresnel’s ellipsoid
are different:

Figure 26-18: Index ellipsoid of biaxial media.

e ¼
n2
x 0 0
0 n2

y 0
0 0 n2

z

0

@

1

A : ð26-108Þ

These media are called biaxial, because they posses two optical axes (see section
26.7.2).

Triclinic, monoclinic and rhombic crystals are biaxial.

Examples:

Material Crystal class k [nm] nx ny nz

Calcium sulfate (gypsum) monoclinic 589 1.5208 1.5228 1.5298

Mica monoclinic 589 1.5612 1.5944 1.5993

Sugar 589 1.5382 1.5658 1.5710

Optical Activity

Optical activity stems from the tensor of third order on the relation between the dis-
placement and the electric field. For a plane wave of propagation constant~kk(k1,k2,k3)
the resulting dielectric tensor becomes
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eoajl ¼ i
X3

m¼1

cjlmkm ¼ icjl: ð26-109Þ

The optical activity is zero for crystals with a center of symmetry. It results in a rota-
tion of the plane of polarization for an incident linearly polarized plane wave.

Because of the anti-symmetry of cjlm and in accordance with the hermiticity of e,
c is antisymmetrical [26-13]

cjl ¼ �clj: ð26-110Þ

Because an antisymmetrical second-order tensor can be replaced by an axial vector
according to

~cc ¼
c23

c31

c12

0

@

1

A ¼ �
c32

c13

c21

0

@

1

A: ð26-111Þ

The relation between the displacement and the electric field becomes

~DD ¼ e~EE � i~cc ·~EE ð26-112Þ

where c is the “gyration vector” describing a rotation of~EE.

Spatial Dispersion

Spatial dispersion of second order is described by a tensor of fourth order. For a plane
wave of propagation constant~kk(k1,k2,k3) the resulting dielectric tensor becomes

eIBRij ¼
X3

l¼1

X3

m¼1

aijlmklkm: ð26-113Þ

The abbreviation IBR stands for “intrinsic birefringence”. The term stems from its
appearance in optical lithography. Below a wavelength of 193 nm CaF2 is almost the
sole applicable material for refractive components. Being a cubic crystal it was firstly
considered as isotropic. Polarimetric measurements at the HeNe laser line of
633 nm showed no effect apart from the stress-induced birefringence, so the indus-
trial production of CaF2 crystals began. First measurements of the birefringence at
the target wavelength of 157 nm, however, proved that CaF2 also shows birefrin-
gence stemming from spatial dispersion with a magnitude of 11 nm/cm [26-16],
which is far above the specification for stress-induced birefringence. Because this
birefringence is a property of the material and could not be eliminated by tighter
specification it was called “intrinsic”.

Not all elements of the tensor a are independent. In fact, most values are equal
because of symmetry considerations. For a cubic crystal, as in CaF2, the symmetry
provides the relations [26-17]
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a) axxxx=ayyyy=azzzz ,

b) axxzz=axxyy=ayyxx=azzxx=ayyzz=azzyy , (26-114)

c) axyxy=ayxyx=axyyx=ayxxy=axzxz=azxzx=axzzx=azxxz=azyyy=ayzyz=azyyz=ayzzy .

The maximum birefringence appears along the 110-direction. It becomes

2n0Dn ¼ k20
2

a1111 � a1122 � 2a1212ð Þ ð26-115Þ

where k0 = 2p/k0 (k0 = free space wavelength) and n0 denotes the mean refractive
index.

26.7

Eigenwaves in Anisotropic Media

In this section the propagation of plane waves in anisotropic media is addressed. We
show that a plane wave decomposes into two orthogonally polarized eigenwaves that
usually propagate with different phase velocities, and we discuss their properties.

26.7.1

Plane Waves in Anistropic Media

Consider a plane wave with propagation vector ~kk and arbitrary polarization in a
source-free and non-magnetic, but otherwise arbitrary, anisotropic medium.

Figure 26-19: Propagation direction q in coordinate system.

The direction of propagation is denoted by the vector~qq, which is the normalized
propagation vector (figure 26-19). It is defined by

~kk ¼ 2p

k0
n~qq: ð26-116Þ
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The Maxwell equations reduce for plane waves to a set of algebraic equations:

n~qq ·~EE ¼ Z0
~HH ;

n~qq · ~HH ¼ �Z�1
0
~DD ;

~qq � ~DD ¼ 0 ;

~qq � ~HH ¼ 0 ;

~DD ¼ e ~EE ;

ð26-117Þ

where Z0 denotes the free space impedance. The relation between the electric field
and the displacement becomes

~DD ¼ �n2~qq · ~qq ·~EE
� �

¼ �n2 ~qq �~EE
� �

~qq�~EE
h i

: ð26-118Þ

Inspection yields the following properties of a plane wave in an anisotropic medi-
um:

1) ~DD and~EE are not usually parallel.

2) ~DD is transverse, i.e., ~DD and~qq are orthogonal.

3) ~EE is usually not transverse.

4) ~HH is transverse.

5) ~EE, ~DD and~qq are coplanar.

The relative orientation of the fields is sketched in figure 26-20.

Figure 26-20: Relative orientation of~EE, ~DD, ~HH, and~qq.

From the non-transversality of the electric field follows the non-parallelism of the
Poynting vector to the propagation direction of the plane wave. This fact and the
resulting beam-splitting will be discussed in detail in section 26.10.

26.7.2

Eigenwaves and their Polarization

Inserting the tensor relation for ~DD into (26-118) yields an equation for~EE alone

n2~qq ·~qq ·~EE ¼ �e~EE : ð26-119Þ

26 Polarization502



The cross-product with~qq can be written in matrix form

~qq ·~AA ¼
0 �qz qy
qz 0 �qx
�qy qx 0

0

@

1

A

Ax

Ay

Az

0

@

1

A ¼ q~AA; ð26-120Þ

and we obtain a matrix equation for (26-119)

n2q2~EE ¼ �e~EE: ð26-121Þ

The solutions of this equation lead to the eigenpolarizations and the corresponding
refractive indices. It can also be formulated in terms of the displacement vector ~DD

n2q2e�1~DD ¼ �~DD: ð26-122Þ

For evaluation, two forms are useful:

1) An eigenvalue equation

e�1q2~EE ¼ �n�2~EE : ð26-123Þ

2) A homogeneous linear system of equations

n2q2 þ eð Þ~EE ¼ 0 : ð26-124Þ

In the coordinate system of the principal axes of the medium, the dielectric tensor e
is diagonal and the explicit form becomes

ex � q2y þ q2z

� �

n2qxqy n2qxqz

n2qxqy ey � q2x þ q2z
	 


n2qyqz

n2qxqz n2qyqz ez � q2x þ q2y

� �

0

B
B
@

1

C
C
A

Ex

Ey

Ez

0

@

1

A ¼
0
0
0

0

@

1

A: ð26-125Þ

For a non-trivial solution the matrix must be singular, i.e.,

det n2q2 � eð Þ ¼ 0; ð26-126Þ

which yields, after some algebra, Fresnel’s quartic equation

q2xex þ q2yey þ q2zez

� �

n4 � q2xex ey þ ez
	 


þ q2yey ex þ ezð Þ þ q2zez ex þ ey
	 
h i

n2

þexeyez ¼ 0 ð26-127Þ

It is of fourth degree in n and yields two solutions for n2. Another form of Fresnel’s
quartic equation is in terms of the phase velocity v = c0/n
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X3

i¼1

q2i
v2 � v2i

¼ 0; ð26-128Þ

where vi are the phase velocities along the principal axes and qi are the components
of the propagation vectors in the coordinate system of the principal axes.

In the coordinate planes, i.e., for qx, qy or qz = 0, Fresnel’s quartic becomes partic-
ularly simple. In the yz-plane it is

qx ¼ 0 : ex � n2 q2y þ q2z

� �h i

ey � q2zn
2

	 

ez � q2yn

2
� �

� n4q2yq
2
z

n o

¼ 0 ð26-129Þ

which becomes with q2y þ q2z ¼ 1

qx ¼ 0 : ex � n2ð Þ ey � q2zn
2

	 

ez � q2yn

2
� �

� n4q2yq
2
z

n o

¼ 0 : ð26-130Þ

The analogous equations for the xy and xz-planes are obtained from a cyclic permu-
tation of x, y, and z.

To satisfy the equation one of both brackets must be zero. The first one yields

ex ¼ n2 ð26-131Þ

i.e., the refractive index n=
ffiffiffiffiffi
ex

p
occurs for all propagation directions in the yz-plane.

Because of the directional independency it is called the ordinary index of refraction.
The second bracket is equivalent to the equation of an ellipse

q2yn
2

ez
þ q2zn

2

ey
¼ 1 ð26-132Þ

with the refractive index

n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

eyez

eyq2y þ ezq2z

s

ð26-133Þ

which depends on the direction of propagation and is therefore called the extraordin-
ary index of refraction.

The existence of two refractive indices means that the Ewald sphere of a homoge-
neous medium becomes a two-leaf Ewald surface. Slices through the surface at the
coordinate planes are plotted in figures 26-21 and 26-22.

While, for a uniaxial crystal, the complete 3D-surfaces are just an ellipsoid and a
sphere that touch each other at two opposing points, they are somewhat more com-
plex for a biaxial crystal. The inner surface bulges outwards at four points and the
outer surface bulges inwards, so that both surfaces touch at four points [26-13].

The optical axes are the directions along which the refractive index is equal for
both eigenpolarizations. Uniaxial media have one axis through the opposite touch-
ing points of the sphere for the ordinary, and the ellipsoid for the extraordinary
index (cf. figure 26-21). For biaxial media two optical axes exist, one for each pair of
opposite touching points of the inner and the outer sphere (figure 26-23).
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Figure 26-21: Refractive indices in coordinate planes for a uniaxial crystal

with ex = 1, ey = 2, ez = 2, red: ordinary, blue: extraordinary refractive index.

Figure 26-22: Refractive indices in coordinate planes for a biaxial crystal

with ex = 1, ey = 2, ez = 3, red: ordinary, blue: extraordinary refractive index.

Figure 26-23: 3D-surface of refractive indices for a biaxial crystal.
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26.7.3

Properties of the Eigenpolarizations

For a given propagation direction in an anisotropic medium two orthogonal polar-
ized waves that propagate with different phase-velocities exist. The corresponding
eigenpolarizations are linear and orthogonal when the matrix e–1q2 is real and sym-
metrical. The polarizations are “eigenpolarizations”, because they are the states of
polarization that do not change while the wave is propagating.

~DDjð~qq;~rrÞ ¼ ~DDje
inj

2p
k0

~qq�~rr ð26-134Þ

The fields and the wave vectors obey the following relations

a) ~DD1,2 are transverse and orthogonal: ~DD1 �~qq ¼ ~DD2 �~qq ¼ 0, ~DD1 � ~DD2 ¼ 0;
b) ~EE1,2 are orthogonal: ~EE1 �~EE2 ¼ 0; (26-135)

c) ~HH1,2 are transverse and orthogonal: ~HH1 �~qq ¼ ~HH2 �~qq ¼ ~HH1 � ~HH2 ¼ 0:

26.7.4

The Intersection Ellipse

The index ellipsoid provides a visual means of obtaining the refractive indices of a
plane wave in a given propagation direction.

The phase velocities are proportional to the reciprocals of the corresponding refractive
indices, which can be obtained by constructing the intersection ellipse. Consider a prop-
agation direction~qq. A plane that contains the center of the ellipsoid and that is orthogo-
nal to the direction~qq intersects the index ellipsoid with an elliptical curve (figure 26-24).
The direction of the main axes of this ellipse yields the linear polarization vectors and
their length the corresponding refractive indices. The intersection ellipse is parallel
to the wavefront of the plane wave given by the propagation vector.

Figure 26-24: Index ellipsoid and construction of a pair of

orthogonal ~DD-vectors for a given propagation direction.

For an isotropic medium, the intersection curve with a plane through the origin
is always a circle. The long and the short axis of the intersection ellipse are identical
and for every direction a single wave propagates with the same propagation velocity
independent of the direction.

For a uniaxial medium, the long and short axis become different with one excep-
tion: If the propagation direction is parallel to the optical axis the ellipse reduces to a
circle and the phase velocity is independent of the polarization. Therefore these me-
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dia are called uniaxial: There is one axis along which the phase velocity is indepen-
dent of the polarization. The maximum difference in the refractive indices occurs
for a propagation direction which is perpendicular to the optical axis.

In general, the propagation direction encloses an angle w with the optical axis.
One axis of the intersection ellipse is always equal to the ordinary refractive index
while the other is given by

1

nðwÞ2
¼ cos 2w

n2
o

þ sin 2w

n2
e

: ð26-136Þ

The eigenpolarization ~DDe corresponding to the extraordinary refractive index is
given by the projection of the optical axis onto the wavefront, i.e., ~DDe,~qq and the opti-
cal axis are in the same plane. The orthogonal eigenpolarization , corresponding to
the ordinary refractive index, is orthogonal to this plane.

A point source inside a uniaxial crystal provides a spherical wave which is polar-
ized perpendicular to the crystal axis, and an elliptical wave for the orthogonal polar-
ization.

Figure 26-25: Point source in a uniaxial crystal. Left: negative uniaxial

crystal, right: positive uniaxial crystal.

26.8

Jones Matrix of Propagation

The birefringence of anisotropic media is described by two eigenpolarizations to-
gether with the corresponding refractive indices. For non-absorbing media e is her-
mitian and therefore the eigenpolarizations ~DD1, ~DD2 are orthogonal. Because of this,
every polarized wave in the medium can be decomposed uniquely into a linear com-
bination of both normalized eigenpolarizations. The propagation of the field ~DDin

over a distance d becomes

~DDout ¼ ~DDin � D̂D�
1

	 

D̂D1e

ik0n1d þ ~DDin � D̂D�
2

	 

D̂D2e

ik0n2d ð26-137Þ
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which can be written in compact form in Jones matrix notation

~DDout ¼
D1xj j2u1 þ D2xj j2u2 D1xD

�
1yu1 þD2xD

�
2yu2

D�
1xD1yu1 þD�

2xD2yu2 D1y






2
u1 þ D2y






2
u2

 !

Din
x

Din
y

� �

ð26-138Þ

with

ui ¼ eik0nid: ð26-139Þ

A concise form of the Jones matrix is obtained by using the dyadic product �

J ¼ ~DD1 � ~DD
�
1u1 þ ~DD2 � ~DD

�
2u2 : ð26-140Þ

By this means the Jones matrix of a series of different anisotropic media can be
computed (however, only the effect due to the medium is considered whereas inter-
faces yielding double refraction and Fresnel effects are not included).

26.9

Jones Matrices of Propagation for Common Media

26.9.1

Eigenpolarizations and -values

The angular dependence of the eigenpolarizations and -values is computed from the
Jones matrix of propagation via a solution of the eigenvalue equation

J~DD1;2 ¼ K~DD1;2 ð26-141Þ

with the matrix K of the eigenvalues

K ¼ a1e
ij1 0
0 a2e

ij2

� �

: ð26-142Þ

The retardation is the phase difference of the eigenvalues

Dj ¼ j1 � j2 ð26-143Þ

and the orientation is given by the orientation of the slow axis, i.e., the orientation of
the eigenvector with the higher phase value. If the eigenvector corresponds to an
elliptical polarization, the orientation of the main axis is taken.
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26.9.2

Coordinate Systems

For correct computation of the change of the state of polarization of a ray traversing
an anisotropic medium, three coordinate systems have to be considered: The ray
coordinate system, the crystal coordinate system and the global coordinate system.

Figure 26-26: Coordinate system for the Jones matrix of propagation of a crystal. c= crystal axis.

The angular distributions of the Jones matrices of the following examples are
shown for J = 0 – 90� and j = 0 – 2p (cf. figure 26-26). The direction of the ray along
the optical axis in the crystal is denoted by its Miller indices (mx,my,mz) for cubic
crystals. For uniaxial and biaxial media (mx,my,mz) denote the directions in the coor-
dinate system of the principal indices.

26.9.3

Uniaxial Crystal

Consider a uniaxial crystal with a mean refractive index of 1.55840 and a maximum
birefringence of 10–6. The principal refractive indices become

n1 = 1.558401,

n2 = 1.558400,

n3 = 1.558400.

The angular distributions of the Jones matrices are shown in figure 26-27.

Figure 26-27: Birefringence distribution of a uniaxial crystal.



Looking along the optical axis the eigenpolarizations are radial with azimuthal
symmetry. This case is shown on the left. Looking in a direction orthogonal to the
crystal axis (plot in the center), the maximum retardance is observed. Please note
that the eigenpolarizations are not parallel to each other. They are inclined for
increasing height.

26.9.4

Biaxial Crystal

Consider a biaxial crystal with a mean refractive index of 1.55840 and a maximum
birefringence of 10–6 and 2 � 10–6. The principal refractive indices become

n1 = 1.558402,

n2 = 1.558401,

n3 = 1.558400.

Figure 26-28: Birefringence distribution of a biaxial crystal.

The two optical axes are orthogonal to each other.
Principal refractive indices of

n1 = 1.5584015,

n2 = 1.5584010,

n3 = 1.5584000.

yield a similar pattern, but now the optical axes are not orthogonal.

Figure 26-29: Birefringence distribution of a biaxial crystal.
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26.9.5

CaF2 with Spatial Dispersion at k = 193 nm

The spatial dispersion of calcium fluoride yields a distribution of eigenpolarizations
that is considerably more complicated. The images below show the retardances
and eigenpolarizations of CaF2 at a wavelength of 193 nm. The birefringence is
–0.34 · 10–6. Along seven directions the retardance becomes zero, i.e., we may speak
of a hepta-axial crystal.

For the use of thematerial in optical lithography the 100 and the 111 directions are of
particular importance, because there the retardance for the ray parallel to the optical
axes vanishes. Thatmeans usually that in the center of the pupil the resulting retardance
becomes zero. A correct combination of material of different crystal cuts (different
directions of axial rays) may also reduce the retardance for oblique rays down to a
level that is acceptable for high precision optics as is required for lithography.

Figure 26-30: Birefringence distribution of CaF2 (a crystal with spatial dispersion).

26.10

Beam-splitting in an Anisotropic Medium

The direction of the energy flow for a plane wave can be represented by the direction
of the Poynting vector:

~SS ¼ ~EE · ~HH: ð26-144Þ

Because~EE, ~DD and~qq are coplanar and ~HH ·~qq ¼ 0,~SS is located in the same plane, i.e., all
four vectors ~EE, ~DD,~SS, and~qq are coplanar. Their orientation is sketched in figure 26-31.

Figure 26-31: Relative orientation of the electromagnetic field

vectors of the eigenwaves. Note the coplanarity of~EE, ~DD,~SS and~kk.
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Consequences:

a) The direction of the energy flow is not parallel to the wave direction. It encloses

the same angle a that exists between the electric vector and the displacement

vector, i.e.

cosa ¼
~EE � ~DD

~EE



~DD


: ð26-145Þ

In the coordinate system of the principal axes we get

cosa ¼
n2
xE

2
x þ n2

yE
2
y þ n2

zE
2
z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E2
x þ E2

y þ E2
z

� �

n4
xE

2
x þ n4

yE
2
y þ n4

zE
2
z

� �
r : ð26-146Þ

b) Although, for the two eigenwaves, for a given direction of propagation the wave

vectors are parallel (because the direction is identical), the corresponding Poynt-

ing vectors ~SS1,2, are not, because the E-vectors ~EE1,2 usually point y in different

directions. Therefore, there is an inherent beam split during the propagation. For

the example of a uniaxial crystal above, the energy propagation of the ordinary

wave is parallel to the plane-wave propagation. Therefore the beam split is al-

ready obtained from eq. (26-146).

Example

In order to quantify the maximum beam split for a given birefringence we consider a
uniaxial crystal with the principal refractive indices no = nx = nz and ne = ny and an xz-
polarized wave propagating under 45� to the optical axis (z-direction). For a weak bire-
fringence the electric field is approximately~EE= (1,0,1) andwe obtain from eq. (26-146)

cosa ¼ n2
e þ n2

o
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 n4
e þ n4

o

	 

q ð26-147Þ

which results for CaF2 with no = 1.56 and ne = no + 10–6 at 157 nm to a = 3.7 · 10–5�.
For CaCO3 in the visible range of the spectrum (k = 546 nm) we get, with no = 1.662
and ne = 1.488, a beam split of a = 6.3� resulting in a ray displacement of 1.1 mm for
a traversed distance of 1 cm.

Rays as Plane-wave Bundles

Besides the fact that the beam split results merely in a displacement, it is not neces-
sary to treat the beam split of rays independently: The beam split follows from the
representation of a beam as a bundle of plane waves.

To demonstrate this fact, consider a beam that is represented as a bundle of plane
waves into different directions~qqX,

U ¼ R

DX

UðXÞeinðXÞ~qq�~rrdX ð26-148Þ

where X denotes the spatial angle. Now we argue as follows:
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a) The propagation of the beam is equivalent to the propagation of the point of

maximum interference.

b) The spatial propagation of the point of maximum interference follows the direc-

tion where the phase velocity of all contributing plane waves are equal,

nðXÞ~qq �~SS ¼ const: in X; ð26-149Þ

i.e., a direction of stationary phase

d~qqX
dX

�~SS ¼ 0 ð26-150Þ

with

~qqX ¼ nðXÞ~qq : ð26-151Þ

c) Therefore, the direction of energy propagation ~SS is perpendicular to the angular

derivative of the phase-propagation vector.

d) For an isotropic medium, d~qqX is perpendicular to the plane-wave direction with

the consequence that the directions of energy and plane-wave propagation are

parallel.

e) In an anisotropic medium, the phase velocity depends on the direction of propaga-

tion, i.e., d~qqX is not perpendicular to~qq and therefore~SS is not parallel to~qq.

To illustrate this continuous beam displacement, we simulated the propagation of
a beam consisting of plane waves with an angular spectrum within – 5� where the
refractive index changes by Dn= –0.1 around a mean index of 1.56, i.e.,

U ¼
XM=2

j¼�M=2

exp i2pðn0 þ Dn sin
2jumax

M

� �

x þ cos
2jumax

M

� �

z

� �� �

: ð26-152Þ

The result in form of the real part of the scalar field U is shown in figure 25.23.
The angle between the wave propagation and the continuous maximum displace-
ment is 20�.
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Double Refraction

The split of the beams, i.e., the slit in the direction of energy propagation, should be
distinguished carefully from the double refraction at interfaces. While the beam
split already occurs for the bulk medium, the double refraction is caused by the dif-
ferent angles of refraction at an interface.

The phenomenon of double refraction for an arbitrary anisotropic medium is
depicted in figure 26-33: A plane wave incident under the angle Ji onto the interface
is refracted into two plane waves with propagation vectors ~kk1 = n1(J1)~qq1 and ~kk2 =
n2(J2)~qq2.

Figure 26-33: Double refraction at an interface to an aniso-

tropic medium.

In order to obtain the angular split and phase difference of both waves after a
length z of propagation, the angles and the refractive indices are referred to one
wave, i.e., we write

J2 ¼ J1 þ DJ ¼ Jþ DJ ;
n2ðJ2Þ ¼ n1ðJ1Þ þ Dn ¼ nþ Dn :

ð26-153Þ

The angular split is calculated from

sinJi ¼ n sinJ ¼ nþ Dnð Þ sin ðJþ DJÞ ð26-154Þ

yielding

DJ ¼ arcsin n sinJ
nþ Dn

� �

� J

¼ arcsin sinJi

nþ Dn

� �

� arcsin sinJi
n

� �

:
ð26-155Þ

Neglecting terms of quadratic order (Dn2, DJ2, DnDJ) we obtain for the angular
split

DJ »� Dn

n
tanJ: ð26-156Þ
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In particular, for a plane parallel plate, the angular split of the waves occurs for a plane
only within the material. Outside the waves are again parallel, because, for any refrac-
tive index, a plane plate introduces only a beam displacement (figure 26-34)

Figure 26-34: Parallel beams behind a birefringent

parallel plate.

Concluding this chapter we compute the retardance that occurs at a given dis-
tance behind the refracting interface of an anisotropic medium.

The retardance should be referred to a certain point r = (x,z) in space

Dj ¼ ~kk2 �~kk1

� �

�~rr ¼ k2z � k1zð Þzþ k2x � k1xð Þx: ð26-157Þ

Because of the continuity of the tangential fields, the tangential component of the
propagation vector is continuous while traversing the interface, i.e.,

k2x; k2y
	 


¼ kix; kiy
	 


and k1x; k1y
	 


¼ kix; kiy
	 


: ð26-158Þ

This implies

k2x; k2y
	 


¼ k1x; k1y
	 


ð26-159Þ

and we obtain for the retardance

Dj ¼ k2z � k1zð Þz
¼ nþ Dnð Þ cos ðJþ DJÞ � n cos ðJÞ½ �z :

ð26-160Þ

Again neglecting terms of quadratic order we get

Dj » Dn cos ðJÞ � nDJ sin ðJÞ½ �z : ð26-161Þ

Inserting the approximate formula for the angular split DJ yields finally

Dj »
Dn

cos ðJÞ z ¼ DnL ð26-162Þ

where L= z/cosJ denotes the geometrical path length. This is an equation we expect
if both polarizations traverse the same path but are subject to different refractive
indices. It implies that we may neglect the angular split for small Dn and DJ but
still obtain valid retardances.
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26.11

Examples of Polarization-optical Elements

26.11.1

Quarter-wave and Half-wave Retarder

A quarter-wave retarder (quarter-wave plate) with a retardance of p/2 and a half-
wave retarder with a retardance of p, usually consists of a plate of a birefringent
crystal (calcite, quartz, mica).

The thickness of an mth-order quarter-wave retarder (where no and nao are the
ordinary and the extraordinary refractive indexs, respectively) is

d ¼ ð4m � 3Þ � k

4 � no � nao

	 
 :

Figure 26-35: Quarter-wave retarder.

Higher order plates are fabricated from two plates of which the thickness is one
order apart. Compared to a zero-order plate (m = 1) they have a couple of disadvan-
tages:

1. higher sensitivity for thickness variations,

2. higher sensitivity for temperature variations,

3. higher sensitivity for angular variations.

26.11.2

Babinet–Soleil Compensator

The Babinet–Soleil compensator is a combination of two prisms made from a uniax-
ial crystal with orthogonal optical axes. The wedge angle is small so that the double
refraction at the interface is negligible.
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Figure 26-36: Principle of the Babinet–Soleil compensator.

A lateral movement changes the difference in the optical path length for the
ordinary and the extraordinary refractive index:

Dj ¼ k0 ne � noð Þ d1 � d2ð Þ :

By thismeans the retardance can be adjusted, i.e., the element is a variable retarder.

Figure 26-37: Retardance of the Babinet–Soleil compensator.
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26.11.3

Faraday Rotator

An optical rotator can be realized using the Faraday effect: An external magnetic
field rotates the plane of vibration of a traversing electromagnetic field proportional
to the external field B and the traversed length L. The constant of proportionality is
the Verdet constant of the material (figure 26-38)

b ¼ ~BB



 � L � V :

Figure 26-38: Parallel beams behind a birefringent parallel plate.

The direction of rotation induced by the Faraday effect is independent of the direc-
tion of propagation of the traversing light. Because of this the angle of rotation
increases if a light ray traverses the element after reflection a second time. This
property is applied in an optical isolator: It consists of a Faraday cell that rotates a
linear input-polarization about 45 degrees. The cell is situated between two polariz-
ers rotated about 45degrees with respect to each other (figure 26-39).
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Figure 26-39: Optical isolator.

As an optical activity, the Faraday effect can be interpreted as circular birefrin-
gence. However, unlike the optical activity of passive chiral materials the Faraday
effect remains its helicity even if the direction of propagation is reversed. Because of
this an optical isolator can be realized only with the Faraday effect.

26.11.4

Brewster Plate

A Brewster plate of angle tan(h) = n has a Jones matrix

JBPðnÞ ¼
2n

n2 þ 1

� �2

0

0 1

0

B
@

1

C
A :

Figure 26-40: Brewster plate.
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A stack of m plates in Brewster configuration has the Jones matrix

JSBPðnÞ ¼
2n

n2 þ 1

� �2m

0

0 1

0

B
@

1

C
A :

The degree of polarization that can be obtained using such a stack is

p ¼ n2 þ 1ð Þ4m� 2nð Þ4m

n2 þ 1ð Þ4mþ 2nð Þ4m
:

Figure 26-41: Stack of Brewster plates.
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27 Vector Diffraction

27.1

Introduction

In the field of classical optics the general diffraction problem is an electromagnetic
one. Given an incident electromagnetic field (~EEi(r), ~HHi(r)) and an inhomogeneous
medium described by a space-variant permittivity e(r), permeability l(r) or conduc-
tivity r(r) the task is to find the resulting field distribution in the near and far-field
of the medium (Figure 27-1).

Figure 27-1: General diffraction problem.

This requires the solution of Maxwell’s equations for an inhomogeneous medi-
um. Three options are available:

1. Approximative solutions.
2. Analytical solutions.
3. Numerical solutions.

Approximative methods were discussed in detail in chapter 18. The classical sca-
lar diffraction integrals do not solve a boundary condition problem but assume
boundary values from which the diffracted field is computed. This method can be
extended to the electromagnetic field in a straightforward manner. We will show
here the computation of the polarized focus in some detail and discuss the vector
Kirchhoff diffraction integral.

Analytical solutions are possible only for a very limited number of cases where
the surface of the diffracting object coincides with a coordinate surface. Then the
field tangential to the surface can be separated from the field normal to it, allowing
a direct solution of the field inside and outside the diffracting object. The homoge-
neous half-space (solved by the well known Fresnel equations), the circular cylinder,
and the sphere (Mie scattering) will be presented in some detail. Analytic solutions

524



27.2 Focus Computation for Polarized Fields

are also possible for perfect conductors like Sommerfeld’s diffraction at the perfectly
conducting half-plane.

The importance of numerical solutions has shown a remarkable increase recently
due to the advances in computation capabilities. Methods like the rigorous coupled
wave analysis (RCWA; and also FMM or Fourier Modal Method) and the Finite Dif-
ference Time Domain Method (FDTD) allow a rigorous solution of Maxwell’s equa-
tions by transforming the diffraction problem into a discretized version suitable for
a computer. These methods are now the workhorse of electromagnetic diffraction
calculations. Their description will close this chapter.

27.2

Focus Computation for Polarized Fields

The focus computation is an actual boundary value problem. The field in the exit
pupil of an optical system is given and we search the resulting field distribution in
the focus. The system aspect including aberrations of this computation will be dis-
cussed in detail in chapter 28. Here we compute the focus for a perfectly focussed
field.

27.2.1

Geometry for Focus Computation

To compute the focus of electromagnetic fields we consider an optical system with a
plane entrance pupil and a spherical exit pupil (Figure 27-2). The field distribution
in the entrance pupil is described by a distribution of Jones vectors in pupil coordi-
nates. Two-dimensional Jones vectors are sufficient because the electromagnetic
field is transverse.

Figure 27-2: Geometry for high-NA focussing.
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It should be noted that there is a certain contradiction in this argument: If we
allow a phase distribution of the electric field in the entrance pupil, the direction of
propagation cannot be purely axial. For vector fields this results in a non-vanishing
z-component, but for macroscopic pupils (with diameter of at least some mm) and
phase errors around a few wavelengths, this component is vanishingly small.

Two-dimensional, dimensionless pupil coordinates are denoted by (px,py) which
are related to the propagation angles of the corresponding plane wave in image
space by

px ¼ n sin W cosj;

py ¼ n sin W sinj:
ð27-1Þ

with the refractive index n in image space and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2x þ p2y

q

£ n sin W ¼ NA : ð27-2Þ

The inverse relations are

sin W ¼ 1

n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2x þ p2y

q

;

sinj ¼ py
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2x þ q2y

q ;

cosj ¼ px
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2x þ p2y

q :

ð27-3Þ

27.2.2

Richards–Wolf integral

The computation of the focus fields can be done along the lines of the classical
paper by Richards and Wolf [27-1] and [27-2]. The field components of the point-
spread function follows from the Debye integral for an incoming field, linearly
polarized in the x-direction, in the form

~EEðr; zÞ ¼ ~EE0 � e
� iu
4 sin 2h0=2 �

�i � I0 þ I2 � cos 2jð Þ
�i � I2 � sin 2j
�2 � I1 � cosj

0

@

1

A ð27-4Þ

where j is the angle of the azimuth and J0 is the angle of the full numerical aper-
ture. The following three auxiliary function are used in the above expression

I0ðr; zÞ ¼
RWo

0

ffiffiffiffiffiffiffiffiffiffiffi

cosW
p

� sin W � ð1þ cosh Þ � J0 kr sin Wð Þ � eikz cos W dW ; ð27-5Þ
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I1ðr; zÞ ¼
RWo

0

ffiffiffiffiffiffiffiffiffiffiffi

cosW
p

� sin 2W � J1 kr sin Wð Þ � eikz cosh dW ; ð27-6Þ

I2ðr; zÞ ¼
RWo

0

ffiffiffiffiffiffiffiffiffiffiffi

cosW
p

� sin W � ð1� cosW Þ � J2 kr sin Wð Þ � eikz cos W dW : ð27-7Þ

If the normalized coordinates u and v with

v ¼ kr � sin Wo ; ð27-8Þ

u ¼ 4k � z � sin 2 Wo

2
¼ 2k � z � 1� cos W0ð Þ ð27-9Þ

are used, the integrals I0, I1 and I2 can be written in the scaled form

I0ðu; vÞ ¼
RWo

0

ffiffiffiffiffiffiffiffiffiffiffi

cosW
p

� sin W � ð1þ cosW Þ � J0
v � sin W
sin Wo

� �

� e
iu� sin 2W=2
2 sin 2Wo=2 dW ; ð27-10Þ

I1ðu; vÞ ¼
RWo

0

ffiffiffiffiffiffiffiffiffiffiffi

cosW
p

� sin 2W � J1
v � sin W

sin Wo

� �

� e
iu� sin 2W=2
2 sin 2Wo=2 dW ; ð27-11Þ

I2ðu; vÞ ¼
RWo

0

ffiffiffiffiffiffiffiffiffiffiffi

cosW
p

� sin W � ð1� cosWÞ � J2
v � sin W
sin Wo

� �

� e
iu� sin 2W=2
2 sin 2Wo=2 dW : ð27-12Þ

Figure 27-3 shows the field components of a point-spread function of a typical
focussing system with high numerical aperture as calculated with the formulas
above. The dependence on the azimuth angle j generated the remarkable intensity
pattern for the orthogonal polarization and the axial field component. The color cod-
ing in this illustration is renormalized for all components, in reality, the x-compo-
nent has a dominant size.

Figure 27-3: Field components of the point-spread function for a focussing setup with high

numerical aperture as calculated with the diffraction integral according to Richards and Wolf.
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The practicality of the diffraction integral in the above formulation is limited,
since it cannot be calculated with a fast algorithm and the assumed rotational sym-
metry restricts the general application. But this framework allows a good estimation
of the size of the vectorial effects.

The incoming field is linearly polarized in the x-direction. The vectorial effect
causes a coupling of the field components, so the field in the focal region has a non-
vanishing field strength in the y and the z direction. I0 has a much larger value than
the other two integrals. Therefore the ratio of the Integrals I1 and I2 to I0 gives a
relative measure for the influence of the vector effects. In Figure 27-4, these two
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Figure 27-4: Relative size of the orthogonal axial (red) and the transverse (blue)

component of the vectorial point-spread function in the image plane as a function

of the numerical aperture in linear and logarithmic scaling.



27.2 Focus Computation for Polarized Fields

ratios are shown in the image plane u = 0 as a function of the angle ho of the numer-
ical aperture. It can be seen that the axial component grows more rapidly than the
transverse component. The axial part obtains a relative size of 1% for an angle of
30�. A corresponding size of the transverse component is reached for an angle of
80�. Since, in the practical situation, the numerical aperture is the more usual term
to consider, a corresponding picture is shown in Figure 27-5. Table 1 contains the
relative error of the scalar model for some selected values of the numerical aperture.

Figure 27-5: Relative size of the vectorial effects as a function of the numerical

aperture separated into the transverse and the axial part.

Table 1: Relative error of the scalar point-spread function for some

selected numerical apertures in axial and transverse field components.

NA Axial error Transverse error

0.2 0.0013 0

0.3 0.0031 0

0.4 0.0057 0.0001

0.5 0.0090 0.0002

0.6 0.0137 0.0005

0.7 0.0193 0.0011

0.8 0.0274 0.0023

0.9 0.0392 0.0048

Figure 27-6 shows the distribution of the two field strengths as a function of the
defocussing parameter u and the transverse coordinate v. The vectorial effect domi-
nates in the off-axis regime in the neighborhood of the image plane.

529



27 Vector Diffraction

Figure 27-6: Relative size of the orthogonal transverse and the axial component

of the vectorial point-spread function in the image plane as a function of the defocussing

and the transverse coordinate v for an angle of 85� which corresponds to an NA of 0.996.

If the sine condition is not valid, the diffraction integrals in the Richards–Wolf
formulation can be generalized with an apodization function P(J) similar to the sca-
lar case. The auxiliary functions are then expressed as

I0ðu; vÞ ¼
RWo

0

PðWÞ �
ffiffiffiffiffiffiffiffiffiffiffi

cos W
p

� sin W � ð1þ cos W Þ � J0
v � sin W
sin Wo

� �

� e
iu� sin 2W=2
2 sin 2Wo=2 dW ; ð27-13Þ

I1ðu; vÞ ¼
RWo

0

P Wð Þ �
ffiffiffiffiffiffiffiffiffiffiffi

cos W
p

� sin 2W � J1
v � sin W
sin Wo

� �

� e
iu� sin 2W=2
2 sin 2Wo=2 dW ; ð27-14Þ

I2ðu; vÞ ¼
RWo

0

P Wð Þ �
ffiffiffiffiffiffiffiffiffiffiffi

cos W
p

� sin W � ð1� cos W Þ � J2
v � sin W
sin Wo

� �

� e
iu� sin 2W=2
2 sin 2Wo=2 dW : ð27-15Þ

In the special case of a very narrow annular pupil, the vectorial form of the diffrac-
tion integral can be solved in an analytical form. According to [27-3] one gets, for the
image plane position u = 0, the intensity

Iðv;jÞ ¼ J2o ðvÞ þ 2 tan 2 Wo

2
� J21ðvÞ þ 2 tan 2 Wo

2
� J22ðvÞ

þ 2 cos 2jð Þ � tan 2 Wo

2
� J21ðvÞ þ J0ðvÞ � J2ðvÞ
� �

:

ð27-16Þ

For a circular input polarization, the corresponding intensity can be written as
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IcircðvÞ ¼ J2o ðvÞ þ 2 tan 2 Wo

2
� J21ðvÞ þ tan

Wo

2
� J22ðvÞ : ð27-17Þ

A radial polarization delivers the expression

IradðvÞ ¼ J2oðvÞ þ cosJo � J21ðvÞ : ð27-18Þ

Figure 27-7 shows the transverse intensity profiles for different starting polariza-
tions, together with the scalar annular pupil and the Airy distribution of a circular
aperture in the image plane for an aperture angle of 72�, shown for comparison.

Figure 27-7: Point-spread function profiles for an annular pupil with different

polarizations, the scalar case and the Airy distribution.

27.2.3

Plane Wave Expansion

In the diffraction computation according to the Debye approximation, each point of
the exit pupil is taken as the source of a plane wave with amplitude, phase and polar-
ization prescribed by this point. This provides a versatile method for focus computa-
tion that is easily generalized to non-circular pupils. The propagation vector corre-
sponding to the pupil coordinate (px,py) with k0 = 2p/k in a medium of refractive
index n is

~kk ¼ k0

px
py
pz

0

@

1

A ð27-19Þ



with

pz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2 � p2x � p2y

q

: ð27-20Þ

While the electric field ~EEpupil in the pupil coordinates is a two-component phasor,
the electric field ~EE3D in global coordinates in image space usually has three compo-
nents and can be derived by application of a 3 � 2 transformation matrix w

~EE3D ¼ w ~ppð Þ~EEpupil : ð27-21Þ

The transformation matrix follows from the change in the direction of the propaga-
tion vector. The succession of three rotational matrices that provides this change of
direction

~EE3D ¼
cosj � sinj 0
sinj cosj 0
0 0 1

0

@

1

A

cosW 0 sin W

0 1 0
� sin W 0 cos W

0

@

1

A

cosj sinj 0
� sinj cosj 0

0 0 1

0

@

1

A

Ex

Ey

0

0

@

1

A

ð27-22Þ

eventually yields the transformation matrix

T ¼
cos 2j cosWþ sin 2j

� sinj cosj 1� cos Wð Þ
� cosj sin W

� sinj cosj 1� cos Wð Þ
sin 2j cosWþ cos 2j

� sinj sin W

0

@

1

A ð27-23Þ

and we finally have the diffraction integral

~EEð~rrÞ ¼ R R
EP

wðpx; pyÞ~EEðpx; pyÞexp i~kk �~rr
n o

cos Wð Þ�1=2
dpxdpy ð27-24Þ

which can be implemented as an inverse Fourier transform

~EEðx; y; zÞ ¼ R R
pupil

~EEglobðpx; pyÞeik0 pxxþpzyþpzzð Þdpxdpy

¼ IFT ~EEglobðpx; pyÞeik0pzz
n o

:
ð27-25Þ

The intensity distribution in the focus is the sum of the intensities of the three field
components

Ið~rrÞ ¼ ~EEð~rrÞ
�
�
�

�
�
�

2

¼ Exð~rrÞj j2þ Eyð~rrÞ





2þ Ezð~rrÞj j2

¼ Ix þ Iy þ Iz :

ð27-26Þ
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27.2.4

Focus Fields for Various Input Polarizations

In this section, examples of high NA foci are shown, which are computed with the
plane wave expansion. The polarization states in the entrance pupil are linear, circu-
lar, radial, and tangential.

A) Focus of a Linearly Polarized Pupil

Consider an entrance pupil in which the field is linearly polarized in the x direction
(Figure 27-8). The amplitude is constant. This case has already been considered in
section 27.2.2.

Figure 27-8: Linearly polarized pupil.

While the focus shows circular symmetry for small NA, it becomes asymmetrical
with increasing NA as is shown in Figure 27-9. The focus width is larger along the
direction of polarization than it is perpendicular to it. This is a direct consequence
of the vector effect: Perpendicular to the polarization direction, the interfering elec-
tric field components are parallel to each other. Along the polarization direction they
enclose the same angle as the propagation vectors. Because of this, the contrast of
interference is reduced which yields a broader focus. Finally, this results in the
dependence of the image of a line structure, on the orientation of it. The image con-
trast is asymmetrical with higher contrast perpendicular to the polarization direc-
tion.

Figure 27-9: Focus of linearly polarized field for increasing numerical aperture.

27.2 Focus Computation for Polarized Fields 533
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The vector effect is significant for high-NA projection optics where a demagnified
image of a structure is formed. In optical microscopy the image is magnified, i.e.,
the image is formed with low NA. (For a microscopy lens of NA = 0.9 and a magnifi-
cation of 100� the NA in image space is 0.009). Therefore, the vector effect is entirely
negligible there.

Figure 27-10 shows the summed intensity and the x, y, and z components sepa-
rately. The field components show a characteristic pattern. While the x-polarized
focus is quite symmetric, the summed focus is asymmetric, mainly due to the super-

Figure 27-10: x, y, z component and summed intensity (Iges)) for an x-linearly
polarized incident field of NA = 0.9 in air.

Figure 27-11: x, y, z component and summed intensity (Iges) for an x-linearly

polarized incident field in a photoemulsion of refractive index n = 1.8.
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position of the z-polarized focus. Due to symmetry it is zero on the axis and shows
two separated maxima along the x-direction. The y-polarized focus is considerably
weaker with two zero lines along the x and y coordinate axes.

If the image is formed in a dielectric medium with a high index of refraction, the
interfering plane waves become more parallel because of refraction into the photo-
emulsion. The z-component is strongly diminished and the summed intensity dis-
tribution shows almost circular symmetry as for a low-NA focus (Figure 27-11).

B) Focus of a Circularly Polarized Pupil

Consider an entrance pupil in which the field is circularly polarized (27-12). The
amplitude is constant. The focus is shown in Figure 27-13 for a wavelength of
193 nm and NA of 0.95. It has circular symmetry for any NA. The focus of the z

component has circular symmetry in the shape of a doughnut and vanishes on the
optical axis. The x and y component are both asymmetrical but with orthogonal axes
so that their sum is again symmetrical.

Figure 27-12: Circularly polarized pupil.

Figure 27-13: x, y, z component and summed intensity (Iges) for a circularly

polarized incident field.



C) Focus of a Radially Polarized Pupil

For a radially polarized pupil, the amplitude cannot be constant because of the sin-
gularity in the center. Here we choose a linearly increasing amplitude and obtain
the pupil field shown in Figure 27-14.

Figure 27-14: Radially polarized pupil.

The radially polarized focus has a sharp intensity peak on the optical axis caused
by the now constructive interference of the z-component. The z-component alone
provides an even better focus than the overall intensity [27-4]. Because of this, a
ring-shaped aperture is advantageous here: it reduces the x and y-polarized intensity.
These have zero intensity perpendicular to the polarization direction, due to symme-
try.

Figure 27-15: x , y , z component and summed intensity (Iges) for a radially

polarized incident field.
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D) Focus of a Tangentially Polarized Pupil

As for the radially polarized pupil, the amplitude of the tangentially polarized pupil
cannot be constant because of the singularity in the center. Again we choose a line-
arly increasing amplitude and obtain the pupil field shown in Figure 27-16.

Figure 27-16: Tangentially polarized pupil.

A tangentially polarized pupil yields a doughnut-focus with a vanishing intensity on
axis (27-17). The reason is that opposing parts of the pupil are p-phase shifted with
respect to each other. For this configuration the z-component is zero, which makes the
tangential polarization an excellent alternative for high-NA image generation.

Figure 27-17: x , y , z component and summed intensity (Iges) for a tangentially

polarized incident field.
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27.3

Vector Kirchhoff Diffraction Integral

The vector Kirchhoff diffraction integral, also called the Stratton-Chu integral
([27-5], [27-6]) after the inventors, results from an application of the vector form of
Green’s relation. For a closed volume V with a surface S the following relation holds

RR
�

S
~PP · � · ~QQ

� �

� ~QQ � ·~PP
	 
� �

�~ss dr ¼ RRR
V

~QQ � � · � ·~PP
	 


�~PP � � · � · ~QQ
� �� �

dV

ð27-27Þ

where~PP and ~QQ are defined in the volume V and have a continuous second derivative
there.

Assuming that V and S are free of charges and currents, we obtain the following
integral for the electric field [27-5]

~EEð~rrÞ ¼ 1

4p

RR
�

S
ixl0lr ~ss · ~HH

	 

Gþ ~ss ·~EE

� �

·�Gþ ~ss �~EE
� �

�G
h i

dr ð27-28Þ

with

G ¼ eik~rr�~rr ¢j j

~rr �~rr ¢j j : ð27-29Þ

Applying this formula to a planar aperture A in a black screen in the xy plane, yields
the radiation field of the aperture as

~EEð~rrÞ ¼ ik0
4p

R R

A

aðRÞ ~eez ·~EEð~rrtÞ
h i

·~eer � Z0bðRÞ ~eez · ~HHð~rrtÞ
� �n

þZ0cðRÞ ~eez · ~HHð~rrtÞ
	 


�~eer
� �

~eergdxtdyt ð27-30Þ

with~eez= (0,0,1),~eer = (~rr–~rrt)/|~rr–~rrt| and (R = |~rr–~rrt|)

aðRÞ ¼ 1� 1

ik0R
;

bðRÞ ¼ 1� 1

ik0R
þ 1

ik0Rð Þ3
;

cðRÞ ¼ 1� 3

ik0R
þ 3

ik0Rð Þ3
:

ð27-31Þ

27.4

Analytical Solutions

Analytical solutions are invaluable for judging the validity of numerical methods,
but they exist for a very limited number of cases only. These include the following:
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a) Perfect conductors of simple geometry like Sommerfeld’s solution for diffrac-
tion at a perfectly conducting half-plane [27-7] or Bethe’s solution for diffrac-
tion at sub-wavelength apertures [27-8]. Aperture arrays in perfectly conduct-
ing screens see [27-9].

b) Simple geometries where the physical surface of the diffraction structure
coincides with a coordinate surface. This allows a separation approach in the
solution of the Maxwell equations.

The most common examples of the latter are Fresnel equations [27-10] in Carte-
sian coordinates, scattering at a circular cylinder [27-11][27-12] in cylinder coordi-
nates and Mie scattering [27-13] in spherical coordinates. Cylinder and Mie scatter-
ing have been extended to elliptical cylinders [27-14] and ellipsoids. All methods
have been extended to multilayer systems.

The mathematical procedure for the solution of the diffraction problem is very
similar for all geometries:

1. Express the electromagnetic field in the appropriate coordinate system by use
of Maxwell’s equations in that coordinate system.

2. Expand the reflected (scattered) and transmitted (internal) field as a superpo-
sition of orthogonal modes with the reflection and transmission coefficients
as variables.

Figure 27-18: Schematic view of the most common examples for analytical solutions

of electromagnetic diffraction.
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3. Apply the continuity of the tangential electric and magnetic field component
at the interface for each mode.

4. Solve for the reflection and transmission coefficient.

27.4.1

Plane Interface: Fresnel’s Equations

The Fresnel equations are discussed in detail in section 3.2 of Vol. 1. Here we rede-
rive them from the continuity of the tangential fields. The appropriate coordinate
system for plane interfaces is Cartesian (Figure 27-19).The x and the y components
of the fields are tangential to the interface. The z component is normal to it. A plane
wave is incident from medium 1 onto the interface to medium 2 under an angle Ji.

The electromagnetic wave is called s-polarized if the electric field ~EE is tangential
to the interface, i.e., it has a y component only. Then the y component of the mag-
netic field ~HH is vanishing. The orthogonal polarization is called p-polarized. Here,
the magnetic field is tangential to the interface (has a y component only) and the y

component of the electric field is vanishing.

Figure 27-19: Geometry for Fresnel’s equations.

The relation between ~EE and ~HH is provided by Maxwell’s equations in Cartesian
coordinates

s-polarization : ~EE ¼
0

Ey

0

0

B
@

1

C
A fi ~HH ¼ �i

xl
� ·~EE ¼ i

xl

¶Ey=¶z

0

�¶Ey=¶x

0

B
@

1

C
A

p-polarization : ~~HH~HH ¼
0

Hy

0

0

B
@

1

C
A fi ~EE ¼ i

xe
� · ~HH ¼ i

xe

�¶Hy=¶z

0

¶Hy=¶x

0

B
@

1

C
A

ð27-32Þ

yielding the fields Etang andHtang tangential to the interface
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Etang Htang

s-pol: Ey i

xl

¶Ey

¶z

p-pol: � i

xe

¶Hy

¶z

Hy

ð27-33Þ

The symmetry of these equations allows the computation to be carried out for s-po-
larization and the results to be derived for p-polarization from symmetry considera-
tions. Therefore, we consider an s-polarized plane wave that is propagated with an
angle Ji to the z axis. The tangential field components are, for s-polarization,

Ei
y ¼ ein1k0 x sin W1þz cosW1ð Þ ;

Hi
x ¼ � n1k0

xl
cosW1Ey :

ð27-34Þ

The reflected field becomes, according to the law of reflection,

Er
y ¼ rse

in1k0 x sin W1�z cosW1ð Þ ;

Hr
x ¼

n1k0
xl

cosW1E
r
y

ð27-35Þ

and the transmitted field

Et
y ¼ tse

in2k0 x sin W2þz cos W2ð Þ ;

Ht
x ¼ � n2k0

xl
cosW2E

t
y :

ð27-36Þ

The continuity at the interface requires

Ei
y þ Er

y ¼ Et
y @ z ¼ 0 fi 1þ rs ¼ ts ;

Hi
x þHr

x ¼ Ht
x @ z ¼ 0 fi n1 cos W1 � rsn1 cosW1 ¼ tsn2 cosW2 :

ð27-37Þ

where the law of reflection was applied and a non-magnetic medium (lr= 1) was
assumed. The solution is

rs ¼
n1 cos W1 � n2 cosW2

n1 cos W1 þ n2 cosW2

;

ts ¼
2n1 cosW1

n1 cos W1 þ n2 cosW2

:

ð27-38Þ

The computation for p-polarization is analogous, yielding the reflection and trans-
mission coefficients
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rp ¼
n2 cosW1 � n1 cosW2

n2 cosW1 þ n1 cosW2

;

tp ¼
2n1 cos W1

n2 cosW1 þ n1 cos W2

:

ð27-39Þ

Reflection and transmission curves for various cases are presented in section 3.2 of
Vol. 1.

27.4.2

Diffraction at a Circular Cylinder

The solution for the diffraction of an incident plane wave by a cylinder of circular
cross-section has been known since 1918 [27-11]. More general cases are the oblique-
ly incident plane wave (onto a circular cylinder) [27-12] and the cylinder of elliptical
cross-section [27-14].

The basic geometry is sketched in Figure 27-20. A circular cylinder of refractive
index n2 and radius R0 is immersed in a homogeneous medium of refractive index
n1. Although a general magnetic cylinder presents no problems, we consider here
only the non-magnetic case, i.e., lr= 1. The cylinder is situated in the origin of a Car-
tesian coordinate system with its axis parallel to the y axis.

Figure 27-20: Geometry for the diffraction of a plane

wave by a circular cylinder.

The electromagnetic wave is called TE-polarized if the electric field E has a y com-
ponent only. Then the y component of the magnetic field H is vanishing. The or-
thogonal polarization is called TM-polarized. Here, the magnetic field has a y com-
ponent only and the y component of the electric field is vanishing. For an incident
wave in the xz plane, the electric field component is tangential to the cylinder sur-
face in TE-polarization. In TM polarization the magnetic field is tangential.

~EE and ~HH are represented in polar coordinates

~EE ¼ Er~eer þ Eu~eeu þ Ey~eey

~HH ¼ Hr~eer þHu~eeu þHy~eey :
ð27-40Þ

The relation between ~EE and ~HH is provided by Maxwell’s equations in polar coordi-
nates
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TE-polarization : ~EE ¼ Ey~eey fi ~HH ¼ � i

xl

1

r

¶Ey

¶u
~eer �

¶Ey

¶r
~eeu

� �

TM-polarization : ~HH ¼ Hy~eey fi ~EE ¼ i

xe

1

r

¶Hy

¶u
~eer �

¶Hy

¶r
~eeu

� �
ð27-41Þ

yielding the fields Etang andHtang tangential to the interface

Etang Htang

TE-pol: Ey i

xl

¶Ey

¶r

TM-pol: � i

xe

¶Hy

¶r

Hy

ð27-42Þ

The symmetry of these equations again allows one to do the computation for s-polar-
ization and to derive the results for p-polarization from symmetry considerations.
Therefore, we consider a TE-polarized plane wave that is propagated at an angle ui

to the z axis. The fields are expanded into a Bessel series. The tangential field com-
ponents are, for TE-polarization,

Ei
y ¼ ein1k0 x sinuiþz cosuið Þ ¼

X¥

m¼�¥

�ið ÞmJmðk1rÞeimðu�uiÞ;

Hi
u ¼ ik1

xl

X¥

m¼�¥

�ið ÞmJm ¢ðk1rÞeimðu�uiÞ :

ð27-43Þ

The reflected (scattered) field is

Er
y ¼

X¥

m¼�¥

amHmðk1rÞeimu;

Hr
u ¼ ik1

xl

X¥

m¼�¥

amHm ¢ðk1rÞeimu ;

ð27-44Þ

and the transmitted filed inside the cylinder

Et
y ¼

X¥

m¼�¥

bmJmðk2rÞeimu;

Ht
u ¼ ik2

xl

X¥

m¼�¥

bmJm ¢ðk2rÞeimu ;

ð27-45Þ

where k1 ¼ n1k0 is the propagation constant in the surrounding medium and k2 ¼
n2k0 inside the cylinder. Jm and Hm are the Bessel function and the Hankel function
of the first kind and mth order. The dash denotes the derivative. The continuity at
the interface requires
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Ei
y þ Er

y ¼ Et
y @ r ¼ R0 fi �ið ÞmJmðk1R0Þ þ amHmðk1R0Þ ¼ bmJmðk2R0Þ

Hi
x þHr

x ¼ Ht
x @ r ¼ R0 fi �ið ÞmJm ¢ðk1R0Þ þ amHm ¢ðk1R0Þ ¼ nbmJm ¢ðk2R0Þ

ð27-46Þ

with n ¼ n2

n1

. Computing am and bm and resolving the complex exponential we obtain

the electric field Ey inside the cylinder.

Ey ¼
X¥

m¼0

Bmemð�iÞm cos mðu� uiÞ½ �Jmðk1rÞ : ð27-47Þ

And outside

Ey ¼
X¥

m¼0

Jmðk2rÞ þ AmHmðk2rÞð Þemð�iÞm cos mðu� uiÞ½ � ð27-48Þ

with the factor em = 1 for m = 0 and 2 otherwise and with the coefficients

Am ¼ nJmðk2R0ÞJm ¢ðk1R0Þ � Jm ¢ðk2R0ÞJmðk1R0Þ
Jmðk1R0ÞHm ¢ðk2R0Þ � nJm ¢ðk1R0ÞHmðk2R0Þ

;

Bm ¼ Jmðk2R0ÞHm ¢ðk2R0Þ � Jm ¢ðk2R0ÞHmðk2R0Þ
Jmðk1R0ÞHm ¢ðk2R0Þ � nJm ¢ðk1R0ÞHmðk2R0Þ

:

ð27-49Þ

The corresponding solution for a TE-polarized incident wave differs from the TM-
polarized one in only two respects. Ey is replaced by Hy and n by its inverse, i.e., for
TE-polarization we have the magnetic field Ey inside the cylinder.

Hy ¼
X¥

m¼0

Bm ¢emð�iÞm cos mðj� j0Þ½ �Jmðk1rÞ : ð27-50Þ

And outside

Hy ¼ Z�1
0

X¥

m¼0

Jmðk2rÞ þ Am ¢Hmðk2rÞð Þemð�iÞm cos mðj� j0Þ½ � ð27-51Þ

with the coefficients

Am ¢ ¼
n�1Jmðk2R0ÞJm ¢ðk1R0Þ � Jm ¢ðk2R0ÞJmðk1R0Þ
Jmðk1R0ÞHm ¢ðk2R0Þ � n�1Jm ¢ðk1R0ÞHmðk2R0Þ

;

Bm ¼ Jmðk2R0ÞHm ¢ðk2R0Þ � Jm ¢ðk2R0ÞHmðk2R0Þ
Jmðk1R0ÞHm ¢ðk2R0Þ � n�1Jm ¢ðk1R0ÞHmðk2R0Þ

:

ð27-52Þ

Figure 27-21 shows as an example the diffracted field for a cylinder with a refractive
index of 1.5 and an incident plane wave with a wavelength of 1 mm. The real part of
the electric field is shown on the right-hand side. It shows the “waves” at a certain
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instant, providing by these means a simultaneous representation of the amplitude
and phase of the field. On the right-hand side the amplitude distribution is shown.
For the 4 mm cylinder, for example, you see in the real-part image how the wave is
focussed inside the cylinder to its rear and you also see how a spherical wave is
emanating from the “focus”. The amplitude distribution on the right of it shows the
resulting amplitude distribution with a maximum at the focus position. A standing
wave has formed in front of the cylinder while its rear shows the interference pat-
tern of a spherical wave and a plane wave propagation, mainly in the same direction.
Inside the cylinder a standing wave pattern has formed. With increasing cylinder diam-
eter the transition to a more ray-optical propagation can be observed (figure 27.22).
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Figure 27-21: Diffraction at a dielectric cylinder in TE-polarization. k = 1 mm,

n = 1.5, increasing diameter. Left: real part of the field, right: amplitude.
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Figure 27-22: Diffraction at a dielectric cylinder in TE-polarization. k = 1 mm,

n= 1.5, 40 mm diameter. Left: real part of the field, right: amplitude.

Figure 27-23: Diffraction amplitude at a dielectric cylinder in TE-polarization.

k = 1 mm, 20 mm diameter. The imaginary part of n is increasing: a) n2 = 3,

b) n2 = 3+0.01i, c) n2 = 3+0.1i, d) n2 = 3+i.



The refractive index must not be real. However, it can also be complex allowing,
by these means, the diffraction at metallic cylinders to be computed. Figure 27-23
shows the diffraction at cylinders of equal real part of the refractive index (nr= 3) but
increasing imaginary part (ni = 0, 0.01, 0.1,1). Note how the field diminishes within
the cylinder and a clear shadow develops behind it (the changing color map outside
the cylinder is due to the fact that the amplitude range for the color map changes
because the focus within the cylinder becomes weaker).

The diffraction at “inverse cylinders”, i.e., cylinders that have a smaller refractive
index than their surroundings, can be computed as well (Figure 27-24). The inverse
cylinder acts as a diverging lens producing no focus.

Figure 27-24: Diffraction at a dielectric air-cylinder (n = 1) in glass (n = 1.5) and
in TE-polarization k = 1 mm, 10 mm diameter.

27.4.3

Mie Scattering

Solving the Maxwell equations in spherical coordinates, G. Mie [27-13] rigorously
computed the scattered field of spheres for excitation with plane waves. He used it
to describe the optical properties of colloidal metallic solutions, in particular, polar-
ization and angular distribution of the scattered field. Extensive and excellent pre-
sentations of the theory can be found in [27-15] and [27-16]. The method for obtain-
ing the internal and external electromagnetic field is again a separation approach, as
for the plane and the cylinder.~EE and ~HH are represented in polar coordinates

~EE ¼ Er~eer þ Eu~eeu þ EW~eeW ;

~HH ¼ Hr~eer þHu~eeu þHW~eeW :
ð27-53Þ

Here we present the results for the scattered far-field only. The scattering geometry
is described in spherical coordinates. It is sketched in Figure 27-25.
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Figure 27-25: Geometry for diffraction of a plane wave by a sphere.

The result depends on two parameters: The ratio n of the refractive index n2 of
the sphere to the refractive index n1 of the surroundings
and the relation of the circumference of the sphere to the wavelength

q ¼ 2pR0

k
: ð27-54Þ

The scattered field is given by

Eu ¼ i
eikr

kr
S1ðWÞ sinu ;

EW ¼ i
eikr

kr
S2ðWÞ cosu ;

ð27-55Þ

with the scattering amplitudes

S1ðWÞ ¼
X¥

m¼1

2m þ 1

m m þ 1ð Þ amðn; qÞpmð cos WÞ þ bmðn; qÞsmð cosWÞf g ;

S2ðWÞ ¼
X¥

j¼1

2m þ 1

m m þ 1ð Þ amðn; qÞsmð cos WÞ þ bmðn; qÞpmð cosWÞf g :

ð27-56Þ

The functions pm(cosJ) and sm(cosJ) denote Legendre functions of the first kind
and their first derivative

pmðzÞ ¼ PmðzÞ ;

smðzÞ ¼
d

dz
PmðzÞ :

ð27-57Þ

Their evaluation is conveniently performed using the following recurrence relations
[27-17]

27 Vector Diffraction548



ðm þ 1ÞPmþ1ðzÞ ¼ ð2m þ 1ÞzP1
mðzÞ �mP1

m�1ðzÞ ;

ðz2 � 1Þ d

dz
P1
mðzÞ ¼ mzPmðzÞ �mPm�1ðzÞ :

ð27-58Þ

The Mie scattering coefficients are [27-16] for a non-magnetic medium (lr= 1)

am ¼
n2jmðnqÞ d

dq
qjmðqÞ
� �

� jmðqÞ d
dq

nqjmðnqÞ
� �

n2jmðnQÞ d
dq

qhð1Þ
m ðqÞ

h i

� hð1Þ
m ðqÞ d

dq
nqjmðnqÞ
� � ;

bm ¼
jmðnqÞ d

dq
qjmðqÞ
� �

� jmðqÞ d
dq

nqjmðnqÞ
� �

jmðnqÞ d
dq

qhð1Þ
m ðqÞ

h i

� hð1Þ
m ðqÞ d

dq
nqjmðnqÞ
� � ;

ð27-59Þ

with the spherical Hankel function [27-17]

hð1Þ
m ðzÞ ¼ jmðzÞ þ iymðzÞ ¼

ffiffiffiffiffi
p

2z

r

Hð1Þ
m ðzÞ ð27-60Þ

and the spherical Bessel functions of the first and second kind following from the
Bessel functions of the first and second kind according to [27-17]

jmðzÞ ¼
ffiffiffiffiffi
p

2z

r

Jmþ1=2ðzÞ ;

ymðzÞ ¼
ffiffiffiffiffi
p

2z

r

Ymþ1=2ðzÞ :
ð27-61Þ

Mie scattering routines have been implemented on various platforms. For the Mie
scattering examples shown here we have generated the data with Matlab routines
published by C. M�tzler [27-42].

Figure 27-26 shows the angular distribution of scattered intensities at spheres for
varying q-parameters and real refractive indices.

In accordance with the general properties of diffracted fields, the scattering distri-
bution becomes more directional with increasing size. The scattered light which is
polarized perpendicular to the scattering plane (the plane, in which the angular dis-
tribution of the scattered light is observed) has a more uniform angular distribution
than the component which is polarized parallel to the scattering plane. This is in
accordance with the polarization characteristics of dipole radiation to which the Mie
scattering for small q reduces.

The influence of the imaginary part of the refractive index on the scattering distri-
bution is shown in figure 27.27.
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Figure 27-26: Angular distribution of scattered intensities at spheres for varying

q parameters and real refractive indices. Blue: |S1|
2, red: |S2|

2
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Figure 27-27: Angular distribution of scattered intensities at spheres for varying q

parameters and refractive indices of increasing imaginary part. Blue: |S1|
2, red: |S2|

2.
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For stray-light computations, the scattered efficiency defined as [27-16]

Qsca ¼
2

q2

X¥

m¼1

2m þ 1ð Þ amj j2þ bmj j2
	 


ð27-62Þ

and the backscattering efficiency [27-16]

Qback ¼
1

q2

X¥

m¼1

2m þ 1ð Þ �1ð Þm am � bmð Þ












2

ð27-63Þ

are of particular interest. The scattered efficiency and the ratio of backscatter effi-
ciency Qback/Qsca are plotted below. The upper row was computed for pure dielectric
spheres of increasing size-parameter q and refractive index n in air (n = 1). In the
lower row the real part of the refractive index was kept constant (nr = 1.5) and the
imaginary part ni was increased from 0.01 to 4.

The difference between the scattering properties of dielectric and conducting
spheres is significant. Dielectric spheres show a pronounced fine structure stem-
ming from internal resonances.

Figure 27-28: Scattering efficiency and ratio of backscattered light for an increasing

real part (top) and imaginary part of the refractive index (bottom).
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27.5

Numerical Methods for Arbitrary Structures

An analytical computation of diffraction fields is possible for a very limited number
of structures only. For technical applications, the diffraction field of more general
shapes is of importance. To this end, numerical methods have been developed that
solve the Maxwell equations by numerical means for arbitrary structures. Although
the number of different structure types, for which a particular method can be used
to compute the diffraction field, is quite large, it is at least up to now, not possible to
rely on one method only. Each method has its strengths and weaknesses that should
be known in order to choose the correct one for a given problem. In the following
we give a brief account of several rigorous methods.

27.6

Coupled Dipole Method

The coupled dipole method (CDM) was originally developed to compute the scatter-
ing of light at intergalactic dust clouds [27-18]. Mie scattering is not sufficient in this
case because the dust particles cannot be considered as spherical.

The basic idea of the CDM is to subdivide the scattering article into an ensemble
of small cells considered as elemental scatterers. In CDM an incident wave induces
a dipole into each cell so that the elemental scatterers are dipoles and the scattering
structure is represented by a dipole grid. The distance of the dipoles should be con-
siderably smaller than the wavelength.

Figure 27-29: Representation of a scatterer as a dipole grid in the coupled dipole method.

The dipole-moment ~pp induced at a dipole at position~rrj depends on the complex
amplitude of the electric field component~EE and the polarizability a of the dipole.

~ppð~rr jÞ ¼ aj
~EEð~rr jÞ : ð27-64Þ

27.6 Coupled Dipole Method 553



While a is generally a second-order tensor, it becomes scalar for isotropic particles.
Its value can be computed with the help of the relation of Clausius–Mosotti [27-19]

a ¼ 3e0
n2 � 1

n2 þ 2
V ð27-65Þ

where V denotes the volume of a single elemental scatterer. For complex refractive
indices the polarizability can be computed from the first term of the Mie scattering
expansion.

The electric field component of the field of a radiating dipole of moment~pp at posi-
tion~rrj observed at position~rri is

~EEð~rr iÞ ¼ k2
~RRij ·~ppj

� �

·~RRij

R2
ij

þ
3~RRij

~RRij �~ppj
� �

R2
ij

�~ppj

0

@

1

A
1

R2
ij

� ik

Rij

 !2

4

3

5
eikRij

Rij

ð27-66Þ

with ~RRij=~rrj–~rri and~ppj=~pp(~rr j). Because this is a linear equation in p we can insert the
polarizability a and the electric field ~EE according to eq. (27-64) to define a scattering
matrix according to

~EEð~rriÞ ¼ SijðaÞ~EEð~rr jÞ : ð27-67Þ

The field at a given position~rr is now the sum of the incident field ~EE0 plus the con-
tribution of all dipoles

~EEð~rr jÞ ¼ ~EE0ð~rrÞ þ
XN

i¼1
i„j

Sij
~EEð~rriÞ : ð27-68Þ

To compute the complete field outside the scatterer it is necessary to know the cor-
rect field inside it. Two simple methods are available to do this computation.

a) A self-consistency approach as originally proposed by Purcell and Penny-
packer [27-18]

XN

i¼1

dij � Sij

	 

~EEðriÞ ¼ ~EE0ð~rr jÞ : ð27-69Þ

The equation can be solved by a self-consistency method or as a linear system
of equations.

b) A multiple-scattering approach. Here the scattering orders are introduced
successively into the evaluation to obtain the field at each scatterer

~EEð~rr jÞ ¼ ~EE0ð~rr jÞ þ
XN

i¼1

Sij
~EE0ð~rriÞ

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

~EE1

þ
XN

i¼1

Sij
~EE1ð~rriÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

~EE2

þ
XN

i¼1

Sij
~EE2ð~rriÞ þ ::: ð27-70Þ
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27.7

Integral Equation Approach and Moment Method

The integral equation approach generally solves the same problem as the coupled
dipole method. But it assumes a more general approach based on the radiated vector
potential of a current distribution.

The formulation of an integral equation for the free-space scattering problem and
its solution using the moment method, dates back to Richmond [27-20]. It has been
extended to general 3D structures [27-21] and surface structures [27-22], [27-23], and
it was applied to the simulation of polarization-dependent interference microscopy
[27-24].

27.7.1

The Moment Method

Consider an arbitrary scatterer illuminated by an incident wave (27-30).

Figure 27-30: General scattering configuration.

The scattered field outside the scatterer is the sum of the incident field and the
scattered field:

~EEð~rrÞ ¼ ~EE0ð~rrÞ þ~EEsð~rrÞ : ð27-71Þ

We assume that the scattered field is the result of a linear operator acting on the
field in the scatterer (~rr< denotes a point inside the scatterer)

~EEsð~rrÞ ¼ S ~EEð~rr<Þ : ð27-72Þ

In the framework of the moment method, the electric field (or the current) inside
the body is developed into basis functions

~EEð~rr<Þ ¼
X

i

Ei
~FFð~rr<Þ : ð27-73Þ
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With excitation coefficients Ei and an inner product

~WW ;~EEð~rr<Þ
D E

ð27-74Þ

is defined, resulting in a linear system of equations

~WW j;~EEð~rr<Þ
D E

¼
X

i

Ei
~WW j;~FFð~rr<Þ
D E

: ð27-75Þ

27.7.2

Form of Scattering Operator

To obtain a specific expression for the scattering operator, we use the radiated field
of a harmonic current distribution (cf. section 17.3) in a homogeneous medium

~EEð~rrÞ ¼ ixlo

4p

RRR

V

~jjð~rrÞ eik~rr�~rr ¢j j

~rr �~rr ¢j jd
3~rr ¢ ; ð27-76Þ

where the current distribution is obtained from the polarization current

~jj ¼ ¶~PP

¶t
¼ �ixeo er � 1ð Þ~EE : ð27-77Þ

Resulting in

~EEð~rrÞ ¼ ik2

4p

RRR

V

eð~rr ¢Þ � 1ð Þ~EEð~rr ¢Þ eik~rr�~rr ¢j j

~rr �~rr ¢j jd
3~rr ¢ ð27-78Þ

i.e., S is a linear integral operator

Sð~EEÞ ¼ ik2

4p

RRR

V

eð~rr ¢Þ � 1ð Þ~EEð~rr ¢Þ eik~rr�~rr ¢j j

~rr �~rr ¢j jd
3~rr ¢ : ð27-79Þ

The scattering operator yields the electric field outside a volume V as a function of
its dielectric constant and the electric field inside it. An arbitrary medium in which
the scattering occurs can be considered by inserting the appropriate Green’s tensor
G(r,r¢), resulting in

Sð~EEÞ ¼ ik2

4p

RRR

V

eð~rr ¢Þ � 1ð Þ~EEð~rr ¢ÞGð~rr;~rr ¢Þd3~rr ¢ : ð27-80Þ
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27.7.3

Scattering in Three-layer Medium

In optical microscopy, structures are situated on planar substrates. Because of this
the cover-film-substrate configuration is of some interest. To do imaging simula-
tions of this kind of object [27-24], consider an arbitrary structure that is situated in
a stratified medium consisting of three layers parallel to the x-axis (Figure 27-31).

Figure 27-31: Geometry for scattering calculation according to the integral

equation approach.

A film of thickness d and refractive index nf lies on a substrate of refractive index
ns; it is covered by a medium of refractive index nc. The structure of refractive index
distribution na(~rr) is situated entirely inside the film. We assume non-magnetic mate-
rials (lr= 1) and a monochromatic, linearly polarized, obliquely incident electromag-
netic wave of frequency x with the field components

~EEið~rrÞ ¼ ~EEi e
i~kki �~rr ;

~HHið~rrÞ ¼
1

k0z0
~kki ·~EEi

� �

ei
~kki �~rr

ð27-81Þ

and the 2D coordinate~rr = (x, 0, z). ki denotes the propagation constant and z0 is the
free-space impedance. Two linear polarizations are considered: In TM-polarization
~EEi has a y component only and in TE-polarization ~HHi is parallel to the y-axis. Arbi-
trary incident fields can be dealt with by a Fourier decomposition.

The diffraction near-field (E,H) of the incident plane wave in the considered sys-
tem is a superposition of a background field (E0,H0) that is due to the undisturbed
three-layer medium without a scattering structure and the scattered field (Es,Hs).

The electric field distribution at an arbitrary point is obtained by a solution of the
integral equation

~EEð~rrÞ ¼ ~EE0ð~rrÞ þ
R R

structure

Gð~rr;~rr ¢ÞDeð~rr ¢Þ~EEð~rr ¢Þd2~rr ¢ ð27-82Þ
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where De(~rr) is the normalized material contrast due to the scatterer. ~EE0 denotes the
background field that is obtained for the undisturbed stratified medium. G(~rr;~rr ¢) is
Green’s tensor (dyadic Green’s function) of the three-layer medium. In the follow-
ing we construct the three-layer media Green’s tensor from the free-space Green’s
tensor of which, in a source-free region, the Fourier expansion becomes

Gð~rr;~rr ¢Þ ¼ i
4 �� � þk2f I
h i

~HH0 kF~rr �~rr ¢j jð Þ

¼ i
4p �� � þk2f I
h i

R¥

�¥

1
cf

exp icf jz� z¢j
n o

eikxðx�x ¢Þdkx
ð27-83Þ

where I denotes the unity dyade, ��� denotes the grad-div operation, and cf denotes
the z component of the propagation vector in the film. Performing the derivatives
under the integral we obtain

Gð~rr;~rr ¢Þ ¼ i

4p

R¥

�¥

k2f I�~ssð~ss�Þ
h i 1

cf

exp icf jz� z¢j
n o

eikxðx�x ¢Þdkx ð27-84Þ

with

~ss ¼
kx
0

sgn ðz� z¢Þcf

0

@

1

A ð27-85Þ

where sgn(z) denotes the signum-function (sgn(z) = 1, 0, –1 for z > 0, = 0, < 0,
respectively).

Now, the kernel of the integral (27-84) describes the propagation of the angular
spectrum of the radiation field of a point-like source from the plane z= z¢ to the
plane z in free space. In order to describe wave propagation in a three-layer stack,
we have to modify the propagation operator expfiyzjz� z¢g. Including the multiple
reflected fields between both interfaces and the propagation in the different media
we obtain for the Green’s tensor

Gð~rr;~rr ¢Þ ¼ R¥

�¥

gðkx; z; z¢Þeikxðx�x ¢Þdkx ð27-86Þ

with

gðkx; z; z¢Þ ¼

cf P11 0 �kxsgn ðz� z¢ÞP�11

0 k2f c
�1
f P11 0

�kxsgn ðz� z¢ÞP�1�1 0 k2xc
�1
f P1�1

0

B
B
B
B
@

1

C
C
C
C
A

ð27-87Þ

and
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Pfgðkx; z; zmÞ ¼
sf e

icf jzm j þ Rfgðkx; 0; zmÞ
� �

eicc jzm j : cover
sf e

icjz�zm j þ Rfgðkx; z; zmÞ : film
sf e

icf jd�zm j þ Rfgðkx; d; zmÞ
� �

eics jzm j : substrate

8

<

:
ð27-88Þ

where cf and cs are the propagation constants in the film and substrate defined anal-
ogously to cc. sf is due to the signum function with

sf ¼
1

sgn ðz� zmÞ
:

:

�
f ¼ 1
f ¼ �1 :

ð27-89Þ

The reflection term Rfg becomes according to an elementary calculation

Rfgðkx; z; zmÞ ¼ 1
1� rcrse

icf 2d
fgrce

icf ðzmþzÞ þ grse
icf ð2d�zm�zÞ�

þ rcrs e
icf ð2d�zmþzÞ þ feicf ð2dþzm�zÞ	 
�

:

ð27-90Þ

rc and rs are the polarization-dependent Fresnel reflection coefficients of the film-
cover and the film-substrate interface. The factor g takes into account that the reflec-
tion coefficients have to be replaced by their negative values for Ex andHx.

Having the appropriate Green’s tensor, it remains to solve the integral equation
(27-82) in order to obtain the electric field distribution inside the structure. For this
purpose (27-82) is converted into a linear system of equations using the puls-func-
tion point-matching version of the moment method: The structure is divided into N

quadratic cells with a cross-section small enough that the electric field within a sin-
gle cell can be considered constant. The integral over the structure is then replaced
by a sum over the cells. The fields are equated for the center of each cell and the
integral of the single cell is evaluated in a closed form by replacing the square cells
with circular cells of equal area [27-20].

Special care has to be taken of the diagonal elements. They describe the contribu-
tion of the scattered field of a single cell to the field in the center of the cell itself.
This field consists of two parts: The free-space contribution from the principal-value
representation of the scattered field integral [27-25] and a reflected field contribu-
tion. The linear system of equations has the structure [27-24]

XN

m¼1

SmlEyð~rrmÞ ¼ E0
y ð~rrlÞ; l ¼ 1; :::;N ð27-91Þ

for TM-polarization and

559



27 Vector Diffraction

XN

m¼1

amlExð~rrmÞ þ bmlEzðrmÞ
� �

¼ E0
xð~rrlÞ

XN

m¼1

cmlExð~rrmÞ þ dmlEzðrmÞ
� �

¼ E0
zð~rrlÞ

ð27-92Þ

for TE-polarization.
In order to circumvent problems with a large condition number of the moment

method matrix in TE-polarization, it is useful to perform a direct integration over a
single cell for cell-pairs that are three cells or less apart [27-26]. After calculation of
the electric field within the structure the scattered Ey component (TE-pol.) or Hy

component (TM-pol.) is calculated outside.
The numerical properties of the computation method are mainly determined by

the applied algorithm for solution of the linear system of equations. The LU-decom-
position [27-27] is a well known, stable algorithm that is particular useful if we wish
to calculate the near-fields for different angles of incidence simultaneously.

In particular, for large problems, it is advantageous to use an iterative solution meth-
od like the conjugate gradient method (CGM) [27-27] and to store only a part of the
matrix andderive the rest from the symmetry properties – or even to compute thematrix
elements for each iteration anew. Although iterativemethodsmay drastically reduce the
memory requirements, they do, of course, increase the computation time. A survey and
comparison of appropriate numericalmethods for large systems is given in ref. [27-28].

Figure 27-32: Scattering of an evanescent wave by a 400 � 400 nm protrusion on a

quartz surface. k = 549 nm. Angle of incidence = 45�. TE-polarization. The amplitude

of the real part of Ey is shown.

As an example, Figure 27-32 shows the real part of the near-field for the scattering
of an evanescent wave at a glass-air interface by a 400 � 400 nm2 obstacle. The inten-
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sity above the interface basically shows the intensity nodes due to the interference of
the incident and reflected wave, below the evanescent wave and the free-space scat-
tered field due to the obstacle. Below, a standing wave pattern has formed parallel to
the interface, consisting of the evanescent field and the free-space field scattered by
the obstacle.

Figure 27-33: Scattering and frustrated total reflection. k = 549 nm. TE-polarization

angle of incidence = 45�. The amplitude of the real part of Ey is shown.

Figure 27-34: Transmission through 50 nm slit in a chromium layer on quartz in

TM-polarization. k = 549 nm. Angle of incidence = 45�. The amplitude of the real part

of Hy is shown. For TE-polarization, no transmission is observed.
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Figure 27-35: Comparison of near-field plots for a 100 nm wide and 200 nm deep

groove in a bulk material for TE (left) and TM (right)-polarization. k = 549 nm.

Perpendicular incident plane wave. Color-map: amplitude; blue lines: phase.



27.8 Fourier Modal Method

A slightly altered configuration is shown in Figure 27-33. Now a second air-quartz
interface is placed below the structure. The distance to the first interface is smaller
than the wavelength and frustrated total reflection occurs. You will see that, on the
left side, a part of the evanescent wave is actually coupled into the second quartz-block.

The last image in this series (Figure 27-34) shows the transmission of a perpendicu-
larly incident plane wave through a sub-wavelength slit (width= 50nm at k=549nm).
You can see the standing wave that has formed on top of the chromium layer, the pene-
tration of the light into the chromium due to its finite skin depth (stemming from the
finite conductivity), and the cylindrical wave that is radiated by the slit below it.

An example of the near-field representation by amplitude and phase is shown in
Figure 27-35.

27.8

Fourier Modal Method

The Fourier modal method (FMM), also called rigorous coupled wave analysis
(RCWA), is a rigorous method of computing the diffraction of electromagnetic
waves at arbitrary gratings [27-29][27-30].

27.8.1

Theory

The theoretical basis of the RCWA is the Floquet theorem, according to which the prop-
agation vector of electromagnetic waves in periodical structures cannot take arbitrary
values along the grating vector. It can take only values obtained from the harmonics of
the grating’s periodicity; i.e., for the grating depicted in Figure 27-36, we obtain for
an incident plane wave with the propagation vector ki (conical diffraction)

kxm ¼ kxi þ m
2p

K
: ð27-93Þ
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For a two-dimensional grating we have accordingly

~kkml ¼
kxm
kyl

� �

¼~kki þ
m
2p

Kx

l
2p

Ky

0

B
B
@

1

C
C
A

: ð27-94Þ

A condensed form is obtained by defining the harmonics of the grating vector as

~kkml ¼
kxm
kyl

� �

¼~kki þ
m
2p

Kx

l
2p

Ky

0

B
B
@

1

C
C
A

ð27-95Þ

yielding the allowed propagation vectors

~kkml ¼~kki þ~ggml : ð27-96Þ

The complete propagation vector is obtained from the refractive index of the medi-
um in which the wave is propagating

~kkml ¼

kx?ml
ky?mlffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2 � ~kk
?
ml









2
r

0

B
B
@

1

C
C
A

: ð27-97Þ

While the propagation directions of the plane waves are fixed by geometry, the com-
putation of the complex amplitude and polarization of the diffracted orders is more
complex.

The grating region of periodicity (Kx,Ky) is divided into films with the dielectric
constant e(z) = const. The dielectric constant and fields are expanded into space har-
monics for each film. The expansion into a Fourier series is truncated at a certain
maximum index M.

eð~rr?Þ ¼
XM

m;l¼�M

emlexp i2p~ggml �~rr?
n o

Exð~rr?; zÞ ¼
XM

m;l¼�M

Sx
mlðzÞexp i~kk

?
ml �~rr?

n o

Hxð~rr?; zÞ ¼
i

Z0

XM

m;l¼�M

Ux
mlðzÞexp i~kk

?
ml �~rr?

n o

ð27-98Þ

where the free-space impedance is Z0. For Ey and Hy similar expansions hold. The z
components are obtained from the Maxwell equations.
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Using the correct Fourier factorization [27-33], Maxwell’s equations yield the fol-
lowing (4M � 4M) matrix equation for the components,

¶~SSy

¶z
¶~SSx

¶z
¶~UUy

¶z
¶~UUx

¶z

0

B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
A

¼ k0

0 0 KyE
�1Kx I� KyE

�1Ky

0 0 KxE
�1Kx � I �KxE

�1Ky

KxKy A�1 � K2
y 0 0

K2
x � E �KxKy 0 0

0

B
B
@

1

C
C
A

~SSy

~SSx

~UUy

~UUx

0

B
B
B
@

1

C
C
C
A

ð27-99Þ

where ~SSx, ~SSy, ~UUx, and ~UUy are vectors formed from the coefficients of the Fourier se-
ries, Kx is the diagonal matrix with elements kxml, I is the unity-matrix, E is the
matrix formed from em–m¢, l–l¢ and A the matrix formed of e–1m–m¢, l–l¢.

Forming the second derivation with respect to z and inserting the resulting first
derivations yields

¶
2~SSy

¶z2

¶
2~SSx

¶z2

0

B
B
B
@

1

C
C
C
A

¼ k20
K2

x þDE Ky E�1KxA
�1 � Kx

	 


Kx E�1KyE� Ky

	 

K2

y þ BA�1

 !
~SSy

~SSx

 !

;

¶
2~UUy

¶z2

¶
2~UUx

¶z2

0

B
B
@

1

C
C
A

¼ k20
K2

y þ A�1B Kx � A�1KxE
�1

	 

Ky

Ky � EKyE
�1

	 

Kx K2

x þ ED

 !
~UUy

~UUx

 !

:

ð27-100Þ

with

B ¼ KxE
�1Kx � I ;

D ¼ KyE
�1Ky � I :

ð27-101Þ

It is sufficient to solve one of thematrix equations above and to obtain the other compo-
nent by application of a linear differential equation. Solving (27-100) for ~SS yields the
eigenvalues km (m=–N....N) and to each eigenvalue the eigenvector ~WWm with

Sym

Sxm

� �

¼
XN

m¼�N

Wmm cþme
�k0qmz þ c�me

k0qm z�dð Þ� �
; ð27-102Þ

where qm denotes the positive square roots of the eigenvalues

qm ¼ þ
ffiffiffiffiffiffi

km
p

ð27-103Þ

and cþ�
m are the excitation coefficients of the modes in the grating region.
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In a compact matrix notation, the electric field components are

~SSy

~SSx

 !

¼ W u�~ccþ þ uþ~cc�
	 


ð27-104Þ

with the matrices

W ¼ wmm½ �;
~ccþ ¼ cþm

� �
; ~cc � ¼ c�m

� �
;

uþ ¼ ek0Qz; u� ¼ ek0Qðz�dÞ;

Q ¼ qm½ � :

ð27-105Þ

U follows from the solution of

¶~SSy

¶z
¶~SSx

¶z

0

B
B
@

1

C
C
A

¼ k0
KyE

�1Kx �D
B �KxE

�1Ky

� �
~UUy

~UUx

� �

¼ X
~UUy

~UUx

� �

ð27-106Þ

to

~UUy

~UUx

� �

¼ X�1

¶~SSy

¶z
¶~SSx

¶z

0

B
B
@

1

C
C
A

ð27-107Þ

i.e.,

~UUy

~UUx

� �

¼ X
�1W �Qu�~cc þ þQuþ~cc �ð Þ : ð27-108Þ

Depending on the geometry of the diffracting structure and the illumination, differ-
ent simplified eigen equations can be derived from (27-99). For a linear grating
(grating vector in the x direction) with conical illumination, for instance, Ky= kyI,
and (27-99) reduces to two (M � M) second-order differential equations

¶
2~UUx

¶z2
¼ k20 K2

y þ K2
x � E

� �

~UUx ;

¶
2~SSx

¶z2
¼ k20 K2

y þ KxE
�1KxA

�1 � A�1
� �

~SSx :

ð27-109Þ

For a line grating in non-conical illumination, i.e., purely TE or TM-polarized, a
further simplification is obtained. For TE-polarization (~EE = [0, Ey, 0]) it is sufficient
to solve
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¶
2~SSy

¶z2
¼ k20 K2

x � E
	 


~SSy ð27-110Þ

and for TM-polarization (~HH = [0,Hy, 0])

¶
2~UUy

¶z2
¼ k20A

�1 KxE
�1Kx � I

	 

~UUy : ð27-111Þ

The various levels of simplification are sketched in Figure 27-37.

Figure 27-37: Increasing levels of simplification for diffraction computations.

a) Conical diffraction at 2D grating; b) conical diffraction at 1D grating; c) non-conical

diffraction (s- and p-polarization parallel to TE and TM-polarization) at 1D-grating.

For a complete solution of the diffraction problem, the modes of the films must
be coupled together and to the free-space modes. Basis for the coupling is the conti-
nuity of the tangential fields, i.e., the projection of the field vectors onto the inter-
faces. The enhanced transmittance matrix approach [27-30] is easy to implement
and avoids numerical instabilities. For the computation of the tangential fields, a
normalized vector perpendicular to the plane of incidence is needed

~kk ¼
~kk ·~kk?
~kk ·~kk?









¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2x þ k2y

q

�ky
kx
0

0

@

1

A : ð27-112Þ

Now the tangential field components are just the projection of the actual field onto k

~EE? ¼ ~kk �~EE
� �

; ~HH? ¼ ~kk � ~HH
	 


~kk : ð27-113Þ

The diffracted orders obtained by this means are ~EE?
~kk
?
ml

� �

and ~HH?
~kk
?
ml

� �

. Because
both are defined relative to the propagation vector, a transform into global coordi-
nates is needed to sum up the fields of several propagation directions as they occur
in near-field and image computations. The required transform is obtained from
three constituting equations (the indices m l are omitted for clarity)
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E? ¼~kk �~EE

H? ¼~kk � Z�1
0 k�1

0
~kk ·~EE

� �

0 ¼~kk �~EE

ð27-114Þ

which provide, after a straightforward arrangement of terms,

� ky

~kk?









kx
~kk?
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kxc

Z0k0 ~kk?









kyc
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Ex

Ey

Ez

0

@

1

A ¼
E?
H?
0

0

@

1

A ð27-115Þ

from which the electric field distribution E(rx,ry) is computed by inversion.
The corresponding magnetic field is

~HH ¼ k0Z0ð Þ�1~kk ·~EE : ð27-116Þ

27.8.2

Diffraction Efficiency

The rate of the incident energy that is diffracted into a certain order is the diffraction
efficiency of the grating for this order. It depends on the angles of incidence and
diffraction. For conical diffraction it is obtained from

g ¼ E?j j2 Re c

ci

� �

þ H?j j2 Re n2
1c

n2
12ci

� �

ð27-117Þ

with n12= n1 for reflection and n12 = n2 for transmission. The diffraction efficiency
takes into account that the flow of energy into and from the planar structure region
depends on the angle of propagation and the change in the refractive index. The
energy of a diffracted component is equal to the diffraction efficiency times the ener-
gy of the incident wave.

27.9

Finite-difference Method

In the wave equation, the propagation of the field amplitude is determined by the
corresponding derivatives of the field after the coordinates. A direct method of solu-
tion approximates these derivatives by finite differences on a discrete grid. The
remaining problem is then to solve a system of linear equations for the field compo-
nents on all the grid points, taking the boundary conditions into account.
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A typical discretization scheme is the approximation of the derivatives by sym-
metric differences according to the equation [27-36][27-37][27-38]

ux ¼ uiþ1 � ui�1

2Dx
ð27-118Þ

for the first, and

uxx ¼ uiþ1 � 2ui þ ui�1

Dx2
ð27-119Þ

for the second derivative with the field component u and the transverse discretiza-
tion step Dx. The terms in the wave equation couple the field components in the
transverse and in the axial direction. The order of approximation of the derivatives
determines the number of coupled field points and therefore the bandwidth of the
resulting system matrices. In most cases, the approximation of a slowly-varying en-
velope is made and the derivate of second order to the propagation coordinate z is
neglected. Then it is possible to calculate the field at the coordinate z + Dz for the
transverse coordinate x from the fields of the positions at x – Dx, x and x + Dx for
the forgoing propagation step z. This is the easiest way to calculate the field and is
called the explicit difference scheme. It is illustrated in figure 27-38 on the upper
side. As is well known from the theory of numerical solution of partial differential
equations, an explicit scheme accumulates the errors at every z-step and therefore
the propagation over large distances cannot be calculated with sufficient accuracy.
The so called implicit scheme on the other side is always stable, if the parameters
are adjusted well. For this method, the calculation uses the inverse coupling of three
values of the step at z + Dz to one field at the position z. If the corresponding equa-
tions are put together, a system of linear equations results and these can be solved
by linear algebra with the inversion of the system matrix.

If the coordinate system is chosen correctly, the wavefront is approximately ori-
ented tangential to the lateral coordinate x. The direction of propagation is then
nearly oriented in the z direction. In this case, the dominant part of the field at a
new grid location point results from the field of the corresponding point with the
same coordinate x or index j. The influence of the neighboring locations with the
indices j – 1 and j + 1 is small. The influence of the more distant point with indices
j – 1, j + 2 and so on, can then be neglected. The characteristic quantity to describe
an elementary grid cell is the Fresnel number of this small area and is defined by

NF ¼
D x2

k � D z
: ð27-120Þ

The calculation of the numerical beam propagation is stable and shows a good con-
ditioning, if the Fresnel number has a large value in comparison to one. The corre-
sponding system of linear equations is then diagonal dominant and performs a
stable inversion. The stability of the chosen method can always be influenced by
changing the transverse grid size Dx of the propagation step-width Dz.
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Figure 27-38: Explicit and implicit differencing scheme for the calculation of the

field at the propagation from z to z + Dz.

So the most critical aspects for calculation schemes with finite difference are field
distributions with steep gradients or steps, and the behaviour at the boundary.

27.9.1

Boundary Conditions

The interaction of the field with the boundary has to be handled with care. For a
free-space propagation without limiting stops or interfaces, it is reasonable to
expand the calculation grid, so that the field strength at the outer points is absolutely
negligible. Alternatively, special boundary conditions can be formulated, which pre-
vent reflections and interferences [27-39].

1. Absorbing Boundaries
Absorbing boundaries force the field to decrease to zero at the border of the
calculation region. This prevents the reflection of outgoing field components
back into the propagation area. A usual approach to generate this behavior is
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to add an imaginary part to the refractive index in the outer region of the
calculation grid with a smooth growth of the amount. If j indicates the trans-
verse grid index with the maximal value N, a parameter b to describe the
gradient of the index wall and a strength parameter c, this setup can be mod-
eled by the formula

D n2ð Þ ¼ no c

iko
1� cos b p N þ 1� jð Þ

N

� �� �

: ð27-121Þ

In reality, the exact condition of zero reflection can only be fulfilled for one
value of the incidence angle. A further drawback of absorbing boundary con-
ditions is that the energy is not constant during the propagation of the field.
Figure 27-39 shows the profile of the real and the imaginary part of the

refractive index in the case of an absorbing boundary.

Figure 27-39: Real and imaginary part of the profile of the refractive index for an

absorbing boundary.

2. Transparent Boundary
Another way to be sure that the propagation in the interior range of the calcu-
lation grid is not disturbed by boundary effects, is to construct transparent
boundaries. If the field is analyzed regarding the local propagation direction,
the boundary is constructed to be transparent for an incident wave in the
corresponding direction.
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27.9.2

Implicit Paraxial Wave Equation in Two Dimensions

If the wave equation of Helmholtz is approximated paraxially, the term with the z-
derivative of the second order vanishes and one gets the following form for the field
strength E (E is here one scalar field component)

2ikono

¶E

¶ z
¼ ¶ 2E

¶ x2
þ k2o � n2ðx; zÞ � n2

o

� �
E : ð27-122Þ

If the derivatives are discretized and approximated by finite differences, the follow-
ing equation results for the implicit method

�aEj�1;mþ1 þ bEj;mþ1 � aEjþ1;mþ1 ¼ aEj�1;m þ cEj;m þ aEjþ1;m ð27-123Þ

with the following coefficients

a ¼ Dz

2Dx2
; ð27-124Þ

b ¼ Dz

Dx2
� Dz

2
n2
j;mþ1 � n2

o

� �

þ 2ikono ; ð27-125Þ

c ¼ � Dz

Dx2
þ Dz

2
n2
j;m � n2

o

� �

þ 2ikono : ð27-126Þ

27.9.3

Paraxial Wave Equation in Cylindrical Coordinates

In this special case, setups with rotational symmetry can be calculated. This has the
advantage of providing a fast calculation, but the problems with the singularity at
the axis r = 0 make this attempt less attractive. The paraxial approximated wave
equation takes the form [27-40]

2ikono

¶E

¶ z
¼ ¶ 2E

¶ r2
þ 1

r

¶E

¶ r
þ k2o n2ðx; zÞ � n2

o

� �
E : ð27-127Þ

With the transformation

U ¼ r E ð27-128Þ

we then get the new equation for the function U
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2ikono

¶U

¶ z
¼ ¶ 2U

¶ r2
� 1

r

¶U

¶ r
þ 1

r2
þ k2o n2ðx; zÞ � n2

o

� �
E ð27-129Þ

which always obeys the boundary condition

Uðr ¼ 0Þ ¼ 0 : ð27-130Þ

If the coordinate along the propagating direction is scaled by

t ¼ z

2k
ð27-131Þ

and the abbreviation

c ¼ 2D r2

D z
ð27-132Þ

is used, we get the following equation for the implicit scheme

ajUjþ1;nþ1 þ bjUj;nþ1 þ cjUj�1;nþ1 ¼ dj ð27-133Þ

where the coefficients are defined by

aj ¼ 1 � 1

2j
; ð27-134Þ

cj ¼ 1 þ 1

2j
; ð27-135Þ

bj ¼ �2þ icþ 1

j2
þ Dr2 k2on

2 � k2o
	 


; ð27-136Þ

dj ¼ �ajUjþ1;n � bj � 2ic
	 


Uj;n � cjUj�1;n : ð27-137Þ

The calculation near the axis can be supported by a direct insertion of a Taylor
expansion of the field E, which cannot be recalculated from the function U because
of the vanishing factor r = 0 for this point. The expansion results in the relation

E1 ¼ E2 � 3

7
E3 þ 1

14
E4 : ð27-138Þ
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The figures 27-40 to 27-42 show some calculation examples for this special discreti-
zation method.
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Figure 27-40: Propagation of a Gaussian beam in a gradient index medium

with a parabolic distribution of the refractive index. The well known periodical

refocussing after the pitch length is seen clearly. Left side: intensity profile as a

function of the radial coordinate r and the axial coordinate z. Right side,

top: transverse intensity profile; right side, bottom: axial intensity distribution.



Figure 27-41: Focussing of a Gaussian beam in the ideal case (top row), with a

spherical aberration of k/4 (middle row) and with -k/4 spherical aberration (bottom row).

The asymmetrical intensity distribution around the image plane is indicated very clearly.

Figure 27-42: Propagation of a beam with a super Gaussian intensity profile with an

exponent of m = 20. The translation invariance of the beam profile, the hot spots and

the Fresnel diffraction ripple can be seen, occurring during the propagation.

27.9.4

ADI-formulation of the Paraxial Wave Equation in Three Dimensions

If the full geometry with two transverse dimensions is taken into account, the dis-
cretization of the paraxial wave equation becomes a little more complicated. If the
operator with the transverse derivatives is written in the form
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ĤH ¼ 1

2k

¶
2

¶ x2
þ ¶

2

¶ y2

� �

¼ ĤHx þ ĤHy ; ð27-139Þ

the derivative of the first order along the propagation direction delivers the represen-
tation

1� ĤHx

2
� ĤHy

2

 !

Ei;j;nþ1 ¼ 1þ ĤHx

2
þ ĤHy

2

 !

Ei;j;n ð27-140Þ

where the field strength E is discretized in the three coordinates’ direction with the
indices i, j and n. In the approximation of decoupled operators in the two coordinate
directions, the expressions in the brackets can be factorized and we get the equation

1� ĤHx

2

� �

1� ĤHy

2

 !

Ei;j;nþ1 ¼ 1þ ĤHx

2

� �

1þ ĤHy

2

 !

Ei;j;n : ð27-141Þ

According to this formula, the process of a z-step can be separated into two steps with
alternating influence of the derivatives. This idea is called Peaceman–Rachford scheme,
the equation can be split into two single equations with first-order operators

1� ĤHx

2

� �

E
i;j;nþ1

2
¼ 1þ ĤHy

2

 !

Ei;j;n ; ð27-142Þ

1� ĤHy

2

 !

Ei;j;nþ1 ¼ 1þ ĤHx

2

� �

E
i;j;nþ1

2
: ð27-143Þ

27.9.5

Split-step-beam Propagation Method

If the paraxial approximated wave equation

2ik
¶E

¶ z
¼ �2

?E þ k2
n2ðx; yÞ

n2
o

� 1

� �

E ð27-144Þ

is written in the operator notation

¶E

¶ z
¼ 1

2ik
�2

?E þ k

2i
� n2ðx; yÞ

n2
o

� 1

� �

� E ; ð27-145Þ

¶E

¶ z
¼ ĤH E½ � þ ĜG E½ � ð27-146Þ
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with the differential operator

ĤH E½ � ¼ 1

2ik
�2

?E ð27-147Þ

and the non-linear operator G, which describes the inhomogeneities of the refractive
index profile

ĜG E½ � ¼ k

2i
� n2ðx; yÞ

n2
o

� 1

� �

� E ð27-148Þ

the solution of the differential equation can be written in the symbolic form

EðzÞ ¼
ð

ðĤH þ ĜGÞE dz ; ð27-149Þ

E zþ Dzð Þ ¼ e ĤHþĜGð Þ�Dz EðzÞ : ð27-150Þ

It should be noticed that the two operators are not commutative, so the sequence of
the application of the exponential factors cannot be interchanged. The non-commu-
tativity results from the spatial variation of the refractive index profile. In a quadratic
approximation, the above expression can be written in the separated form

E zþ Dzð Þ ¼ eĤH�Dz � eĜG�Dz EðzÞ : ð27-151Þ

The solution of the propagation problem therefore can be obtained by propagating
the field in the Fourier space by an expansion into plane waves and then correcting
the phase of the field caused by the changed refractive index. The single steps of the
algorithm of the so called split-step-beam propagation are therefore as follows:

1. Fourier transformation of the field

E kx; zð Þ ¼ F̂F EðzÞ½ � : ð27-152Þ

2. Propagation of the plane waves in the spatial frequency domain

E kx; zþ Dzð Þ ¼ E kx; zð Þ � e
ik2x �Dz
2k0 : ð27-153Þ

3. Back transform of the spectrum in the spatial domain

E ¢ðx; zþ DzÞ ¼ F̂F�1 E kx; zþ Dzð Þ½ � : ð27-154Þ

4. Correcting the field according th the change in the refractive index

E x; zþ Dzð Þ ¼ E ¢ x; zþ Dzð Þ � eĜG�Dz : ð27-155Þ
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The method described above can be performed in a more accurate way by splitting
the propagation step into two steps of the half-step width before and after the index
correction.

The figures 27-43 and 27-44 show an application of the classical beam propaga-
tion algorithm for the scattering of a Gaussian beam by a centered and an off-axis
bubble of the refractive index respectively.

Figure 27-43: Propagation of a collimated Gaussian beam through a centered

disturbance of the refractive index by a bubble.

Figure 27-44: Propagation of a collimated Gaussian beam through an off-axis

disturbance of the refractive index by a bubble.

27 Vector Diffraction578



27.10

Rigorous Diffraction in Optical Imaging

The interpretation of microstructure images in the nanometer region cannot be
done without considering near-field effects resulting from an interaction of the elec-
tromagnetic wave with the structure topography. If not taken into account, these
effects spoil the optical micro metrology at wavelength sized structures.

In principle, it should be possible to localize an edge with nm precision, provided
that the next edge is far enough away to neglect any proximity effects, i.e., intensity
variations due to the overlap of images. However, considerably higher deviations
occur in practical linewidth measurements, i.e., the attainable accuracy is reduced.
The reasons are due to the edge localization criteria: the basis is usually a geometri-
cal-optics image interpretation according to which the reflected/transmitted field is
computed by geometrical optics (“optical footprint”).

But the interaction of light with a structure is more complicated:

. Electromagnetic boundary conditions yield polarization dependencies.

. Lateral scattered fields and possible excited surface waves yield multiple scat-
tering between neighboring structure elements.

. Structures with high aspect ratios act as waveguides.

. For complex structures, phase shifts due to material changes and multiple-
beam interferences occur.

Optical imaging gains in resolution if the wavelength is reduced. The reason for
this is the wavelength dependence of the optical resolution limit which is, in coordi-
nates, normalized to the wavelength

Dx

k
¼ k

NA
: ð27-156Þ

In fact, the scalar diffraction scales linearly with the wavelength. With f = x/k, etc.,
the scalar wave equation becomes

DU þ 2p

k

� �

U ¼ 0 7!

¶
2

¶n2
þ ¶

2

¶g2
þ ¶

2

¶f2

� �

Uðn; g; fÞ þ 2pð Þ2Uðn; g; fÞ ¼ 0 :

ð27-157Þ

27.10.1

Dielectrics and Metals

Optical imaging is performed on real materials with electromagnetic waves. The
image of a structure depends on the material composition of the object: in particular
whether it is dielectric or metallic. The difference between dielectrics and metals is
somewhat arbitrary. This is particular true for optical frequencies. Drude’s oscillator
model provides for the frequency-dependent dielectric function approximately
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e� 1

eþ 2
¼ Ne2

3e0me

X

j

fj
x2

j � x2 � icjx
ð27-158Þ

with the molecular density N, the elementary charge e, the mass me of the electron,
the oscillator strength fj of resonant frequency xj and the attenuation constant cj. If
the first resonance frequency is zero, the material contains free electrons and is a
conductor. If it is not zero, the material is dielectric. The main electromagnetic prop-
erties of the materials can be classified in terms of the dielectric constant as follows:

Type Dielectric constant Refractive index n = e1/2 limit

Dielectric real(er)>1, imag(er)fi0 real(n)>>imag(n) imag(n)=0

Metal real(er)fi0, imag(er)>>1 real(n)» imag(n)>>1 real(n)=imag(n)fi¥

Surface plasmons (x>xp) real(er)<0, imag(er)fi0 real(n)fi0, imag(n)>>1

Figure 27-45: Dielectric function of chromium, silicon and SiO2 [27-41].
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Figure 27-46: Top: Dielectric function of silicon; Middle: Corresponding

edge near-fields for TM polarization; Bottom: Edge near-fields for TE polarization

(incident plane wave from top).
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Figure 27-47: Top: Dielectric function of chromium; Middle: Corresponding

edge near- fields for TM polarization; Bottom: Edge near-fields for TE polarization

(incident plane wave from top).
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The different kinds of materials yield different fields at the boundaries. The elec-
tromagnetic field is transmitted by the dielectric but absorbed by the metal. In the
third case, surface plasmons may be excited, yielding long-range interactions.

The material properties change significantly near the resonance regions of the
dielectric function. This effect is pronounced for chromium and silicon when traver-
sing from the visible to the DUV region. (Data from [27-41]).

An elemental entity of the wave-structure interaction is a plane wave incident on
an isolated edge. Using the FMM the corresponding near-fields were simulated for
wavelengths of 157 nm, 248 nm and 633 nm. In order to avoid reflections from the
bottom, a gradual transition from the refractive index of the material to one was
implemented. The two images below show the near-fields for silicon and chromium.
For easy comparison the dispersion diagram is shown in the same figure for both.

With decreasing wavelength, silicon traverses two resonances (cf. 27-45) and
becomes metallic in this region. For TE-polarization an indication for the excitation
of surface plasmons is visible for k= 157 nm and, with larger wavelength at k= 248
nm. For k= 633 nm silicon is mainly dielectric with a significant field inside the
material near the edge. The theoretical surface plasmon wavelengths kp and damp-
ing constants ap are shown in the table.

Material Wavelength kp/k0 ap

Silicon/Air 157 nm 0.90 0.07

248 nm 0.98 0.03

Chromium/Air 157 nm 0.99 0.32

248 nm 0.93 0.09

633 nm 0.99 0.01

27.11

Simulation of Polarized Imaging by use of Rigorous Diffraction

The image of a structure for a prescribed illumination is computed by a two-step
process. First the spectrum of plane waves necessary to synthesize the desired illu-
mination spectrum is determined. For each spectral component the diffracted
orders of the structure are computed and stored.

A detailed description of polarized imaging will be given in chapter 28. Here we
give only a brief account of a simple method for simulating polarized reflection mi-
croscopy as it is used for microstructure metrology [27-35]. Consider a single inci-
dent plane wave from the illuminating spectrum which is diffracted by the struc-
ture. To compute the corresponding electric field distribution in the image plane, all
diffraction orders within the numerical aperture NA are summed
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Q(k,~aa) is the complex amplitude of the incident wave in the exit pupil of the illumi-
nation system. w(~pp¢ml) are the wavefront aberrations. J(~ppml) is a Jones matrix for con-
sideration of polarization aberrations and polarization-affecting components in the
imaging pupil, and z is the defocus of the object. E^ml is obtained by a transforma-
tion of the diffracted wave into the pupil P taking energy conservation in the object
plane into account

~EEnm ¼ 1

~kk?









�ky kx
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� �
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2
12ci

� �
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� �

: ð27-160Þ

Figure 27-48: Simulating reflection microscopy.

Matrix w (see chapter 28) performs the transformation from the exit pupil of the
imaging system into image space. The propagation vector of the mlth diffracted
order behind the exit pupil of the imaging system with magnification m is

~kk¢
?
ml ¼ m�1~kk

?
ml : ð27-161Þ



The computation of the image due to complete illumination follows from an inte-
gral, approximated as a sum, over the wavelength and illumination pupil where the
computed quantity depends on the coherence of the effective source in the illumina-
tion entrance pupil. For a coherent, and therefore monochromatic, source the com-
plex electric field in the image plane is computed by

~EEkðx ¢; y¢; zÞ ¼
X

ml

~EEð~ppml†; k; x ¢; y¢; zÞdr ð27-162Þ

where dr denotes the size of a patch in the pupil plane. For an incoherent and possi-
bly polychromatic source, the image polarization matrix is computed as

Pðx ¢; y¢; zÞ ¼
X

j

X

ml

Pð~ppml†; kj; x ¢; y¢ÞdrDk ð27-163Þ

where Dk is the sampling distance of the spectrum. P is the polarization matrix
(coherency matrix), i.e.,the time mean value of the dyadic product of the electric
field with its conjugate
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It is a straightforward matter to show the linearity of the polarization matrices for
incoherent fields. The intensity is the trace of P. The non-diagonal elements are a
measure of the correlation of the components. They correspond to quantities mea-
sured by polarization interferometry [27-34]

Example: Polarization-dependent image of a topographical grating in Si, computed
with the FMM [27-35].

As an example, we consider the polarization effect in the image of a Si grating of
grooves of 121 nm depth 630 nm width and 1200 nm pitch, i.e., a lateral aspect ratio
of 1:1.9. The illumination wavelength is 440 nm, the illumination NA is 0.75, the
imaging NA is 0.95, and the magnification is 250 (Leica DMR equipped with a 250/
0.95 lens). The illumination is linearly polarized (TE: E parallel to grooves, TM: E
perpendicular to grooves). The focus position was increased from –700 nm to
+700 nm. For the computation the illumination pupil was divided into patches of
0.1 � 0.1 NA2 and the refractive index of Si was taken from [27-41] as n = 4.787 +
i0.169.

For this example, both linear polarizations provide clearly distinct image patterns.
In TM-polarization (Figure 27-49) the intensity minimum is vertically oriented,
while it is inclined in TE-polarization (Figure 27-50). In terms of accuracy for
metrology, the first situation is certainly preferred. The vertical position of the inten-
sity maxima is shifted between TE and TM-polarization, in both measurement and
computation.
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Figure 27-49: Intensity in the image of a Si grating of 1200 nm pitch and

630 nm grooves of 121 nm depth. Illumination: TM-polarization, k = 440 nm,

NA= 0.7. Imaging-NA= 0.95.
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Figure 27-50: As Figure 27.49 but with TE-polarization.
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28.2 The Image-forming Field

28.1

Introduction

Any optical imaging is based on the interference of light. Because light is an electro-
magnetic wave the interference contrast is polarization-dependent. So the polariza-
tion of the waves has a direct impact on the image quality. While identical polariza-
tion states may interfere perfectly, orthogonal states do not interfere at all. This is of
particular importance for high-numerical aperture systems – in particular lithogra-
phy lenses where the image is formed with high NA – and for optical systems that
make use of polarization, such as, for instance, projection devices using liquid crys-
tal spatial-light modulators or polarization microscopy. Furthermore, polarization
can be used to encode information into electromagnetic waves and to retrieve the
information from them. Liquid crystal displays and digital projectors are well
known examples.

Chapter 26 considered the mathematical description of polarization states and
their change due to various optical components. In the current chapter we will con-
centrate on the system aspect: How do we describe image formation for polariza-
tion? How do we describe and optimize optical systems that have an influence on
the state of polarization?

Before we can proceed to a mathematical description of image formation for
polarized light, we must clarify which quantity of the electromagnetic field is actu-
ally measured by optical detectors like photographic emulsions, photoresists or
CCD chips. Methods for a polarized ray trace are presented thereafter. The subjects
covered in the following sections are optical systems where polarization effects are
of importance. We have chosen a microscope lens and a lens for optical lithography
as examples. After this we discuss the interference of electromagnetic waves in con-
trast to scalar waves. In the subsequent chapter we define and discuss the Jones
pupil and present methods for its visualization. Finally, we proceed to the vector
point-spread function, the polarization transfer function and the optimization of
optical systems with respect to polarization.

28.2

The Image-forming Field

Generally speaking, optical imaging is just the superposition of electromagnetic
waves. However, any image has to be recorded, and before we are able to compute
polarized images, we must address the question of which quantity in the field pro-
duces the final image, i.e., to which component is the recording medium suscepti-
ble? Is it the electric field component, or the magnetic field component or perhaps
the magnitude of the Poynting vector? The first answer to this question can be de-
rived from the fact that, for the detection of light, electrons have to be excited. This
is true for photoemulsion, the eye, fluorescence and charge coupled devices (CCDs).
Being charged particles, the electrons are expected to be excited much more effi-
ciently by the electric field component than by the magnetic field.
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The experimental proof that it is the electrical component which is detected at
optical frequencies, was given in 1890 by Otto Wiener [28-1]. He used a standing
wave in front of a silver mirror. The highly conducting mirror enforces a node of the
electric field at the surface and subsequent nodes at half a wavelength distance from
each other. As can be easily deduced from Maxwell’s equations, the magnetic field,
in contrast, has a maximum at the surface. The first node lies a quarter of a wave-
length above the surface. The electric and magnetic energy density of the standing
wave is

rE ¼ 1

2
E0e

ik0z � E0e
�ik0z






2¼ E0j j2 sin ðk0zÞ ;

rH ¼ 1

2
H0e

ik0z þH0e
�ik0z






2¼ H0j j2 cos ðk0zÞ ;

ð28-1Þ

where z denotes the axial coordinate (cf. figure 28-1) and k0 = 2p/k. In the standing
wave Wiener introduced a glass plate with a very thin (here “very” means: smaller
than the wavelength k, in his experiment » k/30) photographic emulsion composed
of collodion added with silver chloride. The glass plate was laid on the mirror at an
extremely shallow angle a. After development, the pellicle showed a regular pattern
of dark stripes at distances k/2sina.

Figure 28-1: Wiener’s experiment proving that photoemulsion is sensitive

to the electric rather than to the magnetic field.

At the surface of the mirror, the pellicle was bright, i.e., no field was detected
there. The first dark stripe appeared at a distance of k/4sina above the silver surface.
This is in accordance with the expectation that the electric field excites the silver
chloride. Recasting the experiment with a fluorescent dye as detector yielded the
same result [28-2].

Therefore the image is computed from the squared modulus of the electrical com-
ponent of the electromagnetic field. Furthermore, because here we are not con-
cerned with magneto-optical effects (lr= 1) it is sufficient to consider solely the elec-
trical field component.
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28.3

Interference of Electromagnetic Waves

As already stated, the interference of light is a necessary prerequisite for image for-
mation. In the following, the influence of polarization on the interference pattern of
electromagnetic waves is discussed.

28.3.1

Two-beam Vector Interference

In linear media, electromagnetic fields satisfy the superposition principle, i.e., at
each instant of time the complete electric and magnetic field is the sum of the
respective fields of the interfering waves. The superposition of two monochromatic
plane electromagnetic waves of frequency x/2p yields the electric field

~EEð~rrÞe�ixt ¼ ~EE1ð~rrÞ þ~EE2ð~rrÞ
� �

e�ixt: ð28-2Þ

The considerations developed for the partial coherence of scalar waves are valid
here, too. The additional aspect is that only parallel field components can interfere.
The field strength of orthogonal components is not added; their intensity superposes
independently.

The energy density becomes

rE ¼ n

2
~EE1ð~rrÞ þ~EE2ð~rrÞ
�
�
�

�
�
�

2

¼ I0ð~rrÞ 1þ cð~rrÞ cosDjð~rrÞð Þ; ð28-3Þ

where I0 denotes the mean energy density

I0 ¼
n

2
~EE1

�
�
�

�
�
�

2

þ ~EE2

�
�
�

�
�
�

2
� �

; ð28-4Þ

Dj the phase difference

Dj ¼ arg ð~EE2Þ � arg ð~EE1Þ; ð28-5Þ

and c the contrast

c ¼
2 ~EE1 �~EE

�
2









~EE1

�
�
�

�
�
�

2

þ ~EE2

�
�
�

�
�
�

2 : ð28-6Þ
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Figure 28-2: Illustration showing that the interference of polarized light “picks” equal

polarization states, i.e., the contrast and phase depend on the polarization difference.

The contrast is proportional to the inner product of the field vectors, i.e., to the
projection of one polarization state onto another. Coherent waves of equal polariza-
tion and intensity yield a perfect contrast (figure 28-2 left). The lateral position of
the interference pattern depends on the relative phase difference of both waves. If
the polarization state of one wave is changed, the contrast reduces (figure 28-2 cen-
ter). Now, a contrast of one is no longer feasible. In addition, the phase may change.
For an image this may result in a blur and distortion. If the waves are orthogonally
polarized the interference pattern vanishes completely (figure 28-2 right). There is
no contrast, because the inner product of orthogonal polarization states is zero.

28.3.2

Contrast for High-NA, s- and p-polarization

Of particular importance is the difference between the s and p-polarized interfer-
ence of electromagnetic plane waves. Consider two linearly polarized plane waves
enclosing an angle h. Their propagation vectors describe a plane. The s-polarized
component is oriented perpendicular and the p-polarized component is oriented
parallel to this plane (figure 28-3).

Depending on the enclosed angle h, the interference contrast becomes

c ¼ 1 : s-Pol:
cos ðhÞ : p-Pol:

�

ð28-7Þ

The dependence of the contrast on the enclosed angle is sketched in figure 28-4. The
s-polarized contrast is independent of the angle h, while the p-polarized contrast
decreases to zero for h = 90�. For larger angles, the magnitude of the contrast
increases again but with a changed sign, i.e., the contrast has reversed, that is the
position of interference maxima and minima is exchanged.
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Figure 28-3: Interference of two plane electromagnetic

waves. Definition of s- and p-polarization.

Figure 28-4: Contrast of the interference pattern for two plane waves of equal

amplitude, depending on the enclosed angle.

This effect is called the “vector effect”. It introduces a polarization-dependent con-
trast into the interference of plane waves at high mutual propagation angles.

28.3.3

Influence of Recording Medium

The enclosed angle between the interfering waves is measured inside the recording
medium. Consider a given enclosed angle hi of the propagating plane waves before
the recording medium. The contrast loss for p-polarization becomes less for a
recording medium of high refractive index because the refraction at the interface
reduces the enclosed angle (cf. figure 28-5) according to
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h ¼ arcsin
ni sin hi

nR

� �

: ð28-8Þ

Figure 28-5: Reduction of enclosed angle h, due to refraction at the

interface with the recording medium.

28.3.4

Vector Effect in Optical Microscopy

This effect is usually of no importance for image formation in optical microscopy,
not even for high-resolution microscopy. This is because in microscopy the high
angles occur in the object space, but not in the image space. Consider a microsope
lens of (object side) numerical aperture NA, magnification M and a refractive index
nR of the recording medium. The maximum enclosed angle occurring in the record-
ing medium is

hmax ¼ 2 arcsin
NA

MnR

: ð28-9Þ

Table 1 shows some typical values.

Table 1: Vector effect for microscopy lenses.

NA M nR h [�] p-pol. contrast (cosh)

0.2 10 1.5 1.4 0.9997

0.6 50 1.5 0.9 0.9998

0.9 100 1.5 0.7 0.99993

28.3.5

Vector Effect in Optical Lithography

In high-NA optical lithography a de-magnified image of the object is produced and
the vector effect is important. As an example, consider a point-symmetrical config-
uration where both propagation directions enclose the same angle with the normal
to the surface of the recording medium. We are interested in the contrast we can

596



28.4 Polarized Ray Trace 597

achieve for a certain pitch p: The enclosed angle h depends on the pitch p, the wave-
length k, and the refractive index nR of the recording medium according to

h ¼ 2 arcsin
k

2pnR

: ð28-10Þ

Combination of equs (28-10) and (28-7) yields the dependence of the contrast on the
half-pitch. It is shown in figure 28-6 for a resist refractive index of 1.7 and a record-
ing wavelength of 193 nm (ArF laser). The s-polarized contrast is independent of
the pitch, while the p-polarized one drops down to zero at a pitch of 80 nm. For still
smaller half-pitches the contrast increases again, but with reversed sign, meaning
that bright and dark regions are exchanged. The contrast of the unpolarized interfer-
ence is just the mean value of the s and p-polarized contrast. It becomes zero for
antiparallel propagation within the resist.

Figure 28-6: Contrast of the interference pattern of two plane waves of equal amplitude

depending on the pitch in a medium of nR = 1.7 and with a wavelength of k= 193 nm.

28.4

Polarized Ray Trace

To evaluate and optimize the performance of optical systems that contain polariza-
tion- changing elements such as, for instance, birefringent lenses, it is necessary to
perform a polarization optical ray trace. A ray in a scalar ray trace is characterized by
its direction and amplitude. The phase of the corresponding plane wave is obtained
from the path.

In a polarization optical ray trace, a ray is also characterized by its polarization
state. In a purely scalar optical system, the polarization state remains constant dur-
ing propagation. However, in a polarization optical system it may change. These
changes are due to retardance and diattenuation resulting from:
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a) interfaces (in general between anisotropic media [28-3]–[28-6]);
b) thin film coatings (in general anisotropic coatings [28-7]);
c) propagation in anisotropic materials (see chapter 26);
d) microstructures because of form birefringence (see chapter 27).

28.4.1

Definition of Ray, Beam and Path

We need to distinguish clearly between the items ray, beam and path when used in
the following.

. A ray represents a single monochromatic plane wave with distinct properties
such as, for example, a distinct propagation direction. The propagation of a
ray follows the laws of geometrical optics.

. A beam is a monochromatic bundle composed of plane waves with a spec-
trum of propagation directions. The propagation of a beam then results from
the propagation of all the contributing plane waves due to a superposition.

. A path is the geometrical pathway of a ray.

28.4.2

Ray-splitting at Anisotropic Elements

A common prerequisite of ray-tracing routines is the “single path model”, stating
that a single incident ray generates precisely one output ray. This assumption is vio-
lated if anisotropic elements are traversed by the ray. At each interface to an aniso-
tropic medium a ray is split into two rays (figure 28-7).

Figure 28-7: Ray-splitting due to double refraction in a compound lens.

In order to compute the optical properties for a particular incident ray, in princi-
ple all rays have to be traced through the system. This is precisely what is implemen-
ted in some ray-tracing software. However, this method is only feasible for a small
number of anisotropic elements because the number NB of bifurcations increases
exponentially with the number NE of elements

NB ¼ 2NE : ð28-11Þ
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28.4.3

Refraction and Reflection at Birefringent Interfaces

The correct ray bifurcation must be computed for correct polarized raytracing
through anisotropic elements. Depending on the constellation of anisotropic and
birefringent media, up to five rays (one incident, two reflected and two refracted)
may occur at a single interface. The various constellations for a single incident plane
wave are depicted in figure 28-8 [28-6].

Figure 28-8: Ray-splitting due to double refraction at an interface.

To perform the ray-trace, the direction, polarization amplitude and phase of the
reflected and transmitted rays have to be determined for a given incident polarized
ray. This is a three-step process, because the direction and polarization of the trans-
mitted and the reflected rays are already determined by the direction of the incident
ray and the dielectric tensor of the materials. Knowing the direction and the polar-
ization, the amplitude and phase then have to be determined in a third step.

1) The tangential component of the propagation vector of the incident, trans-
mitted and reflected field must be identical, because the continuity of the
tangential field components is required for every point on the interface.
Because of this the incident, transmitted and reflected propagation vectors
must be coplanar. From Fresnel’s quartic equation we can compute, for every
propagation direction, the corresponding two refractive indices n1(J), n2(J).
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The actual angles of refraction are obtained from a solution of the refraction
law

ni sinJi ¼ n1ðJ1Þ sinJ1

ni sinJi ¼ n2ðJ2Þ sinJ2

ð28-12Þ

for J1 and J2. A similar procedure is applied for the reflected rays.
2) With the direction of the refracted rays their polarization is then also fixed. It

is the eigenpolarizations, which correspond to the refractive index as eigenva-
lues of the refracted and reflected rays.

3) The polarization of the incident ray determines the amplitude and phase of
both the refracted and both the reflected rays. As in the derivation of Fres-
nel’s equations, the continuity of the tangential electric and magnetic field at
the interface is applied in order to derive the refraction and reflection coeffi-
cient. As an extension to the scalar case, two of these coefficients exist, if the
corresponding medium is birefringent (see for instance [28-6]).

28.4.4

The Single-path Approximation

For weakly birefringent media the phenomenon of geometrical ray splitting due to
double refraction can be ignored in the same way as a single-path approximation is
applied (“small birefringence approximation” in [28-5]): Two orthogonal polarized
rays traverse the same single path with identical propagation directions from the
front to the rear surface of a lens (figure 28-9).

Figure 28-9: Refraction at a birefringent lens: a) exact; b) in a single-path approximation.

This path can be chosen to be either the path of the ray with the greater refractive
index or the path of the ray with the smaller one. Along the chosen path both eigen-
polarizations, together with their corresponding refractive indices, are computed.
The polarization state at the rear surface of the lens then results from the phase dif-
ference of both eigenpolarizations (and also from the transitions at the interfaces
due to the Fresnel formulas). This approach provides a significant simplification of
the polarized optical ray trace. Because of this its range of validity is discussed in
detail below.
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Validity of the Single-path Approximation for a Single Interface

In the single-path approximation the first refracted ray (~kk1) follows the same path as
the second ray (~kk2), i.e., the second propagation vector is rotated into the propagation
vector of the first ray (figure 28-10).

Figure 28-10: Illustration of the single-path approximation.

Consider a point (x0,z0) a distance L from the point of incidence, i.e.,

~rr ¼ L
~kk1
~kk1









: ð28-13Þ

While the correct phase difference, including the angular split on the ordinary ray, is

Djexact ¼ ~kk2 �~kk1

� �

�~rr ¼
~kk2 �~kk1 � ~kk1









2

~kk1









L

¼ ~kk2







 cos ðDJÞ � ~kk1









� �

L ;

ð28-14Þ

the phase difference in the single-path approximation becomes

Djsingle ray ¼ ~kk2







� ~kk1









� �

L : ð28-15Þ

The introduced phase error is simply the difference of the correct phase and the
approximated phase, i.e.,

dj ¼ Djsingle ray � Djexact ¼ ~kk2







� cos ðDJÞ~kk2









� �

L

¼ 1� cos ðDJÞð Þ~kk2






L » 1

2DJ
2 ~kk2







L» � p

k
tan 2ðJÞDn

2

n L :

ð28-16Þ
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The amount of the error depends linearly on the traversed length and quadratically
on the birefringence. It is small if

Dn2

k
L << 1 ð28-17Þ

assuming a wavelength of 200 nm and a maximum tolerable phase difference of
0.001 rad, the regions of validity as sketched in figure 28-11 are obtained. As a rule
of thumb: the single-path approximation is valid for Dn < 10–4.

Figure 28-11: Validity of the single-path approximation for a single refraction

at k = 200 nm and djmax= 0.001.

Validity of the Single-path Approximation for an Optical Element

A wedge additionally introduces an angular divergence of the rays as is shown sche-
matically in figure 28-12. Therefore, besides the retardance, we have to consider also
the angular divergence in order to judge the validity of the single-path approxima-
tion for the wedge.

Consider the incidence of a ray onto a wedge, which is embedded in a homoge-
neous medium. The angular divergence Db between the two rays leaving the wedge,
follows from the continuity of the tangential components of the propagation vectors
at the second interface. Considering only terms linear in the birefringence Dn, we
obtain

Db »WðJ; cÞ � Dn ð28-18Þ

with the abbreviation

WðJ; kÞ ¼ sin ðJ� cÞ � cos ðJ� cÞ tan ðJÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� n2 sin 2ðJ� cÞ
p : ð28-19Þ
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Figure 28-12: Angular divergence at a wedge.

This equation exhibits a critical angle where total reflection occurs and where the
deviation Db becomes arbitrarily high. However, a few degrees away from this limit,
W settles to a magnitude of about 1.0.

For the wedge, an estimation of the phase error in the single-path approach is
given by

dj» � 2p
L

k

Dn2

n

tanJ tan J� cð Þ
cos ðJÞ : ð28-20Þ

Because of the factor tan(J–c) the phase error for the wedge increases dramatical-
ly for |J–c| fi 90� i.e. near total reflection. However, some degrees away from this
critical regime a rough estimation for the absolute value of the last factor in eq. (29)
is 1.0, and we obtain a typical maximum phase error of

djtyp;max







» 2p

d

k

Dn2

n
; ð28-21Þ

i.e., for d » 1 m = 107 k and Dn » 10–6 (n » 1.5) the maximum phase error is about
5·10–5 rad.

While, for a plane parallel plate, the phase error behind the plate is independent
of the distance from its rear surface because the transmitted rays are parallel, this is
no longer true for the wedge. In the case of the wedge the two emerging rays enclose
an angle Db with the consequence that the phase error increases with the distance
from the wedge. An estimation for this phase error is roughly given by

djtrav ¼
2p

k
Ltrav 1� cos ðDbÞ½ � »p Ltrav

k
Db

2
»p

Ltrav

k
Dn2; ð28-22Þ

i.e., this phase error is proportional to LtravDn
2/k. For k = 157 nm, Db » Dn = 10–6

and a distance of Ltrav= 1 m we obtain djtrav » 2.0·10–5 rad » 1.1·10–3�.
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Taking the sum of the equations (28-21) and (28-22), a single lens introduces a
phase error of approximately

dj single lens ¼ k0LDn
2 ð28-23Þ

with k0 = 2p/k and L » Ltrav + d.

Figure 28-13: Validity of the single-path approximation for a single element

at k = 200 nm and djmax= 0.001 beyond the critical angle.

Validity of the Single-path Approximation for an Optical System

For several lenses in succession a crude estimation for the resulting phase error is a
simple superposition of the phase of all individual lenses. If we assume N equally
spaced lenses separated by the same distance L, and if we assume that each lens
increases the angular divergence additionally by the same DJ»Dn, we obtain for
the phase error of the whole system

djSystem ¼ k0
XN

j¼1

jDnj

	 
2
Lj » k0Dn

2L
XN

j¼1

j2 ¼ k0Dn
2L

NðN þ 1Þð2N þ 1Þ
6

: ð28-24Þ

For N=30 lenses, separated by the distance L =5 cm, k=157 nm and Dn =10–6, we
obtain djLenses » 0.02 rad » 1.0�, which corresponds to an upper bound of 3·10–3 k
» 0.5 nmat k =157nm.

For N = 10 lenses, the error is about 8·10–4 rad, which corresponds to 0.02 nm.
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28.5

Optical Systems with Polarization Effects

Polarization has to be taken into account for any high-accuracy optical design and
simulation. Of course this is particularly true for optical systems that make use of
the polarization of light such as, for instance, projectors based on liquid crystals or
lenses for polarization microscopy. But it applies also to optical systems with an ex-
tremely high level of aberration-correction like lenses for optical projection lithogra-
phy.

Optical lenses for polarization microscopy have to be made of stress-free glasses
where stress-induced birefringence is minimized. Furthermore, the anti-reflection
coatings have to be optimized for their polarization performance. Figure 28-14
shows as an example a microscope lens for polarization microscopy. The anti-reflec-
tion coatings are critical at the rim of the lenses where high angles of incidence
occur. In particular, near the Brewster angle of the lens material strong polarization
effects occur which have to be neutralized by a proper coating design.

Figure 28-14: Examples of an optical system where polarization effects are of importance:

Lens for polarization microscopy (Zeiss lens, Patent WO2004092802).

Figure 28-15 shows the drawing of a projection lens for optical lithography at
193 nm. The lenses are made of quartz (amorphous SiO2) and calcium fluoride
(crystalline CaF2). The height of the system is 1000 mm, the image field is approxi-
mately 20 mm in diameter and the scalar aberrations of the wavefront are corrected
down to an RMS of five thousandth of a wavelength (5 mk).
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Figure 28-15: Example of optical system where polarization effects are

of importance: Lens for VUV projection lithography. Zeiss catadioptical lens,

for illustration only, US 6,717,746 B2.

The sources for polarization effects are:

. Intrinsic birefringence of the CaF2 lenses (cf. chapter 18).

. Stress-induced birefringence in quartz and CaF2.

. Polarization-dependent transmission of the anti-reflection (AR) coatings on
the lens surfaces.

. Polarization-dependent reflection at the high-reflection (HR) coatings of the
mirrors.

. Polarization-dependent object transmission – in particular for structure sizes
that approach the wavelength.

. Polarization dependence of the interference contrast for high numerical aper-
tures.

28.6

Polarized Imaging Model

For simulation and also even for the description of polarization effects on imaging
we need an imaging model that we will briefly describe here. The starting point is
an extension of the pupil-based model of scalar imaging to polarization, following
the lines of ref. [28-8]. The geometry is sketched in figure 28-16. The illumination
pupil, entrance pupil, and exit pupil are spherical due to the precise fulfilment of
the sine condition. According to the illumination setting, it is assumed that the illu-
mination pupil is filled in a sigma region with an incoherent source (Hopkins effec-
tive source). To produce an image we start with a single point in this region. It radi-
ates a plane wave onto the object.
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The illuminating plane wave is diffracted by the object, producing an angular
spectrum of plane waves, i.e., a number of mutually coherent plane waves, that
propagate in different directions. Within the numerical aperture (NA) of the object
side of the lens (usually NA/4) they are captured by the entrance pupil and enter the
imaging system (the lens). The lens transfers the diffraction orders with a linear
scaling factor of the pupil coordinate (= demagnification) to the exit pupil. There,
each diffraction order generates a plane wave that radiates into the image plane,
where it produces the structure image by interference with the plane waves stem-
ming from the other diffraction orders.

Any aberrations are assigned to the transfer from the entrance pupil to the exit
pupil via the pupil plane. This procedure is repeated for the completely filled section
(sigma-setting) of the illumination pupil.

Figure 28-16: Geometry of the imaging model.

28.6.1

Scalar Image

In accordance with the description above, the intensity of the coherent scalar image
is computed as a plane wave superposition integral of the diffraction spectrum
T(p,a) of the object, times the scalar pupil function L(p) describing the wavefront
aberrations and pupil limits [28-9]:

Icohð~rr;~aaÞ ¼ F Tð~pp;~aaÞLð~ppÞf gj j2: ð28-25Þ

~pp denotes the pupil coordinates and~aa the illumination pupil coordinates. The plane
wave superposition integral F{} is just a 2D Fourier transform integral, where the
kernel contains the z-propagation operator

Fðf ð~ppÞÞ ¼ R¥

�¥

R
f ðpx; pyÞ � ei~kk �~rrdpxdpy: ð28-26Þ

The pupil coordinates (px,py) are related to the propagation vector ~kk of the corre-
sponding plane wave in the object or image space according to the formula
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~kk ¼ k0

�px
�pyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2 � p2x � p2y

q

0

B
@

1

C
A; ð28-27Þ

where n is the refractive index of the medium in the image or object space and
k0 = 2p/k. Equation (28-27) describes the rotation of the propagation vector from a
ray parallel to the optical axis to a ray that traverses the ideal image point as if
refracted by a perfect collimator. The negative sign of the x- and y-component stems
from the fact that the coordinate system in the pupil is chosen to describe the wave-
front. But the k-vectors describe the corresponding plane wave spectrum. Both are
just the negative of each other. Because the optical system is assumed to fulfil the
sine condition, the relationship between the pupil coordinates of the entrance pupil
(px

R,py
R) and exit pupil (px,py) is given with the magnification M according to

px ¼
pRx
M

; py ¼
pRy
M

: ð28-28Þ

Note that M is a signed quantity. For microscope objectives, for instance, the magni-
fication M might be 100 with an image inversion, i.e., M = –100. Without image
inversion, M is positive. The pupil coordinates of the exit pupil are the coordinates
in which the systems pupil is described, i.e., they will be termed “pupil coordinates”.

Eventually, the complete image for a given setting is obtained from the superposi-
tion of the intensities of the coherent images

Ið~rrÞ ¼ R R
r

Qð~aaÞIcohð~rr;~aaÞd2~aa ð28-29Þ

where Q denotes the sigma-setting of the illumination.

28.6.2

Vector Image for Completely Polarized Illumination

For the computation of the vector image we have to deal with the vector diffraction
pattern of the object and its propagation. In vector diffraction, a diffraction order is
not characterized by the scalar quantities of amplitude and phase, but by its Jones
vector. The Jones vector denotes the polarization state of light by a complex two-com-
ponent vector (two components are sufficient because far-fields are transverse). It
contains the state of polarization, the amplitude, and the phase of the wave. To
derive the coherent vector image from the scalar one we have to make the following
replacements:

The scalar angular spectrum T(~pp,~aa) of the mask diffraction field has to be replaced
by an angular spectrum of the Jones vectors

~EEMaskð~pp;~aa;~EEiÞ ¼
Exð~pp;~aa;~EEiÞ
Eyð~pp;~aa;~EEiÞ

 !

: ð28-30Þ
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This depends on the pupil coordinate~pp, on the direction~aa, and the polarization ~EEi of
the illuminating plane wave.

The scalar pupil function L(~pp) has to be replaced by a Jones-matrix pupil function

Jð~ppÞ ¼ Jxxð~ppÞ Jxyð~ppÞ
Jyxð~ppÞ Jyyð~ppÞ

� �

ð28-31Þ

describing a Jones matrix for each pupil coordinate. This will be discussed in more
detail in the next section.

Because of the vector interference (cf. section 28.3) the actual 3D electric field in
the resist has to be computed from the Jones-vector distribution in the pupil

E ¢xðpx; pyÞ
E ¢yðpx; pyÞ
E ¢zðpx; pyÞ

0

@

1

A ¼ wð~ppÞ Exðpx; pyÞ
Eyðpx; pyÞ

� �

; ð28-32Þ

where the 3�2 transfer matrix w(~pp)

wð~ppÞ ¼

1� p2x

n nþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2 � p2x � p2y

q
� � � pxpy

n nþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2 � p2x � p2y

q
� �

� pxpy

n nþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2 � p2x � p2y

q
� � 1�

p2y

n nþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2 � p2x � p2y

q
� �

px
n

py
n

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

; ð28-33Þ

of the Jones vector in the pupil, to the 3D E-field in image space, follows from the
change in direction of the propagation vector. It is a succession of three rotational
matrices which provides this change of direction

~EE ¼
cosj � sinj 0
sinj cosj 0
0 0 1

0

@

1

A

cosJ 0 sinJ
0 1 0

� sinJ 0 cosJ

0

@

1

A

·
cosj sinj 0

� sinj cosj 0
0 0 1

0

@

1

A

Ex

Ey

0

0

@

1

A ð28-34Þ

with (cf. figure 27-2)

sinJ ¼ 1

n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2x þ p2y

q

; sinj ¼ py
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2x þ p2y

q ; cosj ¼ px
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2x þ p2y

q : ð28-35Þ

Putting all this together we obtain the coherent vector image intensity (which is not
a vector in the mathematical sense)
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Ix
Iy
Iz

0

@

1

A

coh

ð~rr;~aaÞ ¼ Fa ð~ppÞJð~ppÞ~EEMaskð~aa;~pp;~EEiÞ
n o








2

ð28-36Þ

where the plane wave superposition integral is applied to each component sepa-
rately and

Icoh ¼ Ix þ Iy þ Iz: ð28-37Þ

These definitions allow the separation of the impact of the imaging system,
described by the Jones pupil J, from the high-NA effects described by the 2D–3D
transformation matrix w. This makes sense because the Jones pupil describes a lens
property and can be optimized in lens design, whereas the high-NA effects stem
from the 3D geometry in the image plane.

28.6.3

Vector Image for Partially Polarized Illumination

So far we have described polarized imaging for completely polarized illumination
only. However, the degree of polarization g, defined as the intensity in a polarized
state Ipol divided by the overall intensity

g ¼ Ipol
Ipol þ Iunpol

ð28-38Þ

of the illumination, will usually be <1 so that the field will not be completely polar-
ized but will be mostly polarized with a small unpolarized component (g £ 1). At the
other end of the spectrum we have unpolarized illumination which consists of a
large unpolarized component and a small polarized one (g ‡ 0). The vector-imaging
model of the preceding section will now be extended to include partially polarized
illumination as well as unpolarized illumination.

The key idea for the extension is as follows: If light is unpolarized, every possible
polarizer (linear, circular, elliptical) transmits 50% of the incident intensity. This is
equivalent to the statement that every polarization state contains half of the overall
intensity. Unpolarized light cannot be represented by a single Jones vector because
Jones vectors describe completely polarized states, by definition. But it can be repre-
sented in the Jones vector calculus by the incoherent superposition of two orthogo-
nal polarization states ~EE ¼ ðEx;EyÞ and ~EE ¼ ð�E�

y ;E
�
xÞ of equal intensity. For partial

polarization the intensities of both states differ by (1 – g)/(1 + g):

Intensity of partially polarized light =
1þ g

2
~EE
�
�
�

�
�
�

2

þ 1� g

2
~EE
�
�
�
�
2
: ð28-39Þ

For the simulation of partially polarized illumination, instead of one coherent image
for a given point in the sigma-region, we have to compute two images. One for the
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28.7 Vector Point-spread Function

original illumination polarization state ~EEi and one for its orthogonal complement ~EEi.
Because they are not correlated, the image intensity for partially polarized illumina-
tion is the sum of both intensities weighted with prefactors according to eq. (28-39)
that depend on the degree g of polarization, i.e.

Ix
Iy
Iz

0

@

1

A

coh

ð~rr;~aaÞ ¼ ð28-40Þ

Fa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ gð~ppÞ
2

r

ð~ppÞJð~ppÞ~EEMaskð~aa;~pp;~EEiÞ
( )












2

þ Fa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� gð~ppÞ
2

r

ð~ppÞJð~ppÞ~EEMaskð~aa;~pp; ~EEiÞ
( )












2

:

28.7

Vector Point-spread Function

The vector point-spread function VPSF, is an extension of the scalar point-spread
function (PSF) to polarized illumination.

28.7.1

VPSF for Complete Polarization

The focus of a polarized pupil was computed in chapter 27. In the present section
we assume that the Jones vector field in the exit pupil stems from the transmission
of an incident homogeneous polarization ~EEi by a Jones matrix pupil J(px,py).

~EEðpx; pyÞ ¼ Jðpx; pyÞ~EEi : ð28-41Þ

The VPSF for a completely polarized illumination is the Fourier transform of the
individual vector components after they are transformed by w into 3D-space and a
possible pupil-apodization factor (cos–1/2J¢ cos1/2J ... for systems that satisfy the
sine condition) was then applied

~hhðx; yÞ ¼ F wðpx; pyÞJðpx; pyÞ~EEi

n o

: ð28-42Þ

where F{} denotes the component-wise Fourier transform.
We can define the “vector intensity” of the VPSF as the intensity of the individual

components of the VPSF

Iðx; yÞ ¼

~hhðx; yÞj2 ¼


F
�
wðpx; pyÞJðpx; pyÞ~EEigj2: ð28-43Þ

The scalar intensity is the norm of the VPSF
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Iðx; yÞ ¼ ~hhðx; yÞ
�
�
�

�
�
�

2

¼ F Tðpx; pyÞJðpx; pyÞ~EEi

n o�
�
�

�
�
�

2

: ð28-44Þ

Foci for various input polarizations have been shown in chapter 27. An example of
the x- , y- , and z-component and overall intensity of a linear polarized focus is
shown in figure 28-17.

Figure 28-17: Linearly polarized focus.

28.7.2

VPSF for Unpolarized Illumination

For unpolarized illumination the intensity of the point-spread functions for two or-
thogonal incident polarization states has to be formed. If the incident states are just
~EEx= [1,0] and ~EEy= [0,1] this reduces to a superposition of the intensities of the col-
umns of the Jones matrix pupil

Iunpolðx; yÞ ¼ F wðpx; pyÞJðpx; pyÞ~EEx

n o�
�
�

�
�
�

2

þ F wðpx; pyÞJðpx; pyÞ~EEy

n o�
�
�

�
�
�

2

: ð28-45Þ

In the paraxial case (small NA) w has a vanishing effect and the equation simplifies
further to

Iunpolðx; yÞ ¼ F Jðpx; pyÞ~EEx

n o�
�
�

�
�
�

2

þ F Jðpx; pyÞ~EEy

n o�
�
�

�
�
�

2

ð28-46Þ

¼ F Jxxðpx; pyÞ
� �




2þ F Jxyðpx; pyÞ

� �




2þ F Jyxðpx; pyÞ

� �




2þ F Jyyðpx; pyÞ

� �




2
:

612



28.9 Jones Matrix Pupil

28.8

Polarized Optical Transfer Function

28.8.1

Polarized Illumination

For completely polarized coherent illumination, the optical transfer function is just
the Jones matrix pupil.

PCTF ¼ wðpx; pyÞJðpx; pyÞ : ð28-47Þ

For completely polarized, incoherent illumination, we define the optical transfer
function as the inverse Fourier transform of the point-spread function intensity and
obtain

POTF ¼ Tðp; qÞJðp; qÞ~EEi

� �

� Tðp; qÞJðp; qÞ~EEi

� ��
; ð28-48Þ

where we denote with the autocorrelation of a vector the autocorrelation of its indi-
vidual components.

28.8.2

Unpolarized Illumination

For unpolarized illumination in the paraxial case, we obtain the optical transfer func-
tion as the autocorrelation of the single elements of the Jones matrix pupil

UOTF ¼ Jxx � J�xx þ Jxy � J�xy þ Jyx � J�yx þ Jyy � J�yy; ð28-49Þ

where the dependence on the pupil coordinates has been omitted for clarity. If the
autocorrelation of a matrix is defined as the sum of the autocorrelation of the matrix
elements, then a shorthand notation is

UOTF ¼ J� J�: ð28-50Þ

28.9

Jones Matrix Pupil

The Jones matrix pupil, considered as an extension of the scalar pupil to optical sys-
tems which change the state of polarization, was introduced, to our knowledge, by
W. Urbanczyk [28-10], [28-11]. The concept of polarization aberrations is due to Chip-
man et al. [28-12], [28-13]. He applied a direct decomposition of the Jones pupil into
elementary Jones pupils by means of the Pauli spin matrices.
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28.9.1

Definition for Completely Polarized Illumination

A polarization optical system changes the polarization state of the transferred light.
To this end the scalar pupil is extended to a Jones-matrix pupil, i.e., to each point of
the pupil a Jones matrix is attributed which yields the change in the polarization
state between the entrance and exit pupil (figure 28-18)

Eout
x ðpx; pyÞ

Eout
y ðpx; pyÞ

� �

¼ Jxxðpx; pyÞ Jxyðpx; pyÞ
Jyxðpx; pyÞ Jyyðpx; pyÞ

� �
Ein
x ðpx; pyÞ

Ein
y ðpx; pyÞ

� �

ð28-51Þ

Figure 28-18: Geometry and coordinates for the Jones matrix pupil.

and in a condensed form

~EEoutðpx; pyÞ ¼ Jðpx; pyÞ~EEinðpx; pyÞ: ð28-52Þ

For a scalar optical system the Jones matrix pupil is equal to a complex scalar factor
multiplied by the identity matrix

Jðpx; pyÞ ¼ A0ðpx; pyÞeiw0ðpx ;pyÞ 1 0
0 1

� �

: ð28-53Þ

As an example we consider an artificial Jones pupil constructed from a quadratically
increasing radial retardance of max. 20 nm, a corresponding diattenuation of max.
20%, and 50 nm defocus at an NA of 0.9. A retardance with radial symmetry is quite
typical for high-NA optical systems and is therefore the subject of research [28-14],
[28-15]. To make our example more interesting we have constructed the radial retar-
dance from a superposition of the intrinsic birefringence of two 111 CaF2 plates that
are rotated by 60� with respect to each other. The resulting Jones pupil is depicted in
figure 28-19. Compared to real optical systems it shows strongly exaggerated polar-
ization effects.
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28.9 Jones Matrix Pupil

Figure 28-19: Jones pupil amplitude (a) and phase (b) in nm.

The main amplitude is situated on the diagonal elements (figure 28-19a) indicat-
ing that the cross-talk between the polarizations, i.e., the spill-over from x-polariza-
tion to y-polarization and vice versa is still quite small (the amplitude of 0.1 corre-
sponds to an intensity of 1%). Due to the radial symmetry of the diattenuation and
birefringence the cross-talk becomes a maximum under 45� and 135�. The phase
distribution (figure 28-19b) of the diagonal elements is a combination of the defocus
and birefringence. It is continuous across the pupil. The phase distribution of the
non-diagonal elements, however, is discontinuous. It shows a phase jump of p cor-
responding to 96.5 nm. Consequently, the amplitude maxima of Jxy and Jyx are p-
phase shifted with respect to their neighbors. This does not indicate a discontinuity
of the complex Jones matrix element, because the real and imaginary part of the
Jones pupil element are still continuous. The position of the phase discontinuity is
the x and y-axis which correspond to the roots of the amplitude. There the complex
function changes its sign, i.e., the phase experiences a p-phase shift.

28.9.2

Separation of a Scalar Factor

If the scalar aberrations prevail over the polarization aberrations, it is useful to sepa-
rate a scalar factor from the Jones-matrix pupil, i.e., to write

Jðp; qÞ ¼ Aðp; qÞeiwðp;qÞĴJðp; qÞ ð28-54Þ

and in terms of the Jones vectors

~EEoutðp; qÞ ¼ Aðp; qÞeiwðp;qÞĴJðp; qÞ~EEinðp; qÞ : ð28-55Þ

However, the solution is not unique. A straightforward solution would be to factor
out a matrix element and to refer the remaining elements to it
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J ¼ Jxx
1 JxyJ

�1
xx

JyxJ
�1
xx JyyJ

�1
xx

� �

¼ Jxx ĴJ ð28-56Þ

where the dependence on p,q has been neglected for clarity. However, because this
method particularly emphasizes one Jones-matrix element, we do not recommend
it.

Alternatively the prefactor can be referred to the mean value of all four matrix ele-
ments

J ¼ K
JxxK

�1 JxyK
�1

JyxK
�1 JyyK

�1

� �

ð28-57Þ

with

K ¼ 1

4
Jxx þ Jxy þ Jyx þ Jyy
	 


; ð28-58Þ

or it can be referred to the mean value of the diagonal elements:

J ¼ KD

JxxK
�1
D JxyK

�1
D

JyxK
�1
D JyyK

�1
D

� �

ð28-59Þ

with

KD ¼ 1

2
Jxx þ Jyy
	 


: ð28-60Þ

28.9.3

Decomposition into Retardance and Diattenuation

Applying the polar decomposition of a Jones matrix from section 26.3 to the Jones
matrix pupil, yields the pupil decomposition

J ¼ UDUþð Þ UVþð Þ ¼ JpJR :

JP =UDU+ denotes a partial polarizer because its eigenvalues are given by the ele-
ments of the diagonal matrix D which are real and positive (they are the singular
values).

JR =UV+ denotes a retarder because it is unitary: UV+(UV+)+=UV+VU+ = 1. A uni-
tary matrix can be diagonalized by solution of the eigenequation: JR =W

–1RW with a
unimodular diagonal matrix R and a transformation matrix W. Because of its unim-
odularity (det= 1) the elements of R are pure retardances.

The Jones pupil can be characterized by the eigenpolarizations and the eigenva-
lues of the partial polarizer and the retarder, as is summarized below (D11, D22 and
R11, R22 are the diagonal elements of D and R, respectively).
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Quantity Formula Orientation Cause Effect

Scalar trans-

mission
T ¼ 1

2
D2

11 þD2
22

	 
 Scalar Volume absorption

and coating-reflection

and absorption

Apodization,

Telecentricity

error

Diattenuation DTD ¼ D2
11 �D2

22

D2
11 þD2

22

Axis of higher

transmission

Differential transmis-

sion of the coatings

Partial polariza-

tion, Change of

polarization state

Scalar phase j ¼ 1

2
arg ðR11Þð

þ arg ðR22ÞÞ
Scalar Design phase Aberrations

Retardance Dj ¼ arg ðR22Þ
� arg ðR11Þ

Fast axis Stress-induced

birefringence,

Intrinsic birefringence,

Coating retardance

Change of polar-

ization state

Diattenuation and retardance have a pair of eigenpolarizations and for a complete
characterization these must also be provided. The corresponding eigenpolarizations
are orthogonal because JR is unitary and JP is Hermitian. The orientation u of the
eigenpolarizations (Ex,Ey) is according to section 26.2.3

tan ð2uÞ ¼ 2 Exj j Ey






Exj j2� Ey





2 cos d ;

and the ellipticity

e ¼ tan v ¼ – b
a with sin ð2vÞ ¼ 2 Exj j Ey






Exj j2þ Ey





2 sin d

and d= arg(Ey) – arg(Ex).

28.9.4

Example

The representation of the artificial Jones pupil of figure 28-19 is shown in figure 28-20.

. The scalar transmission (top left) has the shape of an apodization with circular
symmetry. Because of the circular symmetry no telecentricity error is to be
expected for this example.

. The diattenuation (top center) also shows circular symmetry. The higher
transmission is in the radial direction. This is in accordance with conven-
tional coatings showing a higher p than s transmission. For unpolarized illu-
mination, the pupil yields 20% degree of polarization at the rim with the p-
image exceeding the s-image, and 0% in the centre.
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. The ellipticity of the eigenpolarizations (top right) is zero, i.e., the eigenpolar-
izations are linear.

. The scalar phase (bottom left) has a maximum value of 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 0:92
p� �

50 nm= 28 nm at the rim.
. The retardance (bottom center) with a maximum value of 20 nm at the rim

has its fast axis in the tangential direction, meaning that the higher refractive
index (which yields the slow axis) is oriented radially. An unpolarized inci-
dent wave would experience focus fading, indicating that both eigenpolariza-
tions are focused to different positions. With a retardance of 20 nm the dis-
tance between the s and p-polarized “focus” would be 13 nm. In this context
the notion of a focus should be used with caution because s and p-polarized
light does not produce a perfect focus in the paraxial region (no interference
from pupil coordinates which are 90� apart).

. The three-fold symmetry of the ellipticity (bottom right) of the retarder eigen-
polarizations stems from the three-fold symmetry of the [111] retardance.

Figure 28-20: SVD evaluation of Jones pupil. Explanation in text.

28.10

Jones Matrix Pupils in the Polarization Matrix Calculus

Generally, electromagnetic waves are neither completely polarized nor completely
unpolarized: they are partially polarized. This means that the components of the
wave’s Jones vector are not completely correlated. The coherency matrix calculus is
a convenient way to describe this partial correlation.
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If an input field with a polarization matrix Pin traverses two points of the pupil
described by two Jones matrices J1 and J2, the output polarization matrix is obtained
by [28-16]

Pout ¼ J1 þ J2ð ÞPin J1 þ J2ð Þþ ð28-61Þ

with the intensity

I ¼ trace J1 þ J2ð ÞPin J1 þ J2ð Þþ
� �

: ð28-62Þ

Figure 28-21: Two-beam interference in the polarization matrix calculus.

Resolving this expression yields

I ¼ trace J1PinJ
þ
1

� �
þ trace J2PinJ

þ
2

� �
þ 2Re trace J1PinJ

þ
2

� �� �

¼ I0 þ Re Cf g
ð28-63Þ

with the mean intensity

I0 ¼ trace J1PinJ
þ
1

� �
þ trace J2PinJ

þ
2

� �
ð28-64Þ

and the interference term

C ¼ 2 trace J1PinJ
þ
2

� �
: ð28-65Þ

In order to include vector effects, the polarization matrix has to be extended to three
dimensions. To this end we write the polarization matrix formally as the dyadic
product of the 3D electric field vector

P ¼ ~EE �~EEþD E

¼

ExE
�
x

� �
ExE

�
y

D E

ExE
�
z

� �

EyE
�
x

� �
EyE

�
y

D E

EyE
�
z

� �

EzE
�
x

� �
EzE

�
y

D E

EzE
�
z

� �

0

B
B
B
@

1

C
C
C
A

: ð28-66Þ

Such a 3D polarization matrix is obtained for a partial polarized field traversing two
Jones matrices J1 and J2, and rotated into the propagation direction corresponding
to the pupil coordinates by application of the transformation matrix w

Pout ¼ w1J1 þ w2J2ð ÞPin w1J1 þ w2J2ð Þþ: ð28-67Þ
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The intensity becomes

I ¼ trace Poutf g ¼ trace w1J1 þ w2J2ð ÞPin w1J1 þ w2J2ð Þþ
� �

ð28-68Þ

and resolved

I ¼ trace w1J1Pin w1J2ð Þþ
� �

þ trace w2J2Pin w2J2ð Þþ
� �

þ2Re trace w1J1Pin w2J2ð Þþ
� �� �

¼ I0 þ Re Cf g
ð28-69Þ

with the mean intensity

I0 ¼ trace w1 J1PinJ
þ
1

	 

wþ

1

� �
þ trace w2 J2PinJ

þ
2

	 

wþ

2

� �
ð28-70Þ

and the interference term

C ¼ 2 trace w1 J1PinJ
þ
2

	 

wþ

2

� �
: ð28-71Þ

28.11

Jones-matrix-based System Optimization

A “perfect” pupil function in scalar optics is one without phase effects. Accordingly,
a “perfect” Jones matrix pupil is one without polarization and phase effects, i.e., one
that is proportional to the identity matrix. Therefore a valid optimization goal for
polarization optics is to bring the Jones pupil for all field points as near as possible
to the identity matrix. Mathematically we have to minimize the norm of their differ-
ence, i.e.,

J� Ik kfimin: ð28-72Þ

From this a simple strategy for the polarization optimization of compound optical
systems can be derived: As a starting point the system’s Jones-matrix pupil is writ-
ten as the product of the component Jones pupils

Jsystemðp; qÞ ¼
YN

i¼1

Jiðp; qÞ : ð28-73Þ

The components’ Jones pupils must be combined to subgroups that are individually
orthogonal, so that their combined effect cancels and the system’s Jones pupil
becomes the identity matrix for each pupil point. As an example, consider a straight-
forward compensation strategy for the spatial dispersion induced birefringence of
CaF2 (cf. chapter 26):

a) Upper line in figure 28-22: The Jones pupil of a single plane plate of 111
CaF2 has a three-fold symmetry. If we superpose two of these lens elements
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that are rotated with respect to each other about an angle of 60�, the com-
bined Jones matrix has rotational symmetry with tangential birefringence.

b) Lower line in figure 28-22: The Jones pupil of a single plane plate of 100
CaF2 has a four-fold symmery. If we superpose two of these elements that are
rotated with respect to each other about an angle of 45�, the combined Jones
matrix has rotational symmetry with radial birefringence.

c) Last column in figure 28-22 If the thickness of the lens elements in the 111
and 100 cut is of ratio 3/2 then their combined effect cancels almost com-
pletely. The remaining retardance stems from the fact that the eigenpolariza-
tions of the combined elements are not linear but are slightly elliptical.

Figure 28-22: Optimization of spatial dispersion induced birefringence by clocking.

28.12

Aberrations of the Transmitted Wavefront

The characterization of transmitted wavefronts is an extremely successful concept
for scalar optical systems. The aberrations of the wavefront define the imaging prop-
erties in detail. Furthermore, the wavefront data can be used to adjust actuators in
order to optimize imaging properties after the assembly of the lens. So a very
straightforward way of characterizing a lens for polarized illumination is to define a
polarized wavefront and to characterize the wavefront errors and the polarization
errors separately. However, because the phase difference of two polarized waves
depends on the difference in the polarization states, a unique definition of a scalar
phase, and hence a wavefront, is impossible. If we introduce a wavefront at all, we
always have to balance the wavefront and polarization errors.

If the transmitted polarization state of the pupil can be considered as constant
with small deviations it makes sense to define a scalar phase with respect to this
polarization state. With the reference polarization ~EEref state as either the design po-
larization or the mean polarization
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~EEref ¼
1

pNA2

R R

pupil

~EEðpx; pyÞdpxdpy; ð28-74Þ

the scalar phase for partially polarized illumination of degree g becomes

jscðpx; pyÞ ¼ arg

ffiffiffiffiffiffiffiffiffiffiffi

1þ g

2

r

~EE �~EE�
ref þ

ffiffiffiffiffiffiffiffiffiffiffi

1� g

2

r

~EE � ~EE�
ref

( )

: ð28-75Þ

28.13

Jones–Zernike Wavefront Aberrations

In this section a modal method is derived for characterization of the imaging proper-
ties for a given Jones vector distribution in the exit pupil [28-17].

28.13.1

Principle of the Modal Characterization of a Jones Pupil

While scalar optical systems are characterized by an expansion of the scalar phase
into a system of orthogonal functions (most frequently the Zernike polynomials)
this approach is not sufficient for polarized systems. The idea of the following is to
expand not the scalar wavefront alone, but the complex vector function into an
appropriate set of elementary functions~FFi.

~EEðpx; pyÞ ¼
X¥

i¼1

Zi
~FFiðpx; pyÞ: ð28-76Þ

with expansion coefficients Zi. Because the complex vector field is expanded into a
linear sum of elementary functions this approach is a modal one with the elemen-
tary functions being the modes.

The modal approach depends on the illumination polarization. It allows, however,
a direct assessment of the transmitted field. Because of this it can be applied at the
same time to the paraxial transmitted field as to the high-NA three-dimensional
field in the image plane. For a characterization of the complete Jones pupil, the
modal decomposition has to be applied for two orthogonal input polarizations.

28.13.2

Jones–Zernike Expansion

Because the expansion of the scalar wavefront in Zernike polynomials was very suc-
cessful, the Zernike expansion presents itself as a simple and straightforward
approach for a modal decomposition of the complex vector. The Jones–Zernike
expansion is an expansion of the real and the imaginary part of the complex vector
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28.13 Jones–Zernike Wavefront Aberrations

field (in the pupil the 2D Jones vector) into Zernike polynomials Uj separately. In
the paraxial case we get

~EEðpx; pyÞ ¼
Er
xðpx; pyÞ þ iEi

xðpx; pyÞ
Er
yðpx; pyÞ þ iEi

yðpx; pyÞ

� �

¼
X¥

j¼1

Zjx

Ujðpx; pyÞ
0

� �

þ Zjy

0
Ujðpx; pyÞ

� �� �

¼
X¥

j¼1

jUjðpx; pyÞ : ð28-77Þ

The high-NA case is the same with ~EE having three vector components (after applica-
tion of w). The scalar coefficients of the scalar Zernike expansion become vector
coefficients for the vector case.

This decomposition takes place in the real and imaginary part and not in the
amplitude and phase because the representation of the phase as a superposition of
Zernike polynomials requires a constant amplitude which cannot be assumed for
vector fields even for constant overall intensity: Even if |Ex|

2+|Ey|
2 are constant, this

is not necessarily the case for |Ex| and |Ey| alone.
The x- and y-component of the first four Jones–Zernike polynomials are sketched

in figure 28-23 (numbering according to the fringe convention)

Figure 28-23: x- and y-component of Jones–Zernike polynomials 1–4.

As in the scalar case we can group polynomials with identical radial and orthogo-
nal angular dependence (i.e., cos(mj), sin(mj)).
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28.13.3

Properties of the Jones–Zernike Polynomials

The Jones–Zernike coefficients have two useful basic properties:
1. They reduce to conventional-phase Zernike coefficients for weakly modulated

scalar wavefronts. Because of

Aðpx; pyÞ ¼ A0e
ijðpx ;pyÞ »A0 1þ ijðpx; pyÞ

	 

ð28-78Þ

the complex coefficients become purely imaginary and equal to the phase
expansion.

2. Their norm

~ZZi

�
�
�

�
�
� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X3

j¼1

Zj
i





2

v
u
u
t ð28-79Þ

is independent of the basis of the polarization state. The reason is that a
transformation of the polarization basis is described by multiplication with a
unitary matrix, and this does not change the norm.

3. Example: Jones–Zernike expansion of a radial birefringence with linear polar-
ized illumination.

Figure 28-24: Jones–Zernike expansion of the pupil of figure 28-19.

Left: paraxial field (no z-component), right: high-NA field (after

application of transformation matrix to paraxial field). From top to bottom:

design-polarization x, y, and z-component, orthogonal polarization

x, y and z–component. Blue (left) real part. Red (right) imaginary part.
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Figure 28-24 shows the Jones–Zernike expansion of the pupil of figure 28-19.
On the left-hand side the expansion of the paraxial field is shown. The
Z4-apodization is visible and the Z5/Z6-component caused by the radial
retardance. On the right-hand side the same expansion in the high-NA
region (nresist = 1.8) is shown. The z-component is excited for the p-field only
and yields a Z2 component for x-polarized incident field and a Z3 component
for y-polarized incidence.
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A.1 Linear Systems

A.1

Linear Systems

An image formation is referred to as linear if it possesses the following properties:
additivity, distributivity and associativity, i.e., the imaging of the object space O and
the image space B onto each other is homomorphic. For such an image formation
F : OfiB, the following relationship holds:

u ¼ F k1 � vþ k2 � wð Þ ¼ k1 � F vð Þ þ k2 � F wð Þ : ðA-1Þ

Hence linear image formation satisfies the principle of superposition.
For linear image formation, both object and image space can be represented by

orthogonal basis. The image formation can be then traced back to a basis transfor-
mation. This will be illustrated below considering as an example the imaging of the
object function G(x) into the image function G¢(x¢). Due to the linearity the object
function, G(x) can be represented as composed of object points d(x-x0) of amplitude
G(x0) (figure A-1):

G xð Þ ¼ RG x0ð Þ d x � x0ð Þdx0 : ðA-2Þ

The image of an object point is referred to as the impulse response H(x¢,x¢0):

F d x � x0ð Þ½ � ¼ H x ¢; x ¢0ð Þ : ðA-3Þ

Taking into account the principle of superposition one obtains for the image G¢(x¢)

G¢ x ¢ð Þ ¼ F G xð Þ½ � ¼ F
R
G x0ð Þd x � x0ð Þdx0

h i

¼ RG x ¢0ð ÞH x ¢; x ¢0ð Þdx ¢0 : ðA-4Þ

Figure A-1: Linear image formation: object (left) and image (right)

after convolving all object points with a shift-invariant impulse response

function H(x).

The space invariance requires that the impulse response function is the same
over space, hence:

H x ¢; x ¢0ð Þ ¼ H x ¢� x ¢0ð Þ : ðA-5Þ
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Such linear systems, called linear shift invariant (LSI) systems, possess therefore
the following convolution property (cf. figure A-1):

G¢ x ¢ð Þ ¼ RG x ¢0ð Þ �H x ¢� x ¢0ð Þdx ¢ ¼ H x ¢ð Þ � G x ¢ð Þ : ðA-6Þ

If an orthonormalized basis is chosen for the representation,

G xð Þ ¼
X

n

gn � en xð Þ

G¢ x ¢ð Þ ¼
X

m

g ¢m � em x ¢ð Þ

H x ¢ð Þ ¼
X

k

hk � ek x ¢ð Þ

ðA-7Þ

the existence of a transfer function can be inferred from the convolution property:

G¢ x ¢ð Þ ¼
X

n

X

m

gn � hm

R
en x ¢0ð Þ � em x ¢� x ¢0ð Þ dx ¢0

¼
X

n

X

m

gn � hmdnmen x ¢ð Þ ¼
X

n

gn � hn� en x ¢ð Þ
ðA-8Þ

thus

g ¢n ¼ hn � gn : ðA-9Þ

A very important property of the linear image formation follows from the associativ-
ity of eq. (A-9) and the convolution: the sequence of elementary image formation
steps in cascaded or composite image formations is permutable:

G† ¼ F2 G¢½ � ¼ F2 F1 G½ �½ � ¼ F1 F2 G½ �½ � : ðA-10Þ

Furthermore, the transfer function of cascaded image formation is obtained by mul-
tiplication of the transfer functions of the separate image formation steps:

G† ¼ H �G ¼ H2 �H1ð Þ � G ¼ H2 � H1 �Gð Þ ; ðA-11Þ

g † ¼ h � g ¼ h2 � h1 � g : ðA-12Þ

This property is illustrated in figure A-2 .

Figure A-2: Cascaded linear system consisting of two subsystems.
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For this reason, the transfer function of a linear image formation can generally be
decomposed into several separate transfer functions, which is advantageous if, e.g.,
various factors affecting the quality of the image formation have to be considered. A
common example is the effect of the optical imaging system and the detector on the
image formation when extracting a photographic and an electronic image, respec-
tively. As well as the blurring of an image point through the point response function
Hoptics, the aerial image is also blurred by the finite granularity of the film used for
recording or the fixed pixel size of the camera:

G† ¼ H �G ¼ Hdetector �Hoptics

	 

�G ¼ Hdetector � Hoptics � G

	 

: ðA-13Þ

Another example is the consideration of various error sources related to the optical
system itself such as blurring of the point image as a result of design or alignment
errors, or the spurious light resulting from errors in the surface roughness:

G† ¼ H �G ¼ Hscatter �Hdesign

	 

�G : ðA-14Þ

A.2

Fourier Series and Fourier Integral

In optics, and in physics generally, one often deals with wave phenomena. Hence
the harmonic functions are widely used as orthogonal basis functions. Therefore it
is important to present here the basic principles and the essential properties of the
Fourier series expansion and the Fourier integral representation [A-1], [A-2].
Periodic functions can be represented by an infinite series expansion in harmonic
functions (sine, cosine, or in complex form eix = cos(x) + i�sin(x)). This is known as
the Fourier series expansion:

U xð Þ ¼
X¥

m¼�¥

Cmexp
i2pmx

d ; ðA-15Þ

Ck ¼
1

d

Rd=2

�d=2

U xð Þ � exp�i2pkx
d dx : ðA-16Þ

For the general case of non-periodic functions, the Fourier integral transform has to
be used:

U xð Þ ¼ Ru mð Þ e2pixmdm ; ðA-17Þ

u mð Þ ¼ RU xð Þ e�2pixmdx : ðA-18Þ
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In computers or experimental measurements one normally deals with discrete data.
This leads to the implementation of the discrete Fourier transform (DFT) which
reads in its one-dimensional form as:

U xkð Þ ¼
XN=2�1

m¼�N=2

u mlð Þ � ei2pxk �mm ; ðA-19Þ

u mmð Þ ¼ 1

N

XN=2�1

k¼�N=2

U xkð Þ � e�i2p xk �mm : ðA-20Þ

A.2.1

Compilation of Basic Properties of the Fourier Transform

Linearity:

The Fourier transform F[U] of a function U is linear.

F a �U xð Þ þ b � V xð Þ½ � ¼ a � F U xð Þ½ � þ b � F V xð Þ½ � : ðA-21Þ

Scaling (or Similarity):

If a function is �stretched’ by a factor a, its Fourier transform is �squeezed’ by the
same factor in the frequency domain:

U axð Þ , 1

aj j u
m

a

� �

; ðA-22Þ

1

aj jU
x

a

� �

, u amð Þ : ðA-23Þ

Symmetric � Real Spectrum:

Symmetric functions can be expanded in cosine functions only. Therefore their
spectrum is real.

UðxÞ ¼ Uð�xÞ , Im u mð Þ½ � ¼ 0 : ðA-24Þ

Anti-symmetric � Imaginary Spectrum:

On the contrary, anti-symmetric functions exhibit an imaginary spectrum.

UðxÞ ¼ �Uð�xÞ , Re u mð Þ½ � ¼ 0 : ðA-25Þ

Conjugate:

The Fourier transform of the complex conjugate function, is reflected around the
origin in the frequency domain.

U� xð Þ , u� �mð Þ : ðA-26Þ
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Area:

The area under a function or its integral, correspond to the constant component or
DC-term (value at the origin) of its spectrum.

u 0ð Þ ¼ RU xð Þdx : ðA-27Þ

Shifting:

If a function is shifted, its spectrum is modulated by a phase factor. Modulation of a
function by a harmonic function with frequency m, corresponding to the carrier fre-
quency, shifts the spectrum by an amount m.

U x � x0ð Þ , u mð Þ � e�i2pmx0 ; ðA-28Þ

U xð Þ � ei2pm0x , u m� m0ð Þ : ðA-29Þ

Differentiation:

Differentiation of a function corresponds to multiplication of its Fourier transform
by a factor proportional to the frequency.

d

dx
U xð Þ , 2pimu mð Þ : ðA-30Þ

Integration:

Integration of a function corresponds similarly to dividing its Fourier transform by a
factor proportional to the frequency.

R
U xð Þdx , u mð Þ

2pim
: ðA-31Þ

Moment theorem

If U(x) and u(m) denote a function and its Fourier transform

uðvÞ ¼ R
UðxÞ � e2p�ivxdx ðA-32Þ

the nth derivative with respect to m is given by

dnuðvÞ
dvn

¼ R
2p � ixð ÞnUðxÞ � e2p�ivxdx : ðA-33Þ

For m = 0, one obtains the moment theorem which establishes a relationship be-
tween the nth moment of a function and the nth derivative of its Fourier transform
at the origin m = 0

Mn ¼ R
xn �UðxÞ dx ¼ 1

2p � ið Þn � u
ðnÞð0Þ : ðA-34Þ
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A.2.2

Special Functions and their Fourier Transforms

The main purpose of this section is to present in analytical form the Fourier trans-
forms of several special functions commonly met in applications [A-1].

Delta function

Figure A-3: Fourier transform of the delta function.

d x � x0ð Þ ¼ R e2pim x�x0ð Þdm , e�i2pmx0 : ðA-35Þ

The d-function obeys the so-called sifting property:

R
U xð Þd x � x0ð Þdx ¼ U x0ð Þ : ðA-36Þ

Comb function (delta comb)

Figure A-4: Fourier transform of the comb function.

comb
x

b

� �

¼ bj j �
X

n

d x � nbð Þ ¼
X

n

ei2pn
x
b ; ðA-37Þ

comb
x

b

� �

, bj j � comb bmð Þ : ðA-38Þ
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Rect function and sinc function

Figure A-5: Fourier transform of the rect function.

rect
x

b

� �

¼ 1 xj j £ b=2
0 else

�

ðA-39Þ

sinc xð Þ ¼ sin pxð Þ
px

ðA-40Þ

rect
x

b

� �

, bj j � sinc bmð Þ : ðA-41Þ

Gaussian function

Figure A-6: Fourier transform of the Gaussian function.

gauss
x

b

� �

¼ e
�px2

b2 ðA-42Þ

gauss
x

b

� �

, bj j � gauss bmð Þ : ðA-43Þ

In the particular case of a parabolic phase function, the Fourier transform is again a
parabolic phase function:

ei
p
ax

2 , iae�ipam2 : ðA-44Þ
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Sign function and 1/m

Figure A-7: Fourier transform of the sign function.

sign xð Þ , 1

pim
: ðA-45Þ

The spectrum of the sign function sign(x) extends to infinity. The Fourier transform
of the truncated spectrum can be described by the sine integral function Si(x)

SiðxÞ ¼ R
x

0

sin t

t
dt : ðA-46Þ

Circ Bessel function

The Fourier transform of a circular aperture in polar coordinates is given by the
first-order Bessel function of the first kind, divided by the frequency r:

Figure A-8: Fourier transform of the circ function.

circ
r

b

� �

, bj j J1 2pbrð Þ
r

: ðA-47Þ
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A.3

Convolution and Correlation

A.3.1

Convolution

The product of the spectra of two functions in the frequency domain corresponds to
convolution of the functions in the spatial domain [A-3]

U xð Þ � V xð Þ ¼ RU x � x ¢ð Þ V x ¢ð Þdx ¢ , u mð Þ � v mð Þ : ðA-48Þ

Figure A-9: Convolution of two functions.

As an example for convolution one can take the shifting property:

U x � x0ð Þ ¼ U xð Þ � d x � x0ð Þ ¼ Ru mð Þ � e�2pimx0e2pimxdm , u mð Þ � e�2pimx0 ðA-49Þ

and

U xð Þ � e2pim0x ¼ R u mð Þ � d m� m0ð Þ½ �e2pimx ¢dm , u m� m0ð Þ : ðA-50Þ

Convolution obeys the commutative, associative and distributive laws:

U � V ¼ V �U ;

U � V �Wð Þ ¼ U � Vð Þ �W ;

U � V þWð Þ ¼ U � Vð Þ þ U �Wð Þ :
ðA-51Þ

As already demonstrated, it plays a fundamental role in linear image formation.

A.3.2

Correlation

The correlation of two functions is given by a similar integration

U xð Þ � V xð Þ ¼ RU x ¢ð Þ V x ¢þ xð Þdx ¢ : ðA-52Þ

It is not commutative:

W xð Þ ¼ U xð Þ � V xð Þ ;
W �xð Þ ¼ V xð Þ �U xð Þ :

ðA-53Þ
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The correlation can be represented as a convolution:

U xð Þ � V xð Þ ¼ U xð Þ � V �xð Þ : ðA-54Þ

The correlation function is commonly used for comparative analysis of two signals
or images. An important case in particular is the autocorrelation:

U xð Þ �U� xð Þ ¼ RU x ¢ð Þ U� x ¢þ xð Þdx ¢ : ðA-55Þ

The autocorrelation function is usually used in its normalized form, i.e., its maxi-
mum at the origin x = 0 is normalized to 1:

U xð Þ �U� xð Þ ¼
R
U x ¢ð Þ U� x ¢þ xð Þdx ¢

R
U xð Þj j2dx

: ðA-56Þ

Figure A-10: Building of the autocorrelation of a function U(x).

The correlation length corresponds to the distance K at which the normalized
autocorrelation drops to the value 1/e. The Fourier transform of the autocorrelation
corresponds to the power spectrum

U xð Þ �U� xð Þ , u mð Þj j2 : ðA-57Þ

A.3.3

Power Spectral Density and RMS Value

The power spectral density (PSD) function of h(x,y) is defined by

PSD mx; my
	 


¼

RR

A

h x; yð Þe�i2p mxxþmyyð Þdxdy












2

A
¼ h mx; my

	 





2

A
ðA-58Þ

where A is the surface area. The PSD is frequently used, e.g., to describe surface
roughness errors. For statistical surfaces, the PSD has rotational symmetry (the ori-
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entation of the different sinusoidal Fourier components on the surface is statistical).
The RMS value r of a frequency band is thus given by

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Rmmax

mmin

2pm PSD mð Þ dm
s

ðA-59Þ

with

m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2x þ m2y

q

: ðA-60Þ

A.4

Discrete Signals

A.4.1

The Sampling Theorem

The discrete nature of the data derived from measurements and the computer pro-
cessing of such data require a detailed consideration of the discrete Fourier trans-
form. The discrete sampling of a continuous function U(x) replaces the integral
transform by a discrete summation. The appropriate choice of the sampling interval
and the truncation window (number of terms) is essential in order to avoid errors
between the computed and the desired transform. The discrete sampling of a func-
tion U(x) can be represented as [A-3]:

Ud xð Þ ¼ U xð Þ � comb
x

dx

� �

ðA-61Þ

where the sampling interval is introduced by the comb function

comb
x

dx

� �

¼
X

n

d x � n � dxð Þ : ðA-62Þ

If the sampling interval is dx, the maximum frequency that can be resolved (trunca-
tion in the frequency domain) is given by the reciprocal value of dx:

mmax ¼
1

dx
: ðA-63Þ

The spectrum of the sampled function given by eq. (A-62) will be convolved in the
frequency domain with a comb function:

ud mð Þ ¼ u mð Þ � dx � comb dx � mð Þ : ðA-64Þ
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Hence the sampling in space with an interval dx results in periodic repetition of the
spectrum in the frequency domain with a period mmax= 1/dx (cf. Brillouin zones in
solid state physics). The sampling interval should be small enough that the periodi-
cally repeating spectrum corresponding to the continuous function does not overlap
in the frequency domain (aliasing effect):

Figure A-11: Appropriate sampling interval.

Figure A-12: Occurrence of aliasing for a sampling interval which is not fine enough.

In general this is expressed in distortion of the spectrum in the frequency
domain, since due to the periodic repetition of the spectrum, high frequencies can
interfere with low frequencies. Hence, the discrete sampling is applicable only to
bandwidth-limited signals. In this case it is sufficient to select the sampling interval
to be small enough in order to avoid such a cross-talk effect:

dx <
1

D m
: ðA-65Þ

Dm in eq. (A-65) corresponds to the spectral bandwidth of the continuous function
(cf. figure A-11). When a function exhibits higher frequencies the above-mentioned
errors will occur (cf. figure A-12).

Let us take as an example a function U(x) which is sampled over a window Dx

with a finite number of points N. The use of the series expansion and hence the dis-
crete Fourier transform implies periodicity of the function. Hence the actual signal
function S(x) is obtained by truncation with a rect function and convolution with a
comb function:

640



A.4 Discrete Signals

S xð Þ ¼ U xð Þ � rect x

Dx

� �

� comb
x

dx

� �h i

� comb
x

Dx

� �

: ðA-66Þ

The period (window) Dx is chosen as N times the sampling interval, Dx =N�dx. For
the corresponding spectrum one obtains in the frequency domain:

s mð Þ ¼ u mð Þ � sinc Dx � mð Þ½ � � comb dx � mð Þf g � comb Dx � mð Þ : ðA-67Þ

The convolution with the first delta comb results in a periodic repetition of the spec-
trum. The multiplication with a rect function reduces the spectrum to the first Bril-
louin zone. This corresponds to a convolution of the sampled function in the spatial
domain with a sinc function (sinc x=dxð Þ ¼ sinc Dm � xð Þ). Therefore the spectrum of
a bandwidth-limited signal can be expressed as

s mð Þ ¼ u mð Þ � sinc Dx � mð Þ½ � � comb Dx � mð Þ ðA-68Þ

where

dx ¼ Dx

N
¼ 1

Dm
ðA-69Þ

and

dm ¼ Dm

N
¼ 1

Dx
ðA-70Þ

hold. This coupling between the spacings in the space and the frequency domain
given by eq. (A-69) and (A-70) respectively is another formulation of the sampling
theorem.

A.4.2

Leakage

Consider the sampling of a sine function at N points with a window Dx, a multiple
of the period d =Dx/4. Since dm = 1/Dx one would expect the frequencies of the sine
signal to occur at –1/d = –4/Dx =–4 dm, i.e., at m =–4.

It follows from (A-69) that:

s mð Þ ¼ d – 4dmð Þ � sinc Dx � mð Þ½ � � comb Dx � mð Þ ðA-71Þ

i.e., when the sampling window is matched the discrete Fourier transform of a sine
function yields only two frequency components in the spectrum (see figure A-13).
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Figure A-13: Sampling interval equal to an integer multiple of the signal period.

Consider now the case when the same sine signal is sampled with a window Dx
which is not an integer multiple of the period but equals, e.g., 3.8 periods. From the
imaginary part of the spectrum shown in figure A-14, it can be seen that the mis-
match between the sampling window and the period results in noticeable oscilla-
tions accompanying the peaks.

Figure A-14: Sampling interval not equal to an integer of the signal period.

s mð Þ ¼ d – 3:8dmð Þ � sinc Dx � mð Þ½ � � comb Dx � mð Þ : ðA-72Þ

The exact frequencies must be evaluated by fitting with a sinc function. This phe-
nomenon is known as leakage. Leakage has to be taken into account, e.g., in the
phase-shift interferometry where the wave phase is measured. In this case either a
large number of phase measurements or a precisely aligned phase step is required.

A.4.3

Indexing of the Numerical Discrete Fast Fourier Transform

According to the Cooley–Tuckey algorithm, the discrete sampling in the fast Fourier
transform (FFT) is asymmetric since it operates with an even number of points, one
of which corresponds to the center of the sampled range [A-4], [A-5]. Hence, if
the total number of points is N, the center is normally set at j=N/2+1, and the points
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j = 2 and j=N are then symmetric. An additional index j = 1 is allocated on the left
side. This indexing is illustrated in figure A-15.

Figure A-15: Asymmetric discrete sampling in the numerical fast Fourier transform

in the spatial domain.

In the frequency domain the off-set is found at frequency m= 0, i.e., index j = 1,
the point j = 2 corresponds again to j=N, the maximum (positive) frequency is at
j=N/2 and j=N/2+2 corresponds to the minimum (negative) frequency. This index-
ing in the spectral domain directly after the fast transform is illustrated in figure
A-16.

Figure A-16: Asymmetric discrete sampling in the numerical fast Fourier transform

in the spectral domain. To get the right order of the spectral components, a shifting

operation has to be done.

The spectrum can be presented on a continuous frequency scale by transposition
of the negative frequency points.

In the two-dimensional case the corresponding frequency components are lying
along the edges of the quadrant. Figure A-17 illustrates the sequence of the frequen-
cies.
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Figure A-17: Asymmetric discrete sampling in the numerical fast Fourier

transform presented here in the two-dimensional frequency domain.

A.5

z-Transform

A.5.1

Definition

The problematic fixed coupling of the spatial and spectral resolution in the numeri-
cal discrete Fourier transform, dictated by the sampling theorem (see Vol. 1, section
8.4.2 ), can be avoided by applying the z-transform [A-6].

The general discrete z-transform of the function f, for given discrete data f(xj) = fj
with j = 0, 1, 2, ..., N–1 and a likewise discrete sequence of numbers zk with k = 0, 1,
2, ...,M, reads

Fk ¼ FðzkÞ ¼
XN�1

n¼0

fn z
�n
k : ðA-73Þ

In accordance with its application in signal processing, this algorithm is named the
chirp z-transform (CZT).

Special cases of the general transform are:

1. In the particular case when z is a real exponential function, the z-transform
is equivalent to the well-known Laplace transform.

zk ¼ esT : ðA-74Þ

644



A.5 z-Transform

2. For a set of points (function z) equally spaced around the unit circle

zk ¼ e
2p i k
N ðA-75Þ

where N=M, one obtains the discrete Fourier transform.

For a more general form of the z-function

zk ¼ AW�k ðA-76Þ

and Wj j „ 1 a spiral contour in the complex z-plane has to be evaluated. In this case
the CZT can be efficiently computed by a convolution using an algorithm similar to
that of the fast Fourier transform. Consider

A ¼ A0 � e2p ih0 ðA-77Þ

and

W ¼ W0 � e2p iU0 ðA-78Þ

where 2pU0 is the angular spacing on the contour with respect to the origin. Inser-
tion of the z-series into the expression for the transform yields

Fk ¼
XN�1

n¼0

fn A
�n Wn k : ðA-79Þ

The classical DFT implies that the function is periodic. In the complex z-plane this
corresponds to sampling at equidistantly spaced points around the unit circle with a
frequency separation of 2p/N ( see figure A-18).

Figure A-18: Sampling points around the unit circle for the classical Fourier transform.
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In the case of the chirp z-transform, this sampling is confined to a narrow fre-
quency interval. In the general case a spiral contour occurs. If the frequency sam-
pling is applied without filtering, a frequency zoom appears, as the sampling dia-
gram shown in figure A-19.

Figure A-19: Sampling points around the unit circle in the case of the chirp

z-transform, the zooming factor a is explained in eq. (A-85)

A.5.2

Numerical Evaluation of the z-transform

With the help of the modified binomial formula [A-7]

nk ¼ 1

2
n2 þ k2 � k� nð Þ2
� �

ðA-80Þ

the evaluation of the z-transform is reduced to an algorithm due to Bluestein

Fk ¼ W
k2
2

XN�1

n¼0

fnA
�n W

n2
2

h i

W � n�kð Þ2
2 ¼ W

k2
2 fnA

�n W
n2
2

h i

� W� n2
2 : ðA-81Þ

The computation of the above expression requires the following steps:

1. Weighting or multiplication of the given series fn by A�n W
n2
2 .

2. Fourier transform of the function obtained.
3. Forming a function W� n2

2 .
4. Fourier transform of this function.
5. Multiplication of the Fourier series in order to compute the convolution.
6. Inverse transform of the product and multiplication by W

k2
2 .
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The computation of the z-transform is hence reduced to a convolution, which can
be evaluated by a fast Fourier transform algorithm. The additional computational
steps required result in increased complexity in comparison to the simple Fourier
transform. The computational time is increased about three times but the exact fac-
tor depends on the choice of the number of points N, M and the selected FFT algo-
rithm. The advantages of the z-transform over the Fourier transform are related
basically to two properties:

1. The desired number of points M does not have to coincide with the given
number of points N. Hence one can save computer time if it is necessary to
calculate only a few points in the frequency domain.

2. Since W itself is a complex number, it can be represented in general in the
form

W ¼ Wo e
2p iUo : ðA-82Þ

In the case of the Fourier transform

Uo ¼ 1

N
ðA-83Þ

and the points occupy exactly one angular circuit on the unit circle. As a conse-
quence of this property the frequency values m of the result of the transform are
fixed by the sampling theorem in the form

D x � Dm ¼ 1 =N : ðA-84Þ

If the phase ofW in the CZT is reduced by multiplication with a factor a < 1

Uo ¼ a =N ðA-85Þ

this results in sampling in the frequency domain with a step

Dm ¼ a

D x � N : ðA-86Þ

Therefore, the choice of the resolution in the frequency domain is not restricted. In
particular one can compute the spectrum on a specified grid and avoid any interpo-
lation. This is of special importance for optical transfer computations using Fourier
algorithms where only fields within the free apertures need to be considered [A-8],
[A-9]. In addition, the advantages of the z-transform are significant when sequential
transforms have to be performed. This is the case, e.g., in optical transfer problems
related to cavity calculations or beam propagation in inhomogeneous media.
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A.5.3

Sinc Interpolation

The change in the number of points of a sampled signal or their spacing can be
carried out by interpolation. According to the sampling theorem the best method for
interpolating a continuous signal is by the sinc function. However, this method can
be applied only to equidistantly sampled functions.

For a bandwidth-limited signal with a spectral width 1 / 2Dx the sinc interpola-
tion is exact in the sense of information theory. The sinc interpolation exhibits simi-
lar advantages for a finite number of sampling points. Such a discrete sinc interpola-
tion obeys the formula

aresampleðxÞ ¼
XN�1

k¼0

ak �
sin p � x

Dx
� k

� �h i

N � sin p
N � x

Dx
� k

� �h i : ðA-87Þ

In practice this means that the given function is subjected to a Fourier transform,
and the result, after zero-padding, is inverse-transformed back to the spatial domain.
The limitation of this method is that the zero-padding can be carried out only by
integer values so that the rescaling occurs in discrete steps only.

That is why the application of the chirp-z transform is more favourable, in which
an arbitrary scale transformation can be achieved by performing the operation with
different rational chirp factors a1 and a2, respectively.

A.6

Hankel Transform

A.6.1

Definition

For problems with rotational symmetry, the formulation of the Fourier transform in
cartesian coordinates is not adequate. The so-called Hankel transform arises natu-
rally in this case and is computationally advantageous since it utilizes the given sym-
metry. If the two-dimensional Fourier transform is presented in polar coordinates
[A-3]

x ¼ r � cosh; y ¼ r � sin h;

mx ¼ u � cosj; my ¼ u � sin j;
ðA-88Þ

taking into account the definition of the Bessel function in the form

JnðzÞ ¼ 1

2p

R2p

0

e i ð n b� z sin b Þ db ðA-89Þ

one arrives at the Hankel transform in a representation which corresponds to the
Fourier transform in cylindrical coordinates
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Fðu;j Þ ¼
X¥

n¼�¥

ð�iÞn e inj R
¥

0

R2p

0

f ðr; h Þ e� inh Jnð 2p r u Þ r dr dh : ðA-90Þ

If there is no dependence on the azimuthal angle, one obtains from it the simplified
form of the Hankel transform for axisymmetric cases

Fðu Þ ¼ 2p
R¥

0

f ðrÞ J0ð 2p r u Þ r dr : ðA-91Þ

In the discrete form of the Hankel transform the radius is sampled with a radial
interval

D r ¼ R

N � 1
ðA-92Þ

and discrete points

rn ¼ nD r; n ¼ 0; 1; 2; :::;N � 1; ðA-93Þ

where R is the maximum radius and N is the total number of points. Similarly, in
the frequency domain

Du ¼ N � 1

2RN
; ðA-94Þ

un ¼ nDu ; n ¼ 0; 1; 2; :::;N � 1; ðA-95Þ

holds and the sampling theorem reads

D r � Du ¼ 1

2N
:

A.6.2

Numerical Computation

Different approaches for the numerical computation of the Hankel transforms can
be found in the corresponding literature. The basic ideas and algorithms are given
below:

1. Gardner transform

Using an exponential sampling of the coordinates, the so-called Gardner transform,
the integral of the axisymmetric Hankel transform can be converted into a convolu-
tion integral [A-10] and hence numerically computed by the FFT methods. If the
spatial and frequency coordinates are exponentially scaled, the product in the argu-
ment of the Bessel function can be written as a sum in the exponent and the integral
takes the form of a correlation integral. One disadvantage of this method is the ex-
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tremely non-equidistant sampling which does not allow a point at r = 0: one obtains
a non-equidistant grid with increasing discretization errors in the vicinity of the ori-
gin. If the argument and the coordinate in the axisymmetric Hankel transform

Fðu Þ ¼ 2p
R¥

0

f ðrÞ J0ð 2p r u Þ r dr ðA-96Þ

are substituted by

r ¼ ro � ea�x ; u ¼ uo � ea�y ðA-97Þ

using the auxiliary functions defined as

�FFðyÞ ¼ u � FðuÞ ; ðA-98Þ

�ff ðyÞ ¼ r � f ðrÞ ; ðA-99Þ

�JJðzÞ ¼ 2p � a � rouo � ea�z � Joð2p � rouo � ea�zÞ ; ðA-100Þ

one obtains the Hankel transform in the form of a correlation integral

�FFðyÞ ¼ R¥

�¥

�ff ðxÞ � �JJ x þ yð Þ dx ðA-101Þ

which can be numerically evaluated with high computational efficiency by a fast
Fourier transform. This is possible if only x and y are equidistantly sampled which
automatically means that this is not the case for r and u. Since the point r = 0 in
particular does not appear in the sampling, the integration is actually carried out
starting from some minimum value of the radius r. In order to correct the resulting
errors, in a first approximation, a correction term which takes into account the inte-
gration from r = 0 to r= ro has to be provided.

The parameters ro, uo and a used in the formulation can be arbitrarily chosen and
can be optimized in such a way that the sampling both in the spatial and in the fre-
quency domain make it meaningful.

A specific problem of this numerical computation of the Hankel transform is the
exponentially non-equidistant sampling, which leads to a decreasing number of
points for increasing spatial and frequency coordinates.

2. Dual algorithm

For small values of the argument the Bessel function can be either numerically inte-
grated or expanded in a Taylor series, while for large values of the argument one can
use asymptotic approximations [A-11]. One limitation of this approach is related to
problems at the boundary between these two ranges. The boundary has to be auto-
matically found by an adaptive procedure. In practice one obtains small jump dis-
continuities and the solution in the asymptotic range is superposed by long-wave
ripples.
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3. Projection algorithm

The function f(r), which has to be transformed, is extended antisymmetrically for
r < 0. With the following representation of the Bessel function

Jo ðzÞ ¼ 1

p

R1

�1

e izt
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� t2
p dt ðA-102Þ

a projection integral is obtained as a result of the transform, which can then be com-
puted with high efficiency by a FFT [A-12]. One limitation of this method is the
singularity at r = 0 which always leads to increasing inaccuracy at small radii. This
range, however, carries the most essential information in the case of optical beam
propagation and is characterized by the highest intensity.

4. Direct integration with linear accuracy

When high precision is required for the application of the Hankel transform in opti-
cal propagation algorithms it is more reasonable to abstain from fast procedures
possessing similar computational efficiency to the FFT which, according to the
above mentioned algorithms 1 and 3, is determined by N log N and to rely on the
classical approach, the computational time of which is proportional to N2, maintain-
ing higher precision. The deviation of a twice-transformed function from its original
can be used as a criterion for sufficient precision of the numerical computation of
the transform. Such a test is very sensitive to the above-mentioned jump discontinu-
ities, the inaccuracy in the vicinity of the origin and the long-wave ripples. In this
sense the precision criteria in the form of absolute errors, normally used in the cor-
responding literature when dealing with single transforms, are not adequate for
evaluation of optical algorithms employing sequential transforms.
The procedure given below describes an efficient and precise numerical approach
for the computation of the Hankel transform.

1. Using the equidistant discrete radial grid, the integral of the Hankel trans-
form is represented as a sum of the contributions from all subintervals:

Fðu Þ ¼
XN�1

n¼0

2p
Rrnþ1

rn

f ðrÞ J0ð 2p r u Þ r dr : ðA-103Þ

2. Assuming that for sufficiently fine sampling f(r) changes only weakly within
each interval, it can be approximated by an average value

f ðrnÞ ¼ 1

2
f ðrnþ1Þ þ f ðrnÞ½ � ðA-104Þ

giving a constant in front of the integral:

Fðu Þ ¼
XN�1

n¼0

2pf ðrnÞ
Rrnþ1

rn

J0ð 2p r u Þ r dr : ðA-105Þ
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3. The remaining integral over the Bessel function can then be evaluated using
the formulae

R
JoðxÞ x dx ¼ x J1ðxÞ ;
R
Joðr xÞ r dr ¼ r

x
J1ðr xÞ :

ðA-106Þ

5. Direct integration with quadratic precision

For even higher requirements to the precision a parabolic approximation for the
function f(r) in each sub-interval can be used in a second step. The resulting inte-
grals over the Bessel functions are then more complex but can be still reduced to
well-known functions. The practical realization of the parabolic approximation fol-
lows the steps given below:

1. The integral of the Hankel transform is decomposed into contributions from
all sub-intervals. The parabolic approximation of the function f(r) is applied
to each three points rn...rn+1...rn+2

f ðrÞ ¼ Ar2 þ Br þ C ðA-107Þ

where the parameters of the parabola are given by

A ¼ fnþ2 þ fn � 2 fnþ1

2D r2
; ðA-108Þ

B ¼ fnþ2 � fn
2D r

� 2A rnþ1 ; ðA-109Þ

C ¼ fnþ1 � Ar2nþ1 � B rnþ1 : ðA-110Þ

The three points at the two boundaries have to be chosen asymmetrically in
each case.

2. Substitution of this parabolic representation in the interval rn...rn+1, together
with the integral relationships

I0ðxÞ ¼ R
JoðxÞ dx ¼ x JoðxÞ þ p x

2
J1ðxÞHoðxÞ � JoðxÞH1ðxÞ½ � ; ðA-111Þ

R
x2 JoðxÞ dx ¼ x2J1ðxÞ þ x JoðxÞ � IoðxÞ ; ðA-112Þ

R
x3 JoðxÞ dx ¼ x3J1ðxÞ þ 2x2JoðxÞ � 4x J1ðxÞ ðA-113Þ

yields
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FðuÞ ¼ 1

u
�
XN�1

n¼0

"

rnþ1 J1ð2p urnþ1Þ � C � 4A

2p uð Þ2
þ Brnþ1 þ Ar2nþ1

 !

þ rnþ1 J0ð2p urnþ1Þ �
B

2p u
þ rnþ1

2A

2p u

� �

þ I0ð2p urnþ1Þ �
�B

2p uð Þ2

� rn J1ð2p urnÞ � C � 4A

2p uð Þ2
þ Brn þ Ar2n

 !

� rn J0ð2p urnÞ �
B

2p u
þ rn

2A

2p u

� �

þ I0ð2p urnÞ �
�B

2p uð Þ2

#

: ðA-114Þ

In the above equation Hm denotes the Struve functions which are defined as

HmðxÞ ¼
2 x

2

� �m

ffiffiffi
p

p
Cðm þ 1=2Þ

R
p
2

0

sin ðx cos tÞ sin 2mt dt : ðA-115Þ

High-accuracy Pad� approximations, which can be fast-evaluated, exist both
for the Bessel and the Struve functions.

3. The above formula is not applicable in the particular case u = 0. Since Jo(0)=1
one obtains, for the special case of zero frequency

Fð0Þ ¼ 2p
XN�1

n¼0

1

4
A r4nþ1 þ

1

3
B r3nþ1 þ 1

2
C r2nþ1

�

� 1

4
A r4n �

1

3
B r3n � 1

2
C r2n

�

: ðA-116Þ

The larger number of terms in the sums, which have to be evaluated for this
more accurate form of the algorithm, makes the computation somewhat
slower. On the contrary, the higher precision of the evaluation requires less
sampling points for the integration while providing the same accuracy of the
final result.

Figure A-20 shows numerical calculations of the accuracy of the Hankel trans-
forms in terms of the residuum, using the different algorithms described above,
and as a function of the sampling point number N for two different functions: a
smooth Gaussian function and a top-hat function with an abrupt transition. It can
be seen that the slow, direct numerical integration with parabolic approximation is
the method with the highest accuracy. It is interesting to note that the fast method
based on the Gardner transform is quite precise for a Gaussian function but is defi-
nitely the least precise method for a top-hat profile.
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Figure A-20: Logarithm of the residuum for the numerical Hankel transform

using different approaches for a Gaussian (a) and a top-hat (b) profile.

As well as the methods outlined in this section, a number of other approaches for
the computation of the Hankel transform can be found in the corresponding litera-
ture. Depending on the problem to be solved and the requirements for accuracy and
speed, some of them may prove to be more suitable in particular cases. In principle,
however, because of the singularity problem at r = 0, it always makes sense to check
whether the choice of the two-dimensional fast Fourier transform is preferable.
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A.7

Practical Calculation of Diffraction Integrals

A.7.1

The Oscillation Problem

The practical calculation of diffraction integrals is a cumbersome problem because
of the numerical effort required to get accurate results. In one dimension, the main
structure of the diffraction integral is of the form

Uðx2Þ ¼ C � R
a

�a

Uð x1Þ �
e� ikr12

r12
dx1 ðA-117Þ

where r12 is the distance between the starting point P(x1) and the observation point
P(x2). The main problem in computing this integral is the highly oscillating expo-
nent, which requires a very large number of grid points to fulfil the sampling theo-
rem. The major contribution from the integral comes from the points of stationary
phase, as the summation over the oscillating parts results in a vanishing amplitude.

Both factors in the above integral contribute to the phase, in general the starting
amplitudeU(x1) contains a defocusing part, with a spherical distribution and additional
variations caused by aberrations. The second factor characterizes the propagation part
of the Huygens spherical wavelets and is critical, if the Fresnel number of the propaga-
tion geometry is high. Figure A-21 shows the geometry of the corresponding setup.

Figure A-21: Geometry of the diffraction calculation. The field of the source

is diffracted by an aperture in a screen. The number of Fresnel zones seen by the

observation point determines the calculation effort required.

For the mathematical calculation, only that part of the phase function, which is
wrapped to the interval 2p, is relevant. If the diffraction integral is written in the
Fresnel approximation

Uðx2Þ ¼ C � R
a

�a

Uðx1Þj j � e2p�i�Uðx1Þ � e� ip
k z

� x2 � x1ð Þ2 dx1 ðA-118Þ
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where U is the phase of the incoming field, figure A-22 illustrates this behavior for
an observation point lying at infinity and a defocused incoming wave.

Figure A-22: Parabolic phase function and wrapped version to the interval 2p.

The wrapped phase shows the oscillating behavior in form of a zig-zag curve. To
describe this distribution sufficiently accurately, the density of the sampling points
is determined at the boundary for the smallest feature size. It can be seen from this
figure, that the largest derivation of the phase function defines this limit and there-
fore the number of grid points which are necessary.

The oscillating behavior can also be demonstrated by the real part of the inte-
grand. Since this a smooth function, a mathematical discussion using this term is
much easier.

For the special case of a field with spherical aberration of third order, figure A-23
shows the phase function for an observation point at infinity, a spherical aberration
of 3k corresponding to c9 = 3 and different values of the defocusing. The correspond-
ing phase function may be given by the equation

UðxÞ ¼ 3 � 6x4 � 6a � x2ð Þ : ðA-119Þ

The three cases illustrated in the figure correspond to the values of the defocusing
parameter a = 0, 1 and 1.5. The first picture a) shows the fastest oscillation, this
highest frequency occurs at the boundary x= 1. In the case of a defocusing compen-
sation according to the Zernike definition of the spherical aberration with a = 1, the
highest spatial frequency is reduced by a factor of 2. The optimal choice of the defo-
cusing in picture c) with a = 1.5 reduces this frequency again by a factor of two. The
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Figure A-23: Phase function for a third-order spherical aberration of 3 k:

a) without any defocusing contribution; b) with defocusing according to the

Zernike polynomial; c) with optimal defocusing for sampling requirements.

third case therefore allows the calculation of the diffraction with one quarter of the
sampling points.

The wavefront and the gradient of the wavefront are shown for these three cases in
figureA-24. The Zernike definition exhibits the smallest absolute value of the phase, but
the optimal choice of a has the smallest gradient. The greatest value of the gradient
occurs at the middle of the aperture radius at x =0.5 and at the boundary at x = 1 with
different signs. This is shown in figure A-25. Figure A-26 illustrates the maximal phase
gradient as a function of the defocusing parameter a as a result of numerical calculation.
The discrete number of oscillations causes the vibration of the curve for a< 1.5.
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Figure A-24: Phase function for a third-order spherical aberration of 3 k and

the three values of defocusing according to figure A-23, and the corresponding

gradients of the phase function.

Figure A-25: Gradient of the phase function for a third-order spherical aberration

of 3 k and optimal defocusing with aopt = 1.5.
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Figure A-26: Maximal gradient of the phase function as a function of the

defocusing parameter as a result of numerical calculation.

As a result of this concrete illustration, it can be summarized that the optimal
sampling conditions occur, if the gradient of the phase surface has its smallest value
across the whole integration range. This causes severe problems in the calculation,
if there are large wave aberrations with high orders or short propagation distances
with a large variation of the second factor in eq. (A-118).

If only the effects of the propagation distances and defocusing are relevant, the
Fresnel number of the diffraction setup is the important term for dealing with sam-
pling requirements. In the principal setup of figure A-21, the Fresnel number is
defined by the equation

NF ¼ a2

k
� 1

z1
þ 1

z2

� �

: ðA-120Þ

The value of the Fresnel number gives the number of Fresnel diffraction zones in
the aperture plane, over which the integration has to be performed. According to the
sampling theorem, it is necessary to have four grid points over one period of the
oscillating phase. But in reality, a better choice is to have six to ten points per period
to cancel out the vanishing contributions .

The amplitude distribution in the diffraction integral in eq. (A-118) has not been
mentioned until now. In principle, variations of the amplitude of the incoming field
with corresponding high spatial frequencies also influence the necessary number of
sampling points. But, in practice, the effects of the phase are nearly always domi-
nant and more critical.
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A.7.2

Spatial and Spectral Resolution

Propagating electromagnetic fields are bandwidth-limited having a maximum fre-
quency of 1/k. Hence no aliasing effects occur if the sampling rate is chosen to be
higher than 2/k. This is possible, however, only for small-scale wave-optical compu-
tations. In general, one can restrict the simulation to propagation angles limited by
the numerical aperture of the imaging optics. Using

N ¼ L

dx
¼ L � Dm ¼ L � 2 � n sina

k
¼ 2 � L

k
� NA ðA-121Þ

one can determine the minimum number of sampling points required, N, depen-
dent on the linear field size L, the numerical aperture NA and the wavelength k. In
order to apply the FFT, however, it is preferable to have N equal to powers of 2.

At the same time one should take into account that a quadratic array consisting of
1024 � 1024 sampling points, for a typical precision of 4 bytes per float, already
requires a storage space of 8.4 MB. This might not seem too much, having in mind
the increasing efficiency of modern computers. Nevertheless, the 1024 sampling
points are sufficient for the description of only 512 full wavelengths, i.e., for
k= 633 nm, some 324 mm of the linear field extent. The amount of data necessary
for wave-optical simulation of a high-aperture microscope objective with a lens di-
ameter of ~8 mm is of the order of 8.5 GB.

Figure A-27: Linear dimension of the wave-optical simulation field with sampling

up to propagation angles of 30�, 60� and 90� and increasing number of sampling points N.
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Figure A-28: Memory requirements for a wave-optical simulation dependent on

the number of sampling points N (linear and 2D square field; a typical 32 bit-compiler

with 4bytes per float is assumed).

Figure A-29: a) Sampling in the frequency domain in accordance with the

sampling theorem up to mmax =–NA/k= 1/k (with an aperture at NA = 0.8);

b) calculation field sampled with k/2; c) zero padding; maximum frequency

mmax= –3/k; d) calculation field sampled with k/6.
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It is, however, often desirable to ensure a substantially better spatial resolution in
the wave-optical computation as may generally be necessary. For the computation of
the point image, e.g., much higher sampling rates are required. Also in the simula-
tion of the partially coherent image formation it is desirable to retrieve the influence
of details which are much finer than the resolution limit of k/2 and to evaluate the
effect of different aspect ratios or separations from the objects (so-called proximity
effects or the influence of assist features such as serifs). Sampling further beyond
the sampling theorem leads to strong under-filling of the spectrum, the so-called
zero padding (figure A-29c). As a consequence of the zero padding, for the same
number of sampling points, the frequency domain is to an increasing degree under-
sampled. Obviously a trade-off has to be found, having in mind that in general the
spatial resolution deteriorates with increasing frequency of wave front aberrations.

A.7.3

Periodic Boundary Conditions

In the discrete representation, both the spectrum and the object field should be
thought of as being periodically repeating. Thus reflections at the boundaries of the
calculation field may occur, e.g., in the simulation of the free space propagation. In
order to avoid errors in the simulation results for optical image formation and in
particular for the propagation of wave fields, caused by periodicity effects, one
should also allow for sufficient space in the boundary regions of the spatial domain.

Figure A-30: Perturbations in the boundary region caused by the periodic

continuation of the calculation field in the x direction.

Furthermore, for stepwise simulations of the free space propagation (e.g.,
using the wave propagation methods [A-13]), it is reasonable to apply a weak absorb-
er (~e–kdx where dx is the distance from the boundary and k is an absorption coeffi-
cient; reliable values are k< 0.0005/k) in the field boundary region covering a few
dozens of pixels in order to suppress the periodic boundary conditions.
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A.7.4

x-z Sampling of the Ewald Sphere

For three-dimensional image formation, the image is computed from the spectrum
on the Ewald sphere. In order to utilize the high speed of the FFT, cartesian coordi-
nates have to be chosen for the representation. The sampling points in this case do
not correspond to the coordinates on the Ewald sphere. Some authors have provided
extensive considerations of a sampling theorem in the mz direction. The spectrum
can be accurately occupied using the sinc interpolation or the following trick can be
simply applied instead: the 2D Fourier transform of a field corresponds to the 1D
Fourier transform of all rows (e.g., in the mx direction) followed by a transform of all
columns (e.g., in the mz direction) of the 2D field and vice versa. Since the spectrum
is discrete in the z direction and consists only of a delta function, the column Fouri-
er transform yields a harmonic function in each column. Thus the 2D Fourier trans-
form of the 2D spectrum proceeds as an analytical Fourier transform in the z direc-
tion and subsequent FFT over all rows (in the x direction) and one obtains the 2D
field distribution in accordance with the standard sampling theorem. At the same
time the x and z scaling factors can be arbitrarily chosen and may be different; e.g.,
it is often necessary to select a substantially smaller number of image planes to be
computed in the z direction, with larger separations dz, in comparison with the
sampling in the x direction with an interval dx.

Figure A-31: (a) Computation of an x-z intensity scan from the Ewald-sphere;

(b) by analytical Fourier transformation in the mz direction ; and (c) final application

of the FFT in mx for all lines z .

A.7.5

Equivalent Diffraction Setups

The diffraction integral in the Fresnel approximation reads according to eq. (A-118)

Uðx2Þ ¼ C � R
a

�a

Uðx1Þj j � e2p�i�Uðx1Þ � e� ip
k z

� x2 � x1ð Þ2 dx1 : ðA-122Þ
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It is possible to transform this integral in an equivalent form, but with a rather bet-
ter conditioning of the sampling problem. The following equation with an arbitrary
numberM delivers identical results [A-14]

Uð x2; z Þ ¼ C � e�
ip ðM�1Þ�x2

2
k �M�z � R Uðx1; 0Þ � e�

ip ð1�MÞ�x2
1

k �z

� �

� e� ip�M
k z

� x1�x2
Mð Þ2 dx1 ðA-123Þ

where x1 is the coordinate in the source or pupil plane, over which the integration is
calculated. The additional factor in the square brackets describes a defocusing in
paraxial approximation. The physical interpretation of this equation is that, for every
diffraction setup, there are other geometries, for which the scaling of the observa-
tion plane, a final paraboloidal phase correction and the propagation distance, have
to be chosen appropriately, but the field distribution is identical. This is illustrated
in figure A-32. It should be noted, that this equivalence of the equations is only valid
in paraxial approximation.

Figure A-32: Equivalent diffraction setup with scaling of the aperture and the distance,

and using a different phase correction forM = 0.5.

The choice of the magnification factor M is arbitrary and can be used to optimize
the sampling conditions for the calculation of the integral. If the incoming field has
no phase distortions of higher order and is therefore of paraboloidal form, the opti-
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mal defocusing corresponds to a flattening of the phase surface. As a result, the
phase front becomes plane after the equivalence transformation. If the radius of cur-
vature is R and the propagation distance z, the best choice of the magnification fac-
tor M is

M ¼ 1þ z

R
: ðA-124Þ

The correct propagation distance is then given by

z¢ ¼ z

M
ðA-125Þ

and the scaling of the coordinates in the observation plane results from

x2 ¼ M � x1 ; y2 ¼ M � y1 : ðA-126Þ

Finally, the field has to be corrected by a parabolic phase factor with the radius of
curvature

R¢ ¼ R� z : ðA-127Þ

It should be noted, that the above formulas are also valid in the case of negative
values of M, this happens for distances z greater than R. In this case, an internal
focal point is located at the propagation distance. If propagation in a focal plane is
required, the value ofM is nearly or exactly zero. In this special case, the equivalence
transformation is not suitable, it is only advantageous for real Fresnel transitions.

There is another geometrical interpretation of the equivalence transform. The flat-
tening of the field corresponds to a transition into spheroidal coordinates with a cen-
ter in the focal point. Figure A-33 shows this interpretation. In particular, this pic-
ture illustrates the occurrence of an internal focal point with a change in the sign of
the coordinate in the observation plane.

Figure A-33: Equivalent diffraction setup with scaling of the aperture and the distance,

and using a different phase correction.
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It should be mentioned that this representation of the equivalence transform can
also be interpreted as a fractional Fourier transform, which does not correspond to a
full 90� rotation in the phase space as in the Fraunhofer case [A-15], [A-16].
There are some additional attempts in the literature to use the above idea to more
special configurations. For example, in [A-17] the transform is used for oblique off-
axis beam propagation.

A.7.6

Optimal Conditioning of the Fresnel Diffraction

If a diffraction calculation has to be performed, first of all, the optimal conditioning
of the given setup has to be analyzed. In most cases, the distinction between a Fres-
nel setup with a near-field transition and a Fraunhofer approximation with far-field
conditions has to be made. There are four different scenarios depending on the dis-
tance from the source, the stop and the observation plane, Figure A-34 shows these
different geometries [A-18]. A lens brings a plane at a finite distance to infinity, in
the optical sense.

If a diffraction calculation in the Fraunhofer approximation has to be made, only
a simple Fourier transform is necessary or a simple integration, if the computation
of the integral is realized directly.

On the other hand, in the Fresnel case, the spectral distribution first has to be
calculated, and after propagating this, a transform back to the spatial domain has to
be made.

If a light field is separated in the focal region and the outer domain, there are
four cases for a diffraction calculation [A-19], [A-20] depending on the location of the
origin and the observation plane. These four possibilities are shown in figure A-35.
In the outer ranges outside the focal region, the geometrical curvature is of a consid-
erable size, so an equivalence transformation, according to the previous section, is
advantageous. Inside the focal region in the range of the focal depth, the curvature
is rather small, there is no real problem in the sampling of the complex field. The
separation between the four cases is not rigorous and gives equal results in the over-
lapping ranges. But a violation of the criteria of optimal calculating ranges, results
in an increasing computational effort. The four cases are:

1. Transition O fi O between outer regions of the focal plane. The Fresnel cal-
culation uses the equivalence transform, with the Fourier transform F̂F it fol-
lows that

UO�Oðx2Þ ¼ e� ik z
M
ffiffiffiffiffiffiffiffi

Mj j
p e�

ip ðM�1 Þ
kMz

x2
2 F̂F�1 e

i k z
4pMk2x F̂F Uðx1Þ � e�

ip ð 1�M Þ
k z

x2
1

� �� �

: ðA-128Þ

The scaling factor has to be optimized according to the criteria described
above, it lies in the range

M ¼ 1 þ z

R
ðA-129Þ
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Figure A-34: Equivalent diffraction setup with scaling of the aperture and the distance,

and using a different phase correction.

with R the mean radius of curvature of the field in the starting plane. If the
lateral size of the aperture opening in the starting plane is a1, the diffraction
calculation has an effective Fresnel number

Neff
F ¼ Ma21

k z
: ðA-130Þ

2. Transition I fi I between inner regions of the focal plane. This is the easiest
case and the calculation procedure follows the formula

UI�Iðx2Þ ¼ F̂F�1 eipk zv
2 � F̂F Uðx1Þ½ �

n o

: ðA-131Þ

The phase front is nearly plane and an additional flattening transform is not
necessary.

667



A1 Mathematical Appendix

3. Transition I fi O form the inner to the outer region of the focal range. This
corresponds to a simple Fraunhofer transition into the far field, the calcula-
tion can be written as

UI�Oðx2Þ ¼ 1
ffiffiffiffiffiffi

k z
p � e� ip

k z
x2
2 � F̂F�1 Uðx1Þ � e�

ip
k z

x2
1

n o

: ðA-132Þ

Since the relations of the Fourier transform are valid, the scaling of the coor-
dinates in the observation plane can be calculated according to the equation

x2 ¼ k � z � m ðA-133Þ

with the spatial frequency m.

4. Transition O fi I from the outer to the inner region of the focal range. This
also corresponds to a Fraunhofer transition, but first the flattening phase fac-
tor has to be applied. Formally, the equation is identical to (A-132), but the
quadratic factor now has a considerable effect:

UO�Iðx2Þ ¼ 1
ffiffiffiffiffiffi

k z
p � e� ip

k z
x2
2 � F̂F�1 Uðx1Þ � e�

ip
k z

x2
1

n o

: ðA-134Þ

Figure A-35: Equivalent diffraction setup with scaling of the aperture and the distance,

and using a different phase correction.

If in the more general case, the incoming phase front is not paraxial, but has
some higher order perturbations with steep phase gradients, the optimal choice of
the factor M is determined in the sense of an optimal sampling scenario. The condi-
tion for the best value of defocusing with a paraxial radius of curvature R0 reads, in
one dimension
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dU

dx
� x

R0










max;all x

¼ min: ðA-135Þ

As a result, the gradient of the remaining phase after the equivalence transform has
the smallest value which is possible.

The above explanation uses free-space propagation and is limited to only one
transverse dimension. But the idea of the equivalence transform can be extended
without problems to two dimensions and setups with paraxial system parts [A-21].

A.7.7

Numerical Algorithms

For the calculation of a diffraction problem, there are several possible numerical
realizations. The optimal choice of the algorithm depends on the computer memory
resources, the computing time, the required accuracy and the use of an intelligent
pre-calculation, which is able to select the best available tool. There are a lot of calcu-
lation schemes proposed in the literature. In this section, only some of the impor-
tant algorithms will be briefly described. Concrete aspects of the implementation
can be found in the references.

1. Fraunhofer case with the Fourier method

When the Fraunhofer approximation can be applied, the use of the fast Fourier
transform is the most usual way of doing this. The calculation can then be per-
formed very quickly. Some disadvantages and problematic aspects are:

Figure A-36: Discretization of the boundary for the two dimensional integration.
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1.1 The grid is assumed to be equidistant. If this is not the case in the starting
plane, a cumbersome interpolation has to be carried out with the complex
field.

1.2 According to 1.1, the description of the boundary is only very rough and has
a corrugated form. This causes some errors in the computation, depending
on the geometry of the integration area. Figure A-36 illustrates this problem.
The accuracy can be increased, if a suitable weighting of the mesh points
near the boundary is introduced [A-22].

1.3 If the usual Fourier transform with the fast Cooley–Tuckey algorithm is used,
the spatial grid size and the number of points defines the spacing in the fre-
quency domain. If a special frequency resolution is required, it is necessary
to use a zero padding or to apply the famous chirp-z-transform, which is
described in detail in section A-5.

2. Fresnel case with the Fourier method

In the range of the Fresnel approximation, the most important point is to use the
equivalence transform, described in section A-3. Since all the integrals have the
form of a convolution, the numerical computation can be done by means of the fast
Fourier algorithms as in the previous case. All the problems discussed there are also
present in the Fresnel case. One additional aspect should be mentioned here. In the
calculation, a transition to the frequency range is first carried out and after propagat-
ing the plane waves the distribution is transformed back to the spatial domain,
therefore a violation of the sampling theorem in the frequency domain cannot
always be recognized from the result. For this reason it is recommended to control
the convergence of the frequency spectrum in the intermediate calculation step.

It should be noticed, that in the Fresnel regime, there is a mixture between the
resolution and therefore between the sampling problems in the spatial and fre-
quency domain. This mixture changes with the propagation distance z and there is
not one algorithm, which fulfils all the sampling requirements [A-23].

3. Direct evaluation of the integral

If the diffraction integrals in the various formulations are evaluated directly, the
computational effort increases with the linear number of sampling points N as N4.
This causes a long computation time, if only �brute force’ methods are applied. The
advantage of this procedure is that, in contrast to the Fourier methods, there are no
problems with sampling in the frequency domain or with non-equidistant grids in
the source plane. In practice, the accuracy of the result is not sufficient, if only a
rectangular integration rule is applied to the evaluation of the sum.
There are several clever attempts which have been reported in the literature which
deal with this problem.

One method uses a finite element calculation algorithms to evaluate the integrals
with a reasonable small number of sampling intervals [A-24], [A-25]. The main
advantage of this method is a very accurate modelling of the boundary of the source
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area. Especially complicated aperture distributions with smart obscuration struc-
tures can be described well.

One of the oldest methods of dealing with the highly oscillating integrand in the dif-
fraction integral is to approximate the amplitude and phase function linearly inside the
grid cells [A-26], [A-27]. Figure A-37 shows this idea for a single discrete sampling inter-
val. The contribution to the one-dimensional diffraction integral can be written as

Ij ¼
R
xjþ1

xj

AðxÞ � e2p�iUðxÞ dx : ðA-136Þ

If A(x) and U(x) are linearly approximated, the integral can be solved analytically
inside this single sampling interval.

Figure A-37 Linear or quadratic approximation of the phase function u(x) inside a
grid intervall for the numerical computation of the diffraction integral.

It is always useful to have large sampling intervals, to keep the computational
time small. But if the curvature of the functions A(x) and U(x) are not negligible in
the interval Dx, an error occurs in the calculation. The next best approximation
therefore uses a quadratic approximation of the two functions [A-28], [A-29]. In this
case, the remaining integrals inside one interval are not elementary. But in the cited
references, in the so-called SSP-method, a clever selection and approximation of the
contributions delivers an accurate and fast integration scheme. This quadratic
approximation of the amplitude and phase distribution, also indicated in figure A-
37, improves the accuracy significantly.

4. Propagation with high numerical aperture

The near-field diffraction calculation scheme as described in section A.7.6 in
eq. (A-131) is, in principle, an angular propagation. If the given field distribution is
Fourier transformed, this corresponds to an expansion into plane waves, every
Fourier component represents a plane wave, the value of the coefficient gives the
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relative content of this inclined plane wave. The propagation of plane waves in
homogeneous media can be calculated by a simple phase factor, depending on the
inclination angle. For the spatial frequency m, the propagator reads

TðzÞ ¼ e
2p�i
k

�z�
ffiffiffiffiffiffiffiffiffiffiffi
1� k2m2

p
: ðA-137Þ

In paraxial approximation, this term can be written as

TparaxðzÞ ¼ e
2p�i
k

�z � e�p�ik�z�m2 ðA-138Þ

and this is the form of the factor as it is used in eq. (A-131).
Recently, a more exact formula has been reported, where the paraxial approxima-

tion is expanded to the high-angle range in the framework of a scalar model [A-30].
In the extension of the paraxial model, where the spatial frequencies are given by

x2 ¼ k � z � vx ðA-139Þ

in the range of high numerical aperture, the coordinates in the observation plane
are described by

x2 ¼ k � r � vx : ðA-140Þ

The distance r between the observation point and the source point can be calculated
by the equation

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z2 þ x2 � x1ð Þ2þ y2 � y1ð Þ2
q

: ðA-141Þ

The coordinate x2 in the observation plane then depends in a nonlinear manner on the
frequency and there occurs a coupling between the two coordinate directions x and y

x2 ¼ k � z � vx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� k
2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2x þ v2y

q
r : ðA-142Þ

As a result of this more general formulation, the output spatial coordinates are not
equidistant and have to be re-interpolated to a desired equidistant grid.

A.7.8

Fresnel Integrals

The Fresnel integral in its complex formulation is defined as

FðxÞ ¼ R
x

0

e
1
2ip t2dt : ðA-143Þ

It is related to the Gaussian error function erf(z) by [A-31]

FðxÞ ¼ CðxÞ þ i � SðxÞ ¼ 1þ i

2
� erf

ffiffiffi
p

p

2
� ð1� iÞ � x

� �

: ðA-144Þ
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The following asymptotic approximations of the Fresnel integral are valid in the
limit of very small and large values of the argument, respectively:

1. Small values of the argument x << 1

FðxÞ ¼ x � e12ip x2 : ðA-145Þ

2. Large values of the argument x >> 1

FðxÞ ¼ iþ 1

2
� i

p x
� e12ip x2 : ðA-146Þ

If the real and imaginary parts of the integral are separated

FðxÞ ¼ CðxÞ þ i � SðxÞ ðA-147Þ

one obtains

CðxÞ ¼ R
x

0

cos
1

2
p t2

� �

dt ; ðA-148Þ

SðxÞ ¼ R
x

0

sin
1

2
p t2

� �

dt : ðA-149Þ

The behavior of the real and imaginary parts as functions of the real argument x is
illustrated in figure A-38.

Figure A-38: Real (C(x)) and imaginary (S(x)) parts of the Fresnel integral.

For coherent Fresnel diffraction of an infinite plane wave incident on a long edge,
the intensity can be presented in terms of Fresnel integrals as

IðtÞ ¼ 1

2
� 1

2
� CðtÞ

� �2

þ 1

2
� SðtÞ

� �2
" #

ðA-150Þ
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where t is a scalable argument related to the Fresnel number NF:

t ¼
ffiffiffiffiffiffiffiffiffi

k

z � p

r

� x ¼
ffiffiffiffiffiffiffiffiffi

2

k � z

r

� x ¼
ffiffiffiffiffiffiffiffiffi

2NF

p

: ðA-151Þ

The Fresnel diffraction at an edge can be illustrated by means of the so-called Cornu
spiral [A-3] shown in Figure A-39. The amplitude of the diffracted field is decomposed
into real and imaginary parts which equal the Fresnel integrals C(t) and S(t), respec-
tively. The Fresnel integrals are plotted on the horizontal and vertical axes of a diagram.
The resulting curve has a spiral shape with asymptotic points at (1/2, 1/2) and (–1/2,
–1/2) for very large and small values of the argument t. These correspond to large sepa-
rations from the geometrical shadow boundary in the light and dark regions, respec-
tively. The amplitude of the field is given by the distance from a point on the curve
to the starting point (–1/2, –1/2). The convergence towards the asymptotic points
reflects the decay of the diffraction ripples for large separations from the edge.

Figure A-39: The Cornu spiral as a visualization of the Fresnel integrals.

The intensity at the boundary of the geometrical shadow amounts to I(0) = 1�4. It
continuously fades away to zero in the shadow region while in the region of geomet-
rically full illumination one observes an oscillating behavior with convergence to the
value 1 corresponding to undisturbed illumination. This is shown in figure A-40.
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Figure A-40: Diffraction pattern of a straight edge in the Fresnel approximation

A.8

Orthogonal Polynomials on Rectangular Domains

A.8.1

Chebyshev Polynomials

The one-dimensional Chebyshev polynomials of the first kind Tn(x) are defined on
the unit interval –1...x...1 with a weight function corresponding to the reciprocal
value of the height of the unit circle [A-31]

Rþ1

�1

TnðxÞ � TmðxÞ �
1
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x2
p dx ¼

0 if n „ m
p=2 if n ¼ m > 0
p if n ¼ m ¼ 0 :

8

<

:
ðA-152Þ

The explicit form of the polynomials can be easily written in terms of circular func-
tions

TnðxÞ ¼ cos n � arccosðxÞ½ � : ðA-153Þ

The lowest order Chebyshev polynomials of the first kind read
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T0ðxÞ ¼ 1

T1ðxÞ ¼ x

T2ðxÞ ¼ 2x2 � 1

T3ðxÞ ¼ 4x3 � 3x

T4ðxÞ ¼ 8x4 � 8x2 þ 1

T5ðxÞ ¼ 16x5 � 20x3 þ 5x

T6ðxÞ ¼ 32x6 � 48x4 þ 18x2 � 1

T7ðxÞ ¼ 64x7 � 112x5 þ 56x3 � 7x

T8ðxÞ ¼ 128x8 � 256x6 þ 160x4 � 32x2 þ 1

T9ðxÞ ¼ 256x9 � 576x7 þ 432x5 � 120x3 þ 9x

T10ðxÞ ¼ 512x10 � 1280x8 þ 1120x6 � 400x4 þ 50x2 � 1

T11ðxÞ ¼ 1024x11 � 2816x9 þ 2816x7 � 1232x5 þ 220x3 � 11x

T12ðxÞ ¼ 2048x12 � 6144x10 þ 6912x8 � 3584x6 þ 840x4 � 72x2 þ 1 :

ðA-154Þ

The characteristic behavior of these functions can be seen in figure A-41.

Figure A-41: Lowest order Chebyshev polynomials of the first kind in one dimension.
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A Chebyshev polynomial at one point can be expressed by neighboring Cheby-
shev polynomials at the same point (recurrence relation)

Tnþ1ðxÞ ¼ 2x � TnðxÞ � Tn�1ðxÞ : ðA-155Þ

A.8.2

One-dimensional Legendre Polynomials

The orthogonality relation of the one-dimensional Legendre polynomials with con-
stant weight function reads [A-31]

Rþ1

�1

PnðxÞ � PmðxÞ dx ¼
0 if n „ m

2

2nþ 1
if n ¼ m :

8

><

>:

ðA-156Þ

The recurrence relation is given by

nþ 1ð Þ � Pnþ1ðxÞ ¼ 2nþ 1ð Þ � x � PnðxÞ � n � Pn�1ðxÞ : ðA-157Þ

The explicit form of the first polynomials is

P0ðxÞ ¼ 1

P1ðxÞ ¼ x

P2ðxÞ ¼ ð3x2 � 1Þ=2
P3ðxÞ ¼ ð5x3 � 3xÞ=2
P4ðxÞ ¼ ð35x4 � 30x2 þ 3Þ=8
P5ðxÞ ¼ ð63x5 � 70x3 þ 15xÞ=8
P6ðxÞ ¼ ð231x6 � 315x4 þ 105x2 � 5Þ=16
P7ðxÞ ¼ ð429x7 � 693x5 þ 315x3 � 35xÞ=16
P8ðxÞ ¼ ð6435x8 � 12012x6 þ 6930x4 � 1260x2 þ 35Þ=128
P9ðxÞ ¼ ð12155x9 � 25740x7 þ 18018x5 � 4620x3 þ 315xÞ=128
P10ðxÞ ¼ ð46189x10 � 109395x8 þ 90090x6 � 30030x4 þ 3465x2 � 63Þ=256
P11ðxÞ ¼ ð88179x11 � 230945x9 þ 218790x7 � 90090x5 þ 15015x3 � 693xÞ=256
P12ðxÞ ¼ ð676039x12 � 1939938x10 þ 2078505x8 � 1021020x6 þ 225225x4

� 18018x2 þ 231Þ=1024 : ðA-158Þ

The lowest order Legendre polynomials are plotted in figure A-42.
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Figure A-42: Lowest order Legendre polynomials in one dimension.

A.8.3

Two-dimensional Chebyshev Polynomials

In two dimensions, a function can be constructed in the form of a product of the
one-dimensional Chebyshev polynomials as follows

Wðx; yÞ ¼
X

n

X

m

Dnm � TnðxÞ � TmðyÞ : ðA-159Þ

Figure A-43 shows the characteristic surface shapes of this class of functions. The
very regular behavior and the fact that the weight function makes the outer region
of the pupil area count more, are again drawbacks, which have to be mentioned
here.
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Figure A-43: Representation of the products of one-dimensional Chebyshev polynomials

on a square-shaped area.

A.8.4

Legendre Polynomials in Two Dimensions

A factorized form based on the one-dimensional Legendre polynomials is possible
in two dimensions [A-32], [A-33], as given below

Wðx; yÞ ¼
X

n

X

m

AnmPnðxÞ � PmðyÞ : ðA-160Þ

This form, however, is not orthogonal on the rectangular area of definition. Specifi-
cally, the zero points of one of the factors in the above-defined form, give zero for all
orders of the other coordinate direction. Figure A-44 illustrates this two-dimensional
use of the Legendre polynomials on a square-shaped aperture.
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Figure A-44: Representation of the products of one-dimensional Legendre

polynomials on a square-shaped area.

Another problem associated with such an attempt at two-dimensional generaliza-
tion is the behavior of the polynomials near the boundary of the definition area. As
can be seen in figure A-42, the functions exhibit their largest values at the ends of
the interval. In the product representation for the two-dimensional case, this effect
is amplified. Figure A-45 shows the extreme peak amplitudes of the two-dimen-
sional functions in the corners of the square-shaped area which can be seen more
clearly than in figure A-44. Such a surface shape is not typical for wavefronts in stan-
dard optical systems and therefore this type of surface description is not really ade-
quate for this type of problem.

The best approach for the description of the behavior of two-dimensional wave-
fronts was developed only very recently [A-34]. It is based on the use of Zernike poly-
nomials. If the Gram-Schmidt orthogonalization procedure is applied to the classi-
cal Zernike polynomials, for a rectangular shape of the definition area, one obtains
the generalized two-dimensional Legendre polynomials. The lowest orders of these
functions resemble the Zernike polynomials and therefore can be used for the usual
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A.8 Orthogonal Polynomials on Rectangular Domains

Figure A-45: Peak values of the product of one- dimensional Legendre polynomials

of 7th order (P7) defined on a square-shaped area.

interpretation of various aberration types like spherical aberration, astigmatism,
coma, etc. The orthogonality ensures favorable mathematical properties. Figure
A-46 shows the first 36 generalized two-dimensional Legendre polynomials.

If the new functions are expanded in Zernike polynomials in the form

Qm ¼
Xm

j¼1

cj � Zj ðA-161Þ

with the orthogonality condition

R1

�1

R1

�1

QkQjdx dy ¼ dkj ðA-162Þ

then the orthogonalization algorithm yields a transform matrix for the determina-
tion of the new coefficients cj. The lowest coefficients cj are listed in table A-1. It
should be noted that only the lower triangular region of the transfer matrix is filled.
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Figure A-46: Representation of the generalized two-dimensional Legendre polynomials.

The indices run continuously from left to right and from top to bottom.
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A.9 Literature

Table A-1: Coefficients of the generalized Legendre polynomials in two dimensions using expan-

sion in Zernike polynomials.

Orderm c1 c2 c3 c4 c5 c6 c7 c8 c9

1 0.5

2 0.8660

3 0.8660

4 –0.1976 0.5929

5 1.1859

6 0.7500

7 –0.5820 0.7275

8 –0.5820 0.7275

9 –0.0840 –0.6299 0.4009

10 0.0710 0.4615

11 –0.0710 –0.4615

12 0.1826 0.3025 –0.4571 0.2600

13 –0.9114

14 –0.0370 –1.0053

15 –0.0370 –1.0053

16 0.0826 0.1362 –0.0338 –0.8132

17 –0.0513 –0.0068 0.1925 0.2248
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a
Abbe resolution 247
Abbe sine condition 268
Abbe theory of image formation 241 ff
aberrations 212 ff, 309 ff, 325, 351, 384, 621
absorbing boundary 570
Airy disc 206, 276, 325
aliasing 640
ambiguity function 123, 429
amplitude edge 366
angular spectrum 17 ff, 54 ff
anisotropic media 494 ff, 511, 598
annular pupil 224 ff, 410 ff
aplanatic correction 261
apodization 416 ff
approximation
– Born approximation 81, 327
– finite differences 569
– Fraunhofer 22, 69
– Fresnel approximation 21
– single path approximation 600 ff
array homogenizer 172 ff
astigmatism 217
autocorrelation function 163, 638
axial coherence length 130 ff
axial resolution 425 ff

b
Babinet principle 82 ff
Babinet-Soleil compensator 516
bandwidth-limited signals 128
beam splitting in anisotropic media 511
beam waist 32, 150
beam twist 157
biaxial media 499, 510
birefringent media 494, 497, 599
Bluestein algorithm 646
Born approximation 81, 327

boundary condition 23
– absorbing boundary 570
– periodic boundary 662
– Sommerfeld radiation condition 13, 47 ff
– transparent boundary 571
boundary diffraction wave 89 ff
Brewster plate 519

c
calculation of diffraction integrals 61, 655 ff
canonical pupil 196
canonical variables 190
central obscuration 411
characteristic function 191 ff
Chebychev polynomials 675
chirped ring pupil mask 437
chirp z-transform 644 ff
circular polarization 470
circular polarized pupil 535
circular retarder 486
coherence function 113 ff, 296 ff
– circular source 140
– of a Gaussian Schell beam 154
– mutual coherence function 114, 265
coherence length
– axial coherence length 130 ff
– transverse coherence length 150, 179 ff
coherence time 130
coherence transfer function 296 ff
coherent image formation 269 ff
coherent resolution 252
coherent transfer function 264
Collins diffraction integral 64 ff
coma 220
conjugate planes 65
conservation of energy 192, 204
contrast 112, 254, 594
convolution 637
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correlation 637
coupled dipole method 553
critical dimension 249
cross spectral density 116, 128
cubic phase plate 442 ff

d
D�ndlikers representation 330
dark field illumination 451
defect filtering 455
degree of coherence 115, 176, 182
degree of polarization 473 ff
depth of focus 335, 430
depth resolution 335 ff
diattenuation 616
dielectric tensor 495
diffraction at a circular cylinder 542 ff
diffraction at a rectangulare aperture 59
diffraction integral
– calculation 61, 655 ff
– Collins formulation 64 ff
– Fraunhofer approximation 22, 69
– Fresnel approximation 21
– Kirchhoff integral 44 ff
– Luneburg integral 200
– Rayleigh-Sommerfeld 48
– Richards-Wolf integral 526 ff
– Stratton-Chu integral 538
– vector Kirchhoff integral 538
diffractive optical elements 199
dipole illumination 257
dipole wave 11
discrete fast Fourier transform 642
dispersion relation 6
distortion 219
double refraction 514
double slit 103, 143, 360 ff
dual algorithm 650

e
edge image 365 ff
eigenpolarization 483, 502, 506 ff
eigenwaves 502
eikonal equation 19, 28, 190
ellipse of polarization 470
energy conservation 192, 204
equivalent diffraction setup 663 ff
evanescent waves 18, 26
Ewald sphere 18, 321, 328, 663
extended depth of focus 426, 442
extended Zernike polynomials 227
extraordinary index of refraction 504

f
Faraday rotator 518
fidelity 272, 287
finite difference method 568 ff
Fourier integral 631
Fourier method for diffraction computation

669
Fourier modal method 563 ff
Fourier theory of image formation 263 ff
Fourier transform 632 ff
– discrete fast 632, 642
Fraunhofer diffraction 22, 69
frequency doubling 453
Fresnel approximation 21
Fresnel diffraction 60 ff, 666
Fresnel ellipsoid 496
Fresnel equations 540
Fresnel integral 22, 62, 91, 664, 672
Fresnel number 69

g
Gardner transform 649
Gaussian beams 31 ff
Gaussian Schell beams 149 ff
geometrical theory of diffraction 90 ff
Gibbs phenomenon 72
grating
– diffraction 71 ff
– image formation 293, 381 ff
– sinusoidal phase grating 76
Greens function 44, 85, 139

h
Hamiltonian 190
Hankel function 51
Hankel transform 648
Helmholtz equation 6
Helmholtz-Lagrange invariant 233
Herschel condition 341
Hilbert space angle 427
homocentric pupil 198
Hopkins formalism for periodic objects

288 ff
Hopkins integral 139
Hopkins transmission cross coefficient

284 ff, 370, 384
Huygens principle 24, 46, 52

i
illumination
– dark field illumination 451
– dipole illumination 257
– oblique illumination 247, 364
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– partially coherent illumination 277, 286,
370, 405

– polarized illumination 613
– Siedentopf illumination principle 255 ff
– sigma setting 279, 608
– structured illumination 256, 447
image formation
– coherent image formation 269 ff
– image formation of a line 376 ff
– image of a circular object 400 ff
– image of an edge 365 ff
– image of a grating 381 ff
– incoherent image formation 272 ff
– Koehler illumination 252 ff
– polarized image formation 583, 606 ff
– theory of Abbe 241 ff
image multiplexing 430
implicit difference method 572
incoherent image formation 272 ff
incoherent optical transfer function 273
index ellipsoid 497
index of refraction 8
– extraordinary index of refraction 504
– ordinary index of refraction 504
interference contrast 113
intrinsic birefringence 500
irradiance 14 ff
isolator, optical 518
isotropic media 497

j
Jones matrix 479 ff, 489, 507, 613, 618 ff
Jones vector 468 ff
Jones vector propagation 480
Jones-Zernike expansion 622 ff

k
Kirchhoff diffraction integral 44 ff
Koehler illumination 252 ff

l
Laue construction 87
Laue equation 328
leakage 641
Legendre polynomials 677
light source
– circular 140
– coherence domains 137
– correlated 280
– point source 110
– spectral distribution 127
– thermal source 133
– uncorrelated 262

linear systems 309, 629 ff
line image 376
line of sight 221 ff
line spread function 375
linear polarized pupil 533
line image 376 ff
logarithmic phase mask 435
Luneburg integral 200

m
magnification 340
Marechal criterion 212
Maxwell’s equation 2, 502
McCutchen equation 323
Michelson interferometer 134
Mie scattering 547 ff
mixed characteristic 192
mode expansion method 156
moment method 555
moment theorem of the Fourier theory 633
moments of the Wigner distribution

function 120
M�ller-Jones matrix 493
M�ller matrix 491
multiplexing of an image 430
mutual coherence function 114, 265

o
oblique illumination 247, 364
optical activity 499
optical isolator 518
optical transfer function
– coherent 264
– incoherent 273
– polarized 613
– three dimensional 332, 343
ordinary index of refraction 504
orthogonal polynomials 675 ff

p
paraxial wave equation 29, 572
partially coherent imaging 277, 286, 370, 405
partial polarization 473, 610
Pauli spin matrices 489
periodic boundary conditions 662
phase contrast filtering 450
phase mask, logarithmic 435
phase space 231, 300 ff
phase space analyser 68
pinhole image 399 ff
plane wave 9, 512, 531
Poincare sphere 478
point characteristic 189

Index



point spread function 217, 275, 322 ff, 416 ff,
423

– Airy disc 206, 276, 325
– apodized pupil 416
– ideal point spread function 426
– polychromatic point-spread function 208
– quasi point source 402 ff
– three dimensional 423
– vector point-spread function 611
polarization
– beam splitting in anisotropic media 511
– biaxial media 499, 510
– birefringent media 494, 497, 599
– circular polarization 470
– circular polarized pupil 535
– dielectric tensor 495
– double refraction 514
– eigenpolarization 483, 502, 506 ff
– ellipse 470
– extraordinary index of refraction 504
– Faraday rotator 518
– illumination 613
– intrinsic birefringence 500
– isotropic media 497
– Jones matrix 479 ff, 489, 507, 613, 618 ff
– Jones vector 468 ff
– Jones-Zernike expansion 622 ff
– linear polarized pupil 533
– M�ller-Jones matrix 493
– M�ller matrix 491
– optical activity 499
– optical isolator 518
– ordinary index of refraction 504
– partial polarization 473, 610
– Poincare sphere 478
– polarization coherence function 183
– polarization imaging 583, 606 ff
– polarization matrix 473
– polarization retarder 482, 484 ff, 492, 516
– polarization rotator 482, 518
– polarization state 467
– polarization ray trace 597 ff
– polarization transfer function 613
– quarter wave retarder 516
– radially polarized pupil 536
– ray splitting 598
– retarder 482, 484 ff, 492, 516
– Stokes vector 475 ff
– tangentially polarized pupil 537
– vector interference 593
– vector Kirchhoff diffraction integral 538
– vector point-spread function 611
polychromatic point-spread function 208

polynomials
– Chebychev polynomials 675
– extended Zernike polynomials 227
– Jones-Zernike expansion 622 ff
– Legendre polynomials 677
– orthogonal polynomials 675 ff
– Tatian polynomials 224
– Zernike polynomials 212 ff, 439, 622 ff
power spectral density 128, 638
Poynting vector 7, 14
principal refractive indices 495
projection algorithm 651
propagation
– coherence function 139
– coupled dipole method 553
– finite difference method 568 ff
– Fourier modal method 563 ff
– free space 20, 303
– Jones vector propagation 480
– mode expansion method 156
– rigorous coupled wave analysis 563 ff
– split-step beam propagation method 576
– transport of intensity 30
– Wigner distribution function 146 ff, 303 ff
pupil
– pupil function 202, 613
– pupil mask filter 411, 423 ff, 433 ff
– annular pupil 224 ff, 410 ff
– apodization 416 ff
– canonical pupil 196
– chirped ring pupil mask 437
– circular polarized pupil 535
– filling of an array homogenizer 175
– homocentric pupil 198
– linear polarized pupil 533
– radially polarized pupil 536
– tangentially polarized pupil 537
– telecentric pupil 198

q
quarter wave retarder 516
quasi point source 402 ff

r
radially polarized pupil 536
radiant flux 204
ray equivalent of Gaussian beams 36
Rayleigh length 31, 34
Rayleigh-Sommerfeld diffraction

integral 48, 53
Rayleigh unit 323
ray splitting 598
refractive index 4, 8
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– extraordinary index of refraction 504
– ordinary index of refraction 504
– principal refractive indices 495
resolution 210, 234, 252, 276
– Abbe resolution 247
– axial resolution 425 ff
– critical dimension 249
– depth resolution 335 ff
– gain 425
– spatial resolution 660
– spectral resolution 660
– transverse resolution 425 ff
retarder 482, 484 ff, 492, 516
Richards-Wolf diffraction integral 526 ff
rigorous coupled wave analysis 563 ff
Ronchi grating 71
Ronchi test 456

s
sampling theorem 639
scattering 556 ff
– Mie scattering 547 ff
– scalar scattering 85 ff
– scattering plate 170
– stray light 314 ff
– surface roughness 163
Schwarzschild angular eikonal 193
secondary source 176
Siedentopf illumination principle 255 ff
sigma setting 279, 608
sinc interpolation 648
single-path approximation 600 ff
sinusoidal phase grating 76
slit
– double slit 103, 143, 360 ff
– slit diffraction 57
– slit imaging 377 ff
slowly varying envelope 30
Sommerfeld condition 13
space-bandwidth product 233 ff
spatial coherence 135 ff
spatial frequency 17, 245
spatial resolution 660
speckle 159 ff
speckle reduction 169 ff
spectral resolution 660
spherical aberration 217
spherical wave 11
split-step beam propagation method 576
Stokes vector 475 ff
Stratton-Chu diffraction integral 538
stray light 314 ff

Strehl ratio 211
structured illumination 256, 447
super Gaussian profile 417
surface roughness 163

t
Talbot effect 385, 394
tangentially polarized pupil 537
Tatian polynomials 224
tayloring 346
telecentric imaging 197
telecentric pupil 198
temporal coherence 126 ff
thermal light source 133
three dimensional transfer function 332, 343
Toraldo pupil filter 434
transfer function
– coherence transfer function 296 ff
– coherent transfer function 264
– defocused transfer function 429
– incoherent optical transfer function 273
– polarized transfer function 613
– three dimensional transfer function 332,

343
transform
– chirp z-transform 644 ff
– discrete fast Fourier transform 642
– Fourier transform 632 ff
– Gardner transform 649
– Hankel transform 648
– z-transform 644 ff
transmission cross coefficient 284 ff, 370,

384
transparent boundary 571
transport of intensity equation 30
transverse coherence length 150, 179 ff
transverse resolution 425 ff
truncated Gaussian profile 418
twisted Gaussian Schell beam 157
two-point resolution 356 ff

u
uncertainty relation 122, 234
uniaxial media 498, 509

v
van Cittert-Zernike theorem 140
vector interference 593
vector Kirchhoff diffraction integral 538
vector point-spread function 611
visibility 112, 136, 252
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w
waist of a beam 32, 150
wave equation 4
– Helmholtz wave equation 6
– paraxial wave equation 29, 572
Wiener experiment 592
Wiener-Khinchin theorem 129
Wigner distribution function 116 ff, 300 ff
– coherent fields 122
– Gaussian Schell beams 154

– grating 394 ff
– moments 120
– propagation 146 ff, 303 ff

y
Youngs experiment 143 ff

z
Zernike polynomials 212 ff, 439, 622 ff
z-transform 644 ff
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