


#### **MELANGEUR**

# 1. Description

Le mécanisme dont le schéma cinématique est donné ci-dessous représente un mélangeur. Un moto-réducteur non représenté entraı̂ne en rotation uniforme autour de l'axe  $(A, \vec{y}_0)$  l'arbre d'entrée  $\underline{\mathbf{1}}$ . Le déplacement de l'axe de transmission  $\underline{\mathbf{3}}$ , ainsi produit, permet la rotation alternative de l'arbre récepteur  $\underline{\mathbf{4}}$  autour de l'axe  $(C, \vec{z}_0)$ .

## 2. Dessin technique en coupe du mélangeur



La pièce 2 est une sphère.

#### 3. Repères associés aux solides

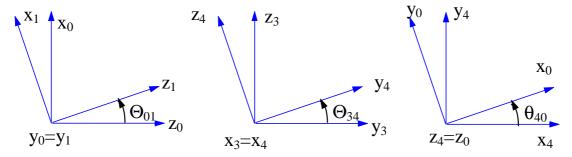
 $B_0 = R_0 = (A; \vec{x}_0; \vec{y}_0; \vec{z}_0)$  lié au bâti **0** 

 $B_1 = R_1 = (A; \vec{x}_1; \vec{y}_1; \vec{z}_1)$  lié à l'arbre d'entrée **1** 

 $B_2 = R_2 = (B; \vec{x}_2; \vec{y}_2; \vec{z}_2)$  lié à l'axe de transmission <u>3</u>

 $B_3 = R_3 = (B; \vec{x}_3; \vec{y}_3; \vec{z}_3)$  lié à la sphère **2** 

 $B_4 = R_4 = (C; \vec{x}_4; \vec{y}_4; \vec{z}_4)$  lié à l'arbre de sortie **4** 


### 4. Paramétrage

La géométrie :  $\overrightarrow{AB} = l\overrightarrow{z}_1$ 

 $\overrightarrow{CB} = \lambda \vec{z}_3$ 

$$\overrightarrow{AC} = h\overrightarrow{v}_0$$

La position angulaire des repères les uns par rapport aux autres.



5. Torseurs cinématiques associés aux liaisons L<sub>i/i</sub>

$$\left\{ V \left( S_{i} / S_{j} \right) \right\}_{A} = \left\{ \begin{aligned} p_{ij} & u_{ij} \\ q_{ij} & v_{ij} \\ r_{ij} & w_{ij} \end{aligned} \right\}_{A}$$

$$avec \begin{cases} \vec{\Omega}(S_{i} / S_{j}) = p_{ij}\vec{x} + q_{ij}\vec{y} + r_{ij}\vec{z} \\ \vec{V}(A, S_{i} / S_{j}) = u_{ij}\vec{x} + v_{ij}\vec{y} + w_{ij}\vec{z} \end{cases}$$

#### 6. TRAVAIL DEMANDE

- Question 1 : Tracer le graphe du mécanisme en indiquant les liaisons
- Question 2: Tracer le schéma cinématique du mélangeur en perspective isométrique et placer sur ce schéma les différents repères R0, R1,R2, R3 et R4.
- Question 3 : Déterminer le torseur équivalent à l'association des liaisons  $L_{12}$  et  $L_{23}$ , et tracer en perspective isométrique le schéma cinématique minimal.
- Question 4 : Ecrire la fermeture géométrique du mécanisme. Quel est le paramètre d'entrée et quels sont les paramètres de sortie ?
- Question 5: Calculer  $\tan \theta_{40}$ ,  $\lambda$  et  $\cos \theta_{34}$  en fonction de tous les paramètres utiles et notamment 1, h et  $\theta_{01}$ .
- Question 6: Ecrire la fermeture cinématique du mécanisme au point C dans la base  $B_0 = (\vec{x}_0; \vec{y}_0; \vec{z}_0)$ .
- Question 7: Quelle est la mobilité du mécanisme?
- Question 8 : Déterminer la relation entrée-sortie soit  $r_{40}$  en fonction de  $q_{10}$  et de tous les paramètres utiles.