

Exercice

Etude cinétique de l'action du diiode sur la propanone en milieu acide

On se propose d'étudier la cinétique de la réaction d'équation bilan

(1)
$$CH_3COCH_3 + I_2 \stackrel{\leftarrow}{\longrightarrow} CH_3COCH_2I + H^+ + \Gamma$$

La loi de vitesse de cette réaction est :

$$v = k.[CH_3COCH_3].[H+]$$

Le mécanisme proposé pour cette réaction est le suivant :

 $CH_3COCH_3 + H^+ \qquad \stackrel{\longleftarrow}{\hookrightarrow} \qquad CH_3-COH^+-CH_3 \qquad \qquad \text{\'equilibre} \qquad \text{rapide} \qquad \text{de} \qquad \text{constante}$ thermodynamique $K_1{}^0$

 CH_3 - COH^+ - CH_3 \rightarrow CH_2 =COH- CH_3 + H^+ étape lente de constante de vitesse k_2 CH_2 =COH- CH_3 + I_2 \rightarrow CH_2 I-CO- CH_3 + H^+ + I^- étape rapide de constante de vitesse k_3

- 1- Définir le type de mécanisme mis en jeu.
- **2-** Donner l'expression de la constante d'équilibre K_1^0 en fonction des concentrations des espèces.
- **3-** Etablir *simplement* la loi de vitesse découlant de ce mécanisme. Est-elle en accord avec la loi expérimentale ?
- 4- On peut suivre l'évolution de la réaction (1) grâce à un dosage volumétrique de I₂.
 - a- Citer un réactif couramment utilisé au laboratoire pour doser I₂. En donner sa structure de Lewis.
 - **b-** Ecrire l'équation bilan de la réaction de dosage correspondante.
 - c- Préciser comment se fait la détection de l'équivalence.
 Quels sont les avantages d'un suivi spectrophotométrique de la réaction (1).

Exercice

Cinétique

Correction:

- 1- Il s'agit d'un mécanisme par stade ou par transformations successives, puisqu'un premier intermédiaire, CH₃-COH⁺-CH₃ est formé au cours d'un équilibre rapide et se transforme en CH₂=COH-CH₃ qui conduit au produit.
- **2-** La constante d'équilibre ${K_1}^0$ s'exprime en fonction des concentrations des espèces selon :

$$K^{\circ}(T) = \frac{\left[PH^{+}\right]}{\left[P\right] \cdot \left[H^{+}\right]}$$

avec $PH^+ = CH_3 - COH^+ - CH_3$ et $P = CH_3COCH_3$

3- On en déduit donc que la vitesse dépend de l'étape cinétique déterminante, c'est-à-dire la plus lente, soit l'étape 2 :

$$v = v_2 = k_2 \cdot [PH^+]$$

$$avec [PH^+] = K^{\circ}(T) \cdot [P] \cdot [H^+]$$

$$d'où v = k_2 \cdot K^{\circ}(T) \cdot [P] \cdot [H^+]$$

ce qui correspond bien à la loi de vitesse expérimentale observée

- **4-** On peut suivre l'évolution de la réaction (1) grâce à un dosage volumétrique de I₂.
 - *a* Un réactif couramment utilisé au laboratoire pour doser I_2 est le thiosulfate $S_2O_3^{2-}$. Sa structure de Lewis est :

b- L'équation-bilan de la réaction de dosage est :

$$I_2 + 2S_2O_3^{2-} \rightarrow 2I^- + S_4O_6^{2-}$$

Cinétique

Exercice

- c- La détection de l'équivalence se fait par ajout d'empois d'amidon et décoloration de la solution de diiode + empois d'amidon à l'équivalence.
- d- Les avantages d'un suivi spectrophotométrique de la réaction (1) puisque la solution de diiode est colorée, c'est-à-dire qu'il y a absorption du diiode dans le visible, est une mesure en continue de l'absorbance à l'aide d'un enregistreur relié au spectrophotomètre, et donc une mesure continue de la concentration en diiode restante puisque celle-ci est proportionnelle à l'absorbance selon la li de Beer-Lambert et l'absence de perturbations liés à des prélèvements effectués dans le milieu réactionnel pour réaliser après une trempe chimique (abaissement de température, dilution ou inhibiteur du catalyseur, soit ajout d'une base) le dosage de la solution de diiode.