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Preface 

There are a lot of excellent books on atomic spectroscopy today, but, 
hopefully, the distinctive feature of this book is its generality. We are 
not involved in the discussion of some specific mechanisms of formation 
of complex structure of atomic spectra, we are not trying to give an 
overview of different methods and models that are uscd to describe the 
spectra and to get a reasonable coincidence of calculated and measured 
data. We have tried to discuss comprehensively the general approach 
to the theory of atomic spectra, based on the use of the Lagrangian 
canonical formalism. The Lagrangian formalism enables us to easily 
generalize any Hamiltonian for electron motion in the external field to 
the Hamiltonian of many-electron problem, as a result the specific and 
common features of these two problems become more evident. The 
non-relativistic or relativistic, spin or spinless particle approximations 
can be used as a starting point in the general approach. All these 
approximations are analyzed and compared. This generality is helpf~~l 
to keep the important points from technicalities of spccific theories. The 
specific examples, that are used to illustrate the general approach, are 
chosen from contemporary atomic spectroscopy and light-matter inter- 
action physics (trapped atom, mesoatom, high-precision measurements 
of electron anomalous magnetic moment and hydrogenic spectra, electric 
polarization vector of nucleons, etc.). 

The book consists of two main parts. The first part deals with the 
hyperfine structure associated with the finite mass of nucleus, its orbital 
motion, and spin-spin interaction. The second part of the book deals 
mainly with the Lamb shift. The specific feature is that the theory of 
Lamb shift is based on the use of quantum mechanics. The obtained 
equation for hydrogenic spectrum has a very simple and compact form, 
as a result the physics of Lamb shift formation can be easily interpreted. 
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Notice, that usually the students of atomic spectroscopy theory are 
not deeply familiar with the methods of quantum electrodynamics the- 
ory, which is traditionally used to explain the physics of Lamb shift. 
Therefore the proposed approach makes the theory accessible for a wide 
range of specialists and students, who are familiar with the quantum 
mechanics and classical electrodynamics. 

The basic equations and principles of quantum mechanics are briefly 
discussed in the book, therefore it can be used as a self-consistent 
textbook providing enough material for half-year or one-year course for 
graduate students: "Introduction into atomic spectroscopy1', "Hyperfine 
structure of atomic spectra", etc. 
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Chapter 1 

INTRODUCTION 

The great number of brilliant experiments, that enable to enhance 
significantly the precision of the optical spectrum measurements, has 
been made in the last few decades. The information obtained from 
the spectra processing reduces significantly the uncertainties of the 
material constants, characterizing the material properties of the ele- 
mentary particles like a charge, mass, magnitude of magnetic moment, 
etc. Simultaneously the tremendous successes have been achieved in 
development of non-optical methods of material constant measurements. 
The results of the precision measurements provide the powerful stimulus 
for researchers to verify the correctness of our description of particle 
interactions with electromagnetic field. Indeed, the obtained informa- 
tion enables to  reduce significantly the uncertainty of the fundamental 
constants, that are not only of interest for some specific fields of research, 
but play the role of measure of correctness and over-all consistency of 
the basic theories. The speed of light c determines the ratio between 
the space and temporal scales. The Planck constant h determines the 
relationships between the components of the coordinate and momentum 
four-vectors. The elementary charge e is also the fundamental constant, 
because, in contrast to the other material constants, it has the same value 
for all elementary particles at least with the state-of-the-art accuracy. 
The combination of these three fundamental constants produces the fine 
structure constant a = e2/(hc), which plays the important role in the 
modern theory of atomic spectra. 

The achieved progress in the precision measurements of atomic spectra 
stimulates the interest to the fundamentals of the quantum mechanic 
theory. Indeed it is well known that the quantum mechanics itself is 
originated from the problem of the explanation of the nature of spectral 
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lines. The quantization rules proposed by Niels Bohr in 1913 and later 
generalized by Arnold Sommerfeld have worked well in explanation of 
atomic spectra. The decisive role in the formation of the particle wave 
mechanics plays the research of Louis de Broglie [I]. In the famous 
paper of Erwin Schrodinger [2] the mathematical basis of the quantum 
mechanics was grounded. The application of Schrodinger equation to 
the problem on electron motion in the Coulomb field provided the 
first quantum mechanical model for the hydrogen atom. The obtained 
formula for the hydrogenic spectra was in good agreement with the ex- 
perimentally measured spectral lines of hydrogen atom and alkali atoms 
(the Lyman, Balmer, etc. series). The presence of the doublet lines 
in atomic spectra and splitting of atomic energy levels by the external 
magnetic field gave birth to the idea on the intrinsic angular momentum 
of electron. The magnitude of Zeeman splitting allowed then to estimate 
the magnitude of the electron magnetic moment. The apparatus of 
the matrix quantum mechanics for description of the intrinsic angular 
momentum was developed by Wolfgang Pauli [3]. The revolutionary step 
towards the development of the theory, giving the detailed description 
of the atomic spectra, was made by Paul Dirac [4] who proposed the 
quantum mechanical equation describing the intrinsic angular momen- 
tum of electron and its magnetic moment. The magnitude of the electron 
magnetic moment predicted by Dirac equation pg = eti/(2mec) was in 
good agreement with the experimental data. Despite its long history 
the theory of the hydrogenic spectra is still under development. The 
successes of this theory and its present-day state are discussed in the 
textbooks and monographes [5-81 and comprehensive review papers [9- 
121. 

Let us mention briefly some last achievements in the spectroscopy of 
elementary particles and atoms. 

1.1 Experiments with single particle in Penning 
trap 

The most accurate measurements of the magnitude of electron mag- 
netic moment were made in experiments with the single electron placed 
in the Penning trap at ultrahigh vacuum conditions and temperature 
of 4 " K [15, 161. The trap is formed by the uniform magnetic field and 
weak quadrupole electric field. The electron evolves into the circular 
quantized motion in the plane perpendicular to the magnetic field. The 
quadrupole electric field forms the potential well confining the electron 
motion along the magnetic field direction. The configuration of the 
Penning trap enables to calculate the energy spectrum of the electron 
translational motion. The energy-level diagram includes the transversal 
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cyclotron motion levels and longitudinal motion sublevels. The energy 
distance between the longitudinal sublevels is much smaller than the 
distance between the transversal levels. The electron cooling technique is 
used to shrink the radius of the orbital motion. In result the total motion 
occupies the very small spatial volume, where the profile of electric field 
is most closely coincided with the ideal model of harmonic potential well 
and the magnetic field is most uniform. In such conditions the electron 
is very weakly coupled with its environment and the electron lifetime 
in the trap is about ten months. Thus, following by H.G. Dehmelt, 
such a system may be called a "geonium atom". In addition to the 
translational degrees of freedom the electron possesses the spin. The 
spin precession around the magnetic field results in the appearance of 
the spin precession frequency in the spectrum of geonium atom. The 
accurate measurements of spin precession frequency enables to determine 
precisely the magnitude of the electron magnetic moment. 

The Hamiltonian of electron in the Penning trap is 

where po is the electron magnetic moment, Bo is the magnetic field of 
the trap, and U (p, z )  is the potential well due to the quadrupole electric 
field. The vector potential of the uniform magnetic field is A = [Bar] 12, 
and the Hamiltonian (1.1) becomes 

where p~ is the Bohr magneton, which is the magnitude of the electron 
magnetic moment in the Dirac theory, 

As far as the potential well of the trap is axially symmetric then the 
projections of the orbital momentum 1, and spin s, = a,/2 are the 
integrals of motion. Thus the eigenfunctions of the Hamiltonian (1.2) 
are simultaneously the eigenfunctions of the operators I ,  and a,. Hence, 
if the electron magnetic moment coincides with the Bohr magneton, 
then the energy eigenvalues depend only on the sum m + a, where 
m is the eigenvalue of the angular momentum projection operator 1,) 
and a = f 1 is eigenvalue of the operator a,. We can see that the 
energy eigenvalues of the states characterized by the quantum numbers 
(m = ml ,  a = +1) and (m = m2, a = -1) will coincide in the case when 
m l  + 1 = m:! - 1. If the magnitude of the electron magnetic moment 
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differs from P B ,  then the energy eigenvalues of the states (ml, a = +1) 
and (m2 = rnl + 2 ,  a = -1) will be different. The energy difference is 

The measurements the energy difference (1.4) enable to determine the 
magnitude of the electron magnetic moment. 

The values reported by Van Dyck et.al. [17] for electron p, and 
positron p p  magnetic moments are 

To reduce the uncertainties due to environment the special trap was 
constructed by Van Dyck et.al. [18]. These authors give the mean value 
of the 14 runs for the electron magnetic moment [18] 

By assuming that the CPT invariance holds for the electron-positron 
system the weighted mean of the data for both the electron and positron 
was proposed by Mohr and Taylor [9] as single experimental value 

A geonium atom can be also formed with the proton. The comparison 
of the cyclotron frequency of proton and electron enables to measure 
accurately the ratio of proton M p  and electron me masses. The value of 
this ratio reported by Van Dyck et al. [19] is 

By placing the fully ionized carbon 12C6+ in the Penning trap Farnham 
et al. [20] have measured the ratio the ratio of carbon to electron mass 

1.2 Spectroscopy of hydrogenlike atoms 
Recently there has been a drastic increase in the accuracy of mea- 

surements of transition frequencies in hydrogen and hydrogenlike ions. 
This progress is due to the development of the new spectroscopic meth- 
ods. The interferometric methods were superseded by the absolute 
frequency measurement methods. The frequency of 1s - 2 s  transition 
in hydrogen was measured with the relative uncertainty of 2  . 10-l4 
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[21]. The interferometric methods of the frequency measurements are 
based on the comparison of the measured frequency with the frequency 
of interferometer modes. For example the laser cavity can play the 
role of the interferometer. The intermode frequency of interferometer is 
inversely proportional to the distance between the interferometer mir- 
rors. However, the vibrations, thermal fluctuations, and other technical 
noises result in the fluctuations of the interferometer length. The various 
methods applied to compensate the interferometer length fluctuations 
enable to get the relative uncertainty up to 10-~~-10-~ ' .  In spite of the 
fact that the idea of the new methods was proposed in the early works 
on the laser spectroscopy they were realized only when the femtosecond 
laser systems were developed. The spectrum of the femtosecond laser 
pulse, of a few optical cycles temporal width, is the frequency comb 
which spreads from the radio-frequency spectrum up to near ultraviolet. 
The intermode frequency of the comb is stabilized by the radio-frequency 
methods with the frequency of harmonics of the cesium atomic clock. 
The fluctuations of the comb frequencies are traced by heterodyne 
methods in the radio-frequency spectrum. As a result the measured 
frequency is almost directly compared with the frequency of the cesium 
atomic clock. The result of the most accurate measurements made by the 
group at the Max Plank Institute fur Quantenoptik (MPQ) in Garching, 
Germany [21] for the frequency of 1s - 2 s  transition in hydrogen is 

v l s -2~  = 2 466 061 413 187 103 (46) Hz. (1.7) 

The frequency of some other transitions in hydrogen and deuterium 
was measured. The precision of frequency measurements for transitions 
including the high-lying levels is lower because the natural line-width of 
the high-lying states exceeds significantly the line-width of the 2 s  state. 
Table 1.1 shows the frequency of (2SlI2 - 8SJ, 8DJ, 12DJ) transitions in 
hydrogen and deuterium made by the group at the Laboratoire Kastler- 
Brossel, Ecole Normale Superieure, et Universite Pierre et Marie Curie, 

Table 1.1. The frequency of transitions in hydrogen and deuterium [lo] 

Frequency, MHz 
Transition 

Hydrogen Deuterium 

2s1/2 - 8S1/2 770649350.0120(86) 770859041.2457(69) 
2S1/2 - 8D3/2 770649504.4500(83) 770859195.7018(63) 
2S1/2 - 8D5/2 770649561.5842(64) 770859252.8495(59) 
2S1/2 - 12D3/z 799191710.4727(93) 799409168.0380(86) 
2S1/2 - 12D5/2 799191727.4037(70) 799409184.9668(68) 
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Paris, France [lo]. It is seen that the accuracy of measurements is about 
10 kHz. 

The detailed discussion and comparison of results of different mea- 
surements is given in [9, 10, 12, 141. The integral results for low-lying 
levels of hydrogen atom are combined in schematic energy-level diagram 
shown in Fig. 1.1. 

178 MHz 2P3/2 

59 MHz 
F = O  

2466 THz 

.---. Position of 1Sl,2 from Dirac theory 

Figure 1.1. Schematic energy-level diagram for low-lying hydrogen states 

In the cited above researches the Doppler-free two-photon spec- 
troscopy method was used. This method enables to measure the fre- 
quency of the electric dipole forbidden transitions n S  * nlS  and 
n S  H nlD. This method was applied earlier to measure the frequency 
of 1s - 2 s  transition in muonium (pSe- atom) [22] 

V ~ S - 2 s  (pse-) = 2455529002(57) MHz 

and positronium [23] 

V ~ S - 2 s  (ese-) = 1233607216.4(3.2) MHz. 

The adjustment of tlle experimental data for the transition frequencies 
in hydrogenlike atoms with the data obtained by other physical methods 
provides the self-consistent values of fundamental constants and material 
constants of elementary particles. 
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1.3 Experiments on search for electric dipole 
moment of elementary particles and atoms 

There is the following relation between the electron magnetic mo- 
ment m and its spin o 

m = pu, (1.8) 

where p is magnitude of the electron magnetic moment discussed above. 
The same relation holds for other spin-112 particles. The proportionality 
of the particle magnetic moment to its spin is due to the fact that the 
spin o is the intrinsic angular momentum of the particle, i.e. it is the 
only preferential vector in the particle rest frame. If a particle possesses 
the electric dipole moment (EDM), then the same arguments require 
that the EDM should be related with the spin operator. The simplest 
possible relation is 

d = do. (1.9) 

The vectors in both sides of the equation (1.8) have the same transfor- 
mation properties. Indeed, the magnetic moment and spin are invariant 
with respect to the space inversion, because both of them are axial 
vectors according to their nature. Contrary the vectors in the left-hand- 
side and right-hand side of the equation (1.9) differ in their transforma- 
tion properties. The vector of dipole moment d changes sign at space 
inversion while the spin, being the angular momentum operator, remains 
invariable. Further, at  the time reversal transformation the angular 
momentum (defined in the classical mechanics as m [r v])) changes sign 
while the dipole moment remains invariable. Thus the constant d in 
equation (1.9) may be equal only zero, if the particle is described by an 
equation which is invariant with respect to the space inversion and time 
reversal. The equation (1.9) holds only in the case when the symmetry 
with respect to the space inversion (P) and time reversal (T) is violated. 
Indeed if we add the term -dE to the Hamiltonian (1.1) then the 
equation for the spinor wave function 11, = becomes P and T 
non-invariant . 

The violation of the space inversion symmetry in the weak interactions 
[24] stimulated interest to the problem of EDM. However, the violation 
the P and charge conjugation (C) symmetry in weak interactions does 
not mean the violation of symmetry with respect to the combined C P  
transformation. Landau [25] pointed out that for existence of the electric 
dipole moment of elementary particles it is not sufficient the breakdown 
of P and C symmetry in separate. The violation of the combined C P  
symmetry is required. After the discovering of the CP violation in the 
decay of K O  meson [26] the interests to the experiments on search of EDM 
of elementary particles and atoms has significantly enhanced [27, 281. 
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The leading place among the experiments on the measurements of the 
electric dipole moment of the elementary particles takes the experiments 
on neutron EDM. The main idea of the experiments proposed by Smith, 
Purcell, and Ramsey work [29] consists in the measurement of the 
neutron spin precession frequency in parallel homogeneous magnetic and 
electric fields. Indeed if the equation (1.9) holds then the neutron moving 
in the magnetic Bo and electric Eo fields will precess a t  frequency 

when the direction of electric and magnetic fields coincides. The rever- 
sion of the electric field will result in the precession frequency 

The measurements of the difference between the frequency (1.10) 
and (1.11) 

AS2 = R+ - R- = 4dEo/h (1.12) 

enable to determine the magnitude of the neutron EDM d. 
The upper limit for the neutron EDM is estimated now [27, 28, 301 as 

d,/e 5 6.3. cm, 

Recently the international collaboration at Paul Scherrer Institute, 
Switzerland has announced the program on the improved measurement 
of the electric dipole moment of the neutron [31]. It is planned to get a 
sensitivity of 

d,/e FZ 2 .  cm. 

It should be noted that the mechanism of the elementary particle 
EDM based on the violation of CP and T invariance (see (1.9)) is not 
the only proposed mechanism. The neutron scattering by electric field 
was studied in the classical paper of Schwinger [32]. He proposed the 
mechanism based on the interaction of the magnetic moment of moving 
neutron with the electric field of the atom. In this case the equation for d 
is d, = (plmc) [op],  the scattering of neutron is due to the spin-orbital 
interaction [32-341. The mechanism of the induced neutron EDM, based 
on the use of the interaction Hamiltonian of the type Hint = -aiEE2/2, 
was considered in the series of papers [35-391. The induced EDM is 
proportional to the strength of the electric field. 

The EDM of charged particles can be measured in experiments where 
the neutral atom interacts with the superposition of magnetic and elec- 
tric fields. However as far as the neutral atom, in contrast to charged 
particle, can be infinitely long in the region of space in which the electric 
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field is non-zero, it should mean that the integral electric field at each 
individual charge of atom is equal to zero. It was shown by Schiff [40] 
that the non-zero electric field at atomic nucleus can be compensated 
by the forces of the non-electric nuclear interaction of nucleons, or by 
the interaction of the nucleus magnetic moment with the gradient of 
magnetic field produced by electrons of the atomic shells. 

The experiments with the paramagnetic atoms give the possibility 
to measure, in principle, the EDM of electron. Sandars [41, 421 has 
demonstrated that when the relativistic effects are taken into account 
then the ratio of the atomic EDM d A  to the electron EDM d ,  is about 
d A / d ,  % z302. This ratio can be quite large for suitable paramagnetic 
atoms. The reported results for the experimental limit on the size of 
electron EDM are [43, 441 

The spin of electron shells in diamagnetic atoms is equal to zero thus 
the nucleus EDM can be in principle measured. In this case the nucleus 
spin is initially polarized by the optical methods and then the frequency 
of atomic spin precession in the collinear magnetic and electric fields is 
measured. The principle idea of the method is the same that is used to 
measure the EDM of neutron. The upper limits for the atomic EDM of 
lg9Hg [45] and 12gXe [46] are 

d ('"H~) /e 5 8.7. cm, 

d  ( 1 2 g ~ e )  /e < 0.7. cm. 

If we assign the atomic EDM to the valent neutron in the even-odd 
nucleus of l"Hg, then the obtained data provide the estimations for the 
upper limit of the neutron EDM. 

Concluding the discussion we can see that the series of recent experi- 
ments bring out clearly that the behavior of elementary particles in the 
processes of their interaction with the electromagnetic field does not al- 
ways adequately described by the basic equations of quantum mechanics. 
There are some specific features that require the further understanding. 
Indeed the magnitude of the electron magnetic moment does not coincide 
with the Bohr magneton, the hydrogenic spectrum differs from the spec- 
trum calculated on the basis of non-relativistic and relativistic equations 
of the quantum mechanics, etc. All these discrepancies have been already 
explained in the modern theory, but the reasonable coincidence between 
the experimental and calculated data can only be obtained if we use the 
quantum field theory methods. The secondary quantization procedure 
is certainly in close connection with the methods of quantum mechanics, 



10 Introduction 

nevertheless it is out of the frames of the canonical quantum mechanics. 
This situation stimulates some essential questions of the fundamental 
and applied manner. Firstly, whether these discrepancies indicate on 
the imperfection of the basic principles of quantum mechanics, i.e. the 
lack of its self-consistency, or, simply, by improving the basic equations 
of quantum mechanics we can get the further insight into the nature of 
these discrepancies. Secondly, the main difference and main advantage 
of the quantum field theory approach is in the account for the virtual 
processes. As a result the number of particles involved into the process 
of some incident particle scattering does not fixed, while in the frame 
of quantum mechanics theory the number of particles is fixed by the 
normalization condition. Probably it gives us some indications how we 
should generalize the equations of quantum mechanics. Thirdly, it is 
evident that the problem of electron motion in the Coulomb field is not 
equivalent to the hydrogen atom problem, because the hydrogen atom 
problem is a two-body problem. The nucleus of hydrogenlike atoms has 
a finite mass, most of the nuclei have the non-zero spin and magnetic 
moment as well. The modern spectroscopy feels reliably the effects 
associated with the finite mass, spin, and magnetic moment of nucleus, 
it gives a serious motivation to develop the methods for solving of the 
two-body problem. This problem is two-fold: to develop the consistent 
procedure of deriving of the Hamiltonian of the two-body problem, and 
to develop the adequate methods of the mathematical analysis of the 
obtained equations. 

I have tried in this book to present the atomic spectroscopy theory in 
deductive manner by starting from the simplest models to come gradu- 
ally to the most general models. The book consists of the two main parts. 
The first part is devoted to the development of the hydrogenic spectrum 
theory based on the use of the Schrodinger equation, Pauli equation, 
Klein-Gordon-Fock equation, and Dirac equation. The comparative 
analysis of the spectra obtained from the solution of the above equations 
is given. Simultaneously, the method of deriving of the Hamiltonian 
for many-body problem from the equations for particle motion in the 
external electromagnetic field is developed. The method is based on the 
use of the canonical Lagrangian formalism. As an examples illustrating 
the main points I have tried to use the examples from the modern 
spectroscopy and light-matter interaction physics. The second part of 
the book is devoted to the development of the spin-112 particle theory. 
The base problems are here: (1) the energy spectrum of hydrogenlike 
atoms; (2) the spectrum of geonium atom; (3) the problem of electric 
dipole moment of spin-112 particles. The close connection between all 
these problems is demonstrated. 



Chapter 2 

SCHRODINGER EQUATION 

The first quantum mechanical theory, that gave the explanation of 
the discrete spectra of atomic emission, was based on the equation 
proposed by Schrodinger [2] in 1927. In this chapter we discuss briefly 
the basic principles and main concepts of quantum mechanics. We 
start with the Schrodinger and Heisenberg equations, then we introduce 
the main quantum mechanical operators, and consider the properties 
of the wave functions and operators. The problem on the electron 
motion in Coulomb field for Schrodinger equation is analyzed in details. 
The analysis of the problem on the two oppositely charged particles 
interaction enables us to introduce the reduced mass. The concept of 
reduced mass plays the crucial role in the theory of atomic spectra. 
Finally we consider the problem on the energy spectra of atom placed 
in atomic trap and analyze the specific features of interaction of the 
trapped atom with electromagnetic wave. 

2.1 Schrodinger equation 
To remind the basic principles of the quantum mechanics we start 

here with the Schrodinger and Heisenberg equations and discuss briefly 
the boundary conditions for the states of discrete and continuous energy 
spectra for particle moving in attractive potential. 

2.1.1 Schrodinger and Heisenberg equations 

The first quantum-mechanical equation was proposed by Schrodin- 
ger [2] in 1927. The Schrodinger equation is 
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where Ho is the Hamiltonian 

p2 Ho = - + U ( r )  . 
2mo 

The first term in the Hamilton Ho is the kinetic energy, which depends on 
the momentum operator p = -ihV, and the second term is the potential 
energy depending on the coordinate operator r .  The particle coordinate 
r and momentum p operators obey the following commutation relations 

where i  = 1,2 ,3 .  
The solution of equation (2.1) for the case of free particle, i.e. 

U ( r )  = 0, is 

$ ( r ,  t )  = [Ck exp ( ikr)  + C-I,  exp ( - ikr)]  exp (-i?), 
k 

where the energy of particle Ek in the state with the momentum hk is 

the constants C*k determine the initial state of the particle and can be 
determined from the initial condition 

$I ( I - ,  0) = [G exp ( ikr)  -t C-k exp ( - ikr)]  
k 

Thus the state of the free particle is described by the superposition 
of plain waves, and the particle energy depends quadratically on its 
momentum. 

The general algorithm of obtaining equation for particle interacting 
with the electromagnetic field from free particle equation consists in the 
use of the following replacements 

a a 4 
ih- -t ih- - qp, -ihV -+ -ihV - - A ,  

at at C 
(2.3) 

where q is the particle charge, cp ( r ,  t )  and A ( r ,  t )  are the scalar and 
vector potentials of the electromagnetic field, respectively. By applying 
the replacements (2.3) to the Hamiltonian of free particle, we get the 
following wave equation for the particle interacting with the electrornag- 
netic field 

a$ (r t )  ih- = [& (p - !A) + qp] $ ( r ,  t )  
at 
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The eigenfunctions of the equation (2.1) enable us to determine the 
quantum mechanical average of the arbitrary functions f (r ,  p) of oper- 
ators r and p. The quantum mechanical average are determined by 

The quantum mechanical representation in which the operators are the 
function of canonically conjugated operators r and p, while the wave 
functions are time-dependent, is called by Schrodinger representation. 

Along with the Schrodinger representation the Heisenberg representa- 
tion is widely used in quantum mechanics. In Heisenberg representation 
the operators are time-dependent. The temporal evolution of the oper- 
ators is described by the Heisenberg equation 

df 1 af - = - [f, HI + at. 
d t  ih 

If the equation (2.5) and Hamiltonian (2.2) are applied to the coor- 
dinate operator r then we get the following equation for the particle 
velocity 

It is seen that the relationship between the particle velocity v and 
momentum p coincides with that in classical mechanics. 

In the similar way, we obtain the expression for the velocity of a 
particle interacting with the electromagnetic field 

where we have used the Hamiltonian of the equation (2.4): 

The equation (2.6) shows that the operator p corresponds to the gener- 
alized momentum in classical electrodynamics 

The generalized momentum plays an auxiliary role in classical and 
quantum mechanics, but in both cases the observable value is the particle 
velocity. 



16 Schrodinger equation 

This book is devoted to the study of energy spectra of the hydrogenlike 
atoms, therefore we shall use mainly the Schrodinger representation. The 
Heisenberg representation is convenient when we study the evolution of 
atom driving by some external electromagnetic wave. Nevertheless the 
Heisenberg representation will also widely used here, because it enables 
us to study the symmetry properties of different Hamiltonians and to 
define the integrals of motion. Indeed according to the equation (2.5) 
the operator f ( r , p )  is integral of motion if it commutcs with the 
Harniltonian 

[f, HI = 0. 

It is well known that the integrals of motion play an exceptional role in 
the classical and quantum mechanics. 

2.1.2 Continuity equation, boundary conditions, 
a n d  normalization condition 

The equation for the bilinear combination of the wave function enable 
us to introduce the concept of the charge density and current density of 
the matter field. Multiplying both sides of equation (2.4) by complex 
conjugated wave function $* and subtracting from the obtained equation 
its complex conjugated we get 

This equation can be written in the form 

The equation (2.8) has the form of the classical continuity equation. 
Hence, the function p (r ,  t )  can be associated with the charge density of 
a particle, and the function j (r, t) plays the role of the electric current 
density. 

Integrating the equation (2.8) over the whole space we get 
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If the particle is in the bound state of some potential well then the 
current density should be equal to zero at infinity. As a result we obtain 
the following boundary condition at infinity 

The equation (2.9) together with the boundary condition (2.10) gener- 
ates the following normalization condition for the wave function 

1 yi (r ,  t)12 d~ = 1. 

It is seen that the condition (2.11) means that the charge associated 
with the particle is always equal to the elementary charge q = & lei. 

The equations (2.1) and (2.4) are the second order differential equation 
with respect of the space variables. Therefore to define unambiguously 
the radial wave function we need additionally in the second boundary 
condition. It is assumed usually that the wave function should be finite 
everywhere. For example, if we consider the particle motion in the 
Coulomb field it is assumed that the wave function should be finite at 
r = 0. 

For the particle interacting with the attracting static electric and mag- 
netic fields, the equation (2.4) together with the boundary conditions at 
r -+ oo and r = 0 generates the eigenvalue problem 

The eigenfunctions u, (r) corresponding to the different eigenvalues E, 
are orthogonal 

P 

uk (r) urn (r) d V  = 6,,. 

Usually, the particles, producing the external (with respect to consid- 
ered particle) fields, are located in the finite spatial volume, therefore 
the potentials of electromagnetic field, produced by them, tend to zero 
with the increase of distance: A (r)JT,, -r 0, cp (r)lT,, -+ 0. As a 
result, the potential energy of a particle, interacting with the external 
fields, is equal to zero a t  r -+ oo. Hence, the energy of the bound states 
of particle is negative, En < 0. 

If En > 0 it means that the kinetic energy of a particle at r -r 

-r oo is non-zero, hence the particle can make an infinite motion. The 
spectrum of the positive energy eigenvalues is continuous. As far as 
A (r)  I,,, -+ 0, cp (r)lT-, -+ 0 the solutions of the equation (2.12) have 



18 Schrodinger equation 

the following asymptotic form at r t oo 

where k = d-/h, and X m  are the spherical harmonics. 
The normalization condition for the wave functions of the continuous 

spectrum is also determined by the equation (2.9). The general form of 
solution is 

$J (r) = Rki (r) kim (6, V) . 

The spherical harmonics are normalized by the condition 

In accordance with the definition (2.8), the charge of the spherical 
layer (r, r + dr) is 

dq = q (1 I+ r2 dfl) dr. 

It is assumed that the unite charge should pass through the spherical 
surface of the infinite radius in the unit time. Hence 

As a result the normalization condition is 

1 R~Y)*  (r) ~ 1 : )  (r)  r2 dr = 2x6 ( k  - k l )  , 

where R ~ T )  (r)  is the asymptotic form of the positive energy solutions 
of equation (2.12). 

2.1.3 Gauge transformation 
The equation (2.4) is gauge invariant. Indeed, if simultaneously with 

the gauge transformation of vector and scalar potentials 
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we make the following transformation of the wave function 

then the Schrodinger equation (2.4) 

becomes 
a*' iti- = H (At, cp') $I. 
at 

It is seen that the Schrodinger equation does not change its form. 
The gauge transformation of the wave function (2.13) does not change 

the quantum mechanical average of the operators f ( r )  which depend on 
the coordinate operator only. At the same time, the quantum mechanical 
average of the generalized momentum operator p is changed 

This is not unexpected, because the generalized momentum operator 
does not correspond to the observable value. As we have mentioned 
above the observable value is particle velocity. For the quantum me- 

9 chanical average of the particle velocity operator, v = p - -A, we have 
C 

It can be easily shown also that any degrees of the velocity operator are 
gauge invariant too. 

Hence, the quantum mechanical averages of the arbitrary functions 

of the coordinate and velocity operators, f 
invariant values. 

2.2 Quantum mechanical operators 
In previous section we have introduced the coordinate, momentum, 

and Hamiltonian operators. The exceptional role in atomic spectroscopy 
plays the parity operator and angular momentum operator. Here we dis- 
cuss shortly the properties of these two additional quantum mechanical 
operators. As we have already mentioned above the Hamiltonian is the 
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basic operator in quantum mechanical theory. Its quantum mechanical 
average is the energy of a system. The energy of an isolated system 
of particles should not vary when we make the transformations of the 
reference frame. The quantum mechanical operators are closely related 
with the operators of the orthogonal transformations of the reference 
frame. 

2.2.1 Momentum operator 

The energy of an isolated system of particles is invariant with respect 
to the spatial translation, i.e. when the coordinates of all particles 
in the system are changed in the following way: r, -+ r, + 6r. We 
can consider the infinitesimally small translation 6r, because any finite 
translation is a sum of the infinitesimally small translations. If we apply 
this transformation to the wave function $ (rl,  1-2, . . .) it becomes 

Thus the operator 
~ = 1 + 6 r ~ ' V ,  

is the operator the infinitesimally small spatial translation. Since the 
energy of isolated system does not change under spatial translation, it 
means 

TH$ = HT$. 

As we have already mentioned, if operator commutes with the Hamil- 
tonian, then the physical variable corresponding to this operator is 
conservative. In classical mechanics the physical variable, which is 
conservative due to the homogeneity of space, is the momentum. Hence 
the operator Eva is proportional to the momentum operator. The 

a 
coefficient of proportionality can be found if, for example, we calculate 
the quantum mechanical average of operator p = -ihV for free particle 
describing by plane wave $k (r) = Cexp (ikr) 
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Thus, the operator 
p = -ihV 

is the quantum mechanical momentum operator. 

2.2.2 Space inversion and parity operator 
The space inversion transformation consists in the replacement r + 

-+ - r. The operator P generating this transformation is called by the 
parity operator 

P$ (4 = $ (4 . 

Let us apply the parity operator to the Hamiltonian (2.7). The gen- 
eralized momentum p and vector potential A are both polar vectors, 
therefore at  the space inversion transformation we have Pp = -p and 
PA = -A. Hence the kinetic energy remains invariable at  the space 
inversion. If the potential energy is invariant with respect to the space 
inversion U (r) = U (-r), i.e. if the external potential is centrosymmet- 
ric, then the parity operator P commutes with the Hamiltonian (2.7) 

[P, H] = 0. 

The commuting operators have the common set of eigenfunctions. 
The eigenvalues of the parity operator ca,n be found in the following way. 
On the one hand 

On the other hand 

Hence 
Pl,2 = fl. 

As a result the wave functions of the particle, moving in the cen- 
trosymmetrical potential y (r) = y (-r), either remain invariable or 
change the sign under the space inversion. The state in which the wave 
function does not change its sign is called by the even state, if the wave 
function changes its sign under the space inversion transformation then 
the corresponding state is called by the odd state. 

Thus the invariance of the Harniltonian with respect to the space 
inversion transformation manifests the parity conservation law: if an 
isolated ensemble of particles has a definite parity, then the parity 
remains invariable in the process of ensemble evolution. 

The wave functions of the even states are the scalar functions, the 
wave functions of the odd states are the pseudoscalar functions. 
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2.2.3 Three-dimensional rotations and angular momentum 
operator 

The rotation of an isolated ensemble of particles, as a whole, around an 
arbitrary axis does not change the relative positions of particles, hence, 
the state of the whole system should remain invariable. Let us consider 
infinitesimally small rotation 6p around the z axis. Under this rotation 
the particle coordinates are transformed in the following way 

x' = x + Spy, 9' = y - Spx, z' = z .  

The transformation of wave function is 

a$ 0 + (xl, 7j1, z') = + (x, y, z) + Spy- - Spx- = ax 8~ 

Hence the operator of infinitesimally srnall rotation around the z axis is 

R, (Sp) = 1 + Sp 9- - X- ( ax l) 
Under the rotation around the arbitrary axis Sq the rotation operator 
becomes 

R (69) = 1 - iSql, 

where the angular momentum operator h1 is defined as 

hl = [rp] = -ih [rV] 

The components of the angular momentum operator 

' 
filx = YPz - ZPU, hly = zp, - xp,, hl, = xpy - yp, 

obey the following commutation relations 

where a,  /3,r = x, y, z and e,py is the completely antisymmetric tensor 
of the third order. The elements of this tensor are equal to zero if 
any two of its three indexes coincide. The non-zero elements of this 
tensor correspond to the three different indexes. It is usually assumed 
that ex,,, = 1 and any other elements obtained by permutation of these 
indexes are equal to minus unity, if the number of permutations is odd, 
and unity, if the number of permutations is even. 
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The commutation relations for the angular momentum operator and 
operators of coordinate and generalized momentum are 

The operator of the angular momentum square 

commutes with each of the component of operator 1. Indeed 

In the spherical set of coordinates the angular momentum square oper- 
ator is 

+ 2 2  (,in 8;) ] . 
sin2 8 dp2 sin 0 dB 

(2.18) 

It is seen that the operator (2.18) coincides with the angular part of the 
Laplace operator, written in the spherical coordinates 

As far as operators l2 and 1, commute then they have the common 
set of eigenfunctions. With the help of commutation relations (2.15) it 
can be easily shown that the common eigenfunctions obey the equations 

where 1 is non-negative integer, 1 = 0,1,2, . . . , and the z-projection of 
angular momentum takes the values m = -1, -1 + 1, . . . , l .  The solutions 
of the equations (2.20) are the spherical harmonics 

. , ,, 

(2.21) 
where Plm (cos 0) is the associated Legendre polynomial. 

It can be easily shown that the Hamiltonian (2.2) for the case of 
particle motion in the spherically symmetric potential cp (r)  = cp (r)  
commutes with the angular momentum operator. Indeed the equation 
for the angular momentum operator in spherical coordinates is 
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It is seen from (2.22) that the angular momentum operator commutes 
with U (r). On the other hand, as it follows from the equations (2.17)- 
(2.19) the operator 1 commutes with the Laplace operator. Thus when 
we deal with the eigenvalue problem on particle motion in the spherically 
symmetric potential cp (r), we can always express the eigenfunctions in 
terms of the spherical harmonics (2.21). 

It is evident that the angular momentum operator is invariant with 
respect of space inversion transformation, because both coordinate and 
generalized momentum operators change sign under the space inversion. 
Hence the eigenfunctions of the problem on the particle motion in the 
spherically symmetric potential have to have the definite parity. The 
parity of the different states are determined by the parity the spherical 
harmonics (2.21). By applying the parity operator to the spherical 
harmonics we get 

i.e. the parity of state is defined by 

The angular momentum operator in the cylindrical set of coordinates 
is 

It is evident from this equation, that the angular momentum projection 
operator I ,  commutes with the Hamiltonian (2.7) when U = U (p, z) 
and A = e,A (p, z). In this case, as it follows from the equations (2.20) 
and (2.21), the angular part of the wave function is given by exp (imcp). 
Hence the parity of eigenstates for the problem of particle motion in the 
external fields of cylindric symmetry is defined by 

2.3 Particle motion in the Coulomb field 
Let us consider the problem on a particle motion in the attracting 

Coulomb field. In this case the potential energy of a particle is 

2 e 2  U ( r )  = -- 
r 

and the equation (2.12) became 

[-& ($ + :$ - 5) - $1 qE ( r )  = E$E (r)  . (2.27) 
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We have shown above, that the Hamiltonian of the equation (2.27) 
commutes with the operators of parity, angular momentum square, 
and projection of angular momentum. Therefore the wave function 
can be expressed in terms of the eigenfunctions of the parity, angular 
momentum, and projection of angular momentum operators. However, 
as we have seen, the parity of states in the spherically symmetric external 
field is unambiguously determined by the angular momentum, therefore 
to define the particle state we can use the following quantum numbers: 
energy E, angular momentum 1, and projection of angular momentum m. 

2.3.1 Discrete spectrum 
As we have discussed above for the bound states of electron in the 

Coulomb field the boundary conditions require that the wave function 
should be finite at r = 0 and turn to zero at r -+ co 

The analysis, given in the previous section, has shown that in the 
case of particle motion in the spherically symmetric potential the wave 
function can be taken in the form 

By substituting the latter equation into the equation (2.27) we get the 
following equation for the radial part of the wave function 

d2 2 d 1 ( 1 +  1)  2m02e2 1 -+  -- ---- +-- R (r )  = 0. (2.29) 
dr2 r dr r2 

Taking into account that the bound states are the states of the negative 
energy, it is convenient to introduce the following notation 

The general solution of the equation (2.29) is 

R (r) = CIF (1 + 1 - y, 21 + 2 , 2 ~ r )  t i 

where F (a, b, z )  is the confluent hypergeometric function, y = Z/(nae). 
Here aB is the Bohr radius 
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The asymptotic form of the confluent hypergeometric function F (a, b, z) 
at z = 0 is 

F (a ,  b, la1 -t 0) -t 1. 

Hence we should assume that C2 = 0, because the second term in 
the right-hand-side of the equation (2.30) does not obey the boundary 
condition at r = 0. The asymptotic form of confluent hypergeometric 
function F (a, b,  Z) at z -t oo is 

It is seen that the second term in this equation infinitely increases when 
r -t co. However, this term vanishes when the argument a of the 
confluent hypergeometric function F (a, b, z) is a non-positive integer. 
Thus the solution (2.30) satisfies the boundary conditions when C2 = 0 
and 

1 + 1 - y = - n , ,  (2.32) 

where n, is the non-negative integer. 
The latter equation yields the following equation for the energy spec- 

trum of bound states 

where 
n = n , + 1 + 1 =  1,2,3, ... 

Notice, that the energy spectrum (2.33), resulted from the solution of 
the quantum mechanical problem on the electron motion in the Coulomb 
field, coincides with the spectrum that was obtained with the help 
application of the Bohr-Sommerfeld quantization rules to the classical 
equations. The quantum number n, is called by the radial quantum 
number. We shall see later that the radial quantum number determines 
the number of nodes of the radial wave function R( r ) .  The quantum 
number 1 is usually called by the azimuthal quantum number. The 
quantum number n is called by the principle quantum number. 

Before the quantum mechanics was completely worked out, the spec- 
troscopic notations were developed to describe the different hydrogen- 
like energy levels in an atom. Basically, the notation consisted of a 
number (representing the value of n) followed by a letter (representing 
the value of 1). The letters originally described the characteristics of 
the spectral lines, like "sharp", "principal", etc. The correspondence 
between the values of 1 and letters is given in Tab. 2.1. 



Particle motion in the Coulomb field 27 

Table 2.1. Spectroscopic notation 

1 - - 0 1 2 3 4 5 ... 
letter 4 s P d f g h . . . 

It can be easily shown that the ground state of the hydrogenlike atom 
is always the s state. Indeed, the substitution R ( r )  = f (r)  / r  transforms 
the equation (2.29) to the form 

It is seen that the last equation coincides with the Schrodinger equation 
for particle moving in the one-dimensional potential well of the form 

The second term in the right-hand-side of this equation is the energy of 
centrifugal motion. This energy is definitely positive at 1 > 0. Hence, the 
energy of fundamental states at I > 0 is always higher than the energy 
of the s state. It can also be stated that the energy of the fundamental 
state for a given 1 increases with the increase of 1. 

In the case when a is a non-positive integer, the confluent hypergeo- 
metric functions F (a, b, z) can be expressed in terms of the Laguerre 
polynomials: F(-n, b + 1,z)  = ( T ( b  + l)n!/I'(b + 1 + n ) ) ~ % ) ( z ) .  Hence 
the radial wave function R (r) can be rewritten in the following equiva- 

where 6, = l/?zaB. By using the normalization condition 

i R:~ (r)  r2 dr = 1, 

0 

we get the following equation for the normalized wave function 
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The explicit form of the wave functions for a number of states in 
hydrogen atom is given below: 

1 I s  - state (n  = 1,  1 = 0 )  

2  2s - state (n = 2, 1 = 0 )  

RzS ( T )  = F e x P  2a38 (--) 2 a ~  (1 - k) ; 
3 2p - state (n = 2, 1 = 1) 

4 3s - state (n  = 3,  1 = 0 )  

2 
8 3 .  ( r )  = - e x  ( -  1  - 21 + 2 (L)') ; 

3@ 3as 3aB 3 3aB 

5 3p - state (n = 3,  1 = 1) 

6 3d - state (n = 3,  1 = 2)  

The graphs of the corresponding functions is shown in Fig. 2.1. By 
taking into account the definition of the principle quantum number n: 

n = n , + l + l ,  (2.36) 

we can see that the number of zeros of the wave function is really 
determined by the radial quantum number n,. The wave functions of 
the s  states are maxima at r  = 0 ,  the wave functions of states with 1 > 0  
turn into zero at this point. 

We have mentioned above that the product R 2 ( r )  r2 ,  proportional to 
the probability for particle to be inside the spherical layer ( r ,  r  + dr ) ,  
is called by the charge density. The charge density distribution for the 
above states is shown in Fig. 2.2. It is seen that the maximum of charge 
density moves away from the center with the increase of the principle 
quantum number n. 
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2.3.2 Continuous spectrum 
The continuous spectrum of the positive energy eigenvalues is 

stretched from zero up to infinity. Each energy eigenvalue is infinitely 
degenerated with respect to the angular momentum 1, which runs all 
integers from zero up to  infinity, and its projection m, taking all possible 
values, Iml < 1, a t  given 1. 

The general solution is given by the equation (2.30)) where we should 
again assume the coefficient C2 equal to zero in order to satisfy the 
boundary condition a t  r = 0: 

where 

The asymptotical form of the solution (2.37) at infinity is 

r (21 + 2)  exp (-&) sin ( k r  + (&) ln 2kr - 2 
R k l  (r) = C k l  k r  

(2.38) 
where 61 = a r g r  (1 + 1 - iZ/(kaB)). By normalizing the wave function 
in accordance with the procedure discussed in subsection 2.1.2, we get 
the following equation for the normalization coefficient Ckl: 

ckl = /=--z-- 1 - exp ( - 2 r Z / ( k a B ) )  r (21 + 2 )  n / S 2 + ( & ) ' .  2 

s=l 

2.3.3 Matrix elements of transitions 
The rate of the radiative transitions between the atomic states de- 

pends on the magnitude of the matrix elements of transitions 

It is convenient to make the following transformation of the radius 
vector r: 

r = e+r sin O exp (ip) + e-r sin 0 exp (-icp) + e,r cos 19, 

where e* = (e, rf iey) 12. In this case the right-hand-side of the 
equation (2.39) transforms into the product of integrals over the radial 
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and angular variables. The integrals over the angular variables give us 
the selection rules for the dipole allowed transitions. They are 

(llml I s in8 exp (iy) Il2m2) = 

The matrix elements for the component (re-) can be easily obtained 
from the last two equations in (2.40) with the help of the equality 

(llmlI sin8exp (-icp) llama) = (lama1 sineexp (iy) Illml)* 

Thus the selection rules for the dipole allowed transitions are: 
a) linear polarized wave 

b) circular polarized wave 

In the last case the signs plus and minus correspond to the right and left 
circular polarized waves, respectively. 

The radial matrix elements are 

Particularly, for the transition 1s + nP we get 
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Table 2.2. Radial matrix elements of transitions 1s --, nP 

Table 2.2 shows the numerical values of the matrix elements 1s -+ nP 
when n is varied in the range 2 5 n 5 22. 

The equation (2.42) enables us to find the asymptotic form of the 
matrix elements from the ground state to the high-lying quasiclassical 
nP states. In the case when n >> 1 we get from the equation (2.42) the 
following result 

Thus, for these transitions, the oscillator force decreases with the in- 
crease of the principle quantum number as l/n3. In Fig. 2.3 the matrix 

Figure 2.3. The magnitude of the matrix elements of nP 1s transitions in 
hydrogen as a function of the principle quantum number n. The solid curve is the 
exact function (2.42), the dashed curve is approximation (2.43). The dashed curve is 
shifted down for convenience 
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elements calculated on the basis of equations (2.42) and (2.43) are shown 
in comparison. For the illustration purposes we assume the coefficient C 
equal to C = 2, but at C = 2.2 the two curves in Fig. 2.3 coincide almost 
completely in the region n 3 7. There is some discrepancy in the region 
n < 7. But by comparing the equations (2.42) and (2.43) we can see 
that according to equation (2.42) in the region n < 7 the decrease is 
more fast, therefore in this region the higher powers of l ln  should be 
included in asymptotic equation (2.43). 

2.4 Hydrogen atom 
The hydrogenlike atom consists of the electron and nucleus. The 

atomic nucleus has the finite mass, therefore the nucleus of the hydrogen 
atom is also involved into the motion. Hence, the energy spectrum must 
depend on the nucleus mass. If the ratio of electron mass to nucleus 
mass (in the hydrogen atom this is the ratio of electron mass to proton 
mass m,/m, = 5 lo-*) is taken as a smallness parameter, then the 
energy spectrum of electron in the Coulomb field gives us only the zero 
order approximation for the hydrogen atom spectrum. The total energy 
of atom is the sum of the electron energy and nucleus energy. Similar 
the total momentum, and total angular momentum of atom are the 
sums of them for electron and nucleus. In the processes of absorption 
or emission of photons by an atom, the conservation laws hold for whole 
isolated system, therefore the motion of electron in the process of photon 
absorption or emission is always accompanied by the motion of nucleus. 
Therefore if we would like to increase the accuracy of calculated energy 
spectra for hydrogenlike atom we should take into account the motion 
of the atomic nucleus. 

The account for the finite nucleus mass provides the simplest hydrogen 
atom model. The further development of this model will be given in 
the next chapters. Here, we start with the study of the influence of 
the finiteness of the nucleus mass on the energy spectra of hydrogenlike 
atoms. 

2.4.1 Hamiltonian of two-particle problem 
The Hamiltonian of system consisting of two charged particles with 

the Coulomb interaction is 

where q, and qb are the charges of particles. It is seen that the Hamil- 
tonian (2.44) does not commute with momentum operators for each 
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individual particle, but it commutes with the total momentum operator 

It means that the variation in the electron momentum of free atom 
is always accompanied by the variation in the nucleus momentum. 
However, the coordinate of the atomic center of mass does not vary, 
because the total momentum is an integral of motion. Therefore it is 
convenient to introduce the center-of-mass coordinate, R ,  and relative 
position coordinate, r: 

Similar to the momentum operators, the operators of angular momen- 
tum of each individual particle do not commute with the Hamiltonian 
(2.44), but the total angular momentum operator 

commutes with the Hamiltonian (2.44). By taking into account that the 
angular momentum operators 1, and lb commute with each other and 
both of them commute with the Laplace operators Aa,b we get for the 
total angular momentum operator 

Thus the total angular momentum operator L is the integral of motion, 
while the angular momenta of the individual particles are not conserved. 

If the transformations (2.46) are applied to the equation (2.47) we get 

hL = [rp] + [RP] , 

where 

Thus the total angular momentum L is the sum of the angular momen- 
tum of center of mass and angular momentum of the relative motion of 
particles. 
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2.4.2 Reduced electron mass 
If the transformations (2.46) and (2.49) are applied to the Hamilto- 

nian (2.44), we get 

where m, is the reduced electron mass, defined as 

If an atom is placed into the atomic trap, the potential of which 
possesses the central symmetry, then the total angular momentum of 
atom L is still the integral of motion. Indeed, if the potential energy 
of a trap depends only on the magnitude of the radius vector R, i.e. 
Utrap = U ( R) we get 

The Hamiltonian for an atom, placed in the atomic trap, is 

Thus we can see that the Hamiltonian (2.52) is the sum of two terms. 
One of them depends on the relative position coordinate, r, another term 
depends on the center-of-mass coordinate, R. It is seen that the angular 
momentum operator of the relative motion of particles [rp] and angular 
momentum operator of center of mass [RP] commutes separately with 
the Hamiltonian (2.52). Hence, both angular momenta are the integrals 
of motion. In this case the two-particle wave function $ (r,, rb) is 
factorized, i.e. it becomes a product of the wave functions depending on 
the coordinates r and R in separate 

The wave functions f ( r )  and g (R)  obey the following equations 

ti2 
( - 2 ( m a  + mb) 

A, + U (R) ) (R) = E ( ~ ) ~  (R)  
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It is seen that the Hamiltonian of the equation (2.53a) will completely 
coincide with the Hamiltonian for the problem of electron motion in 
Coulomb field, if we substitute the electron mass in equation (2.29) 
by the reduced mass defined by the equation (2.51). Hence without 
any additional analysis, we can easily write the equation for the energy 
spectrum of the hydrogenlike atom, when q, = - lei and qb  = Z [el 

where me is the electron mass, and m, is the nucleus mass. 

2.4.3 Atom in trap 
In the case of the free atom (U(R) = 0) the solutions of the equa- 

tion (2.53b) are the plain waves $ (R) = CK exp ( iKR).  To find the 
wave function $ (R) in the case of trapped atom, we need in the profile 
of the potential well of atomic trap. In the vicinity of its bottom, thc 
potential energy of the atomic trap can be approximated by the parabolic 
potential well: 

U (R) = U (0) + a ~ ~ .  

By accounting the spherical symmetry of the problem, the wave function 
of the equation (2.53b) can be taken in the following form 

where the radial wave function gl (R) obeys the following equation 

d2g, 2 dgi ( 2 ~  1 ( 1 +  1)  -+--+ - 
dR2 R d R  R~ ( y ) 2 R 2 ) g l = 0 ,  (2.55) 

where 
M = ma + mb, !d2 = 2 a l M  

The solutions of the equation (2.55) are again the confluent hypergeo- 
metric functions. By taking into account the boundary conditions that 
were discussed in the previous section, for eigenfunctions of the equation 
(2.53b) we get 
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where ,B = M a / & ,  and n R  is the non-negative integer. The spectrum of 
the energy eigenvalues is defined by 

Similarly to the electron motion in the Coulomb field, the spectrum 
(2.57) is degenerated with respect to the combination of the quantum 
numbers n R  and I .  In this case, the combination is the sum of doubled 
radial quantum number and orbital quantum number, p = 2 n ~  + 2 .  

2.4.4 Interaction of trapped atom with electromagnetic 
field 

Let us consider the interaction of the trapped atom with the elec- 
tromagnetic field. For the hydrogenlike atom, we have qa = - lei and 
qb = Z jell and the Hamiltonian of the problem can be written in the 
form 

The characteristic spatial width of the potential well of atomic trap is 
significantly greater than the Bohr radius, i.e. f l u B  << 1, and we can 
use the following expansions 

The leading term of both expansions is 

A h , b )  = A (R)  , 
Hence, the Hamiltonian (2.58) takes the form 
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The last term in (2.60) is usually omitted, because its mean value over 
the period of optical oscillations does not depend on the coordinate. 
Therefore, for the hydrogen atom (when Z = I), we get 

h2 14 h2 
H = --A,. + U (7) + -A (R) p - %AR + U (R)  . (2.61) 

2% ~ T C  

By comparing the equations (2.60) and (2.61) we can see that in hydro- 
gen atom, in contrast to the hydrogenlike ions, the transitions between 
the trap levels without change in the intra-atomic electron state are 
prohibited. However it should be noted that the energy distance between 
the states of atom in the atomic trap hR is usually much smaller than 
the energy distance between the different electron states in atom hR << 
<< En - Em. Therefore, if the frequency of electromagnetic wave is 
close to the frequency of the intra-atomic electron transitions w,, = 
= (En - Em) /h = w and at the same time R << w ,  then the probability 
of the above mentioned transitions is very low for ions too. 

As already mentioned, the angular momenta hll = [rp] and hl2 = 
= [RP] are both the integrals of motion. As a result the wave function 
of the trapped atom can be written as the following product 

where the values of El,2 are defined by the equations (2.54) and (2.57), 
respectively: 

The probability amplitude for the transition between the trapped 
hydrogen atom states of energy E = El + E2 and El = Ei + Ea is 
defined, in the frame of the first order approximation, by the following 
equation 

It is convenient to express the matrix elements of the momentum oper- 
ator in terms of the matrix elements of the coordinate operator. The 
commutator of the Hamiltonian (2.53a) and operator r is 
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Hence 

Now, we can use the matrix elements of the coordinate operator, that 
were calculated in the previous section. 

Let atom interact with the plain wave 

A (R, t) = A. sin (wt - kR) 

To calculate the matrix elements (n!&,rnl, 1 A (R) In212rn2) we shall use 
the following expansion of plain wave onto the spherical harmonics 

00 

exp(ik2) = i1 (21 + 1) F j  (cos 0) jl (kr) , 
1=0 

where jl (x) is the spherical Bessel functions. We have assumed that the 
wave vector k of incident wave is directed along the z axis of the given 
reference frame. Thus, the required matrix elements are 

= 1 ylirn; (0, ip) F j  (cos 8) x,,, ( 0 , ~ )  sin 0 do dyx  

2 L(la+1/2) x ~ ~ : + ~ 2  exp (-PR ) nL (pR2) L!;+'/~) (P R2) jl (k R) R2 dR 

(2.63) 

The first integral in (2.63) results in the following selection rules 

To calculate the second integral in (2.63) we can use the following 
formula 

where F (a ,  b, z )  is the confluent hypergeometric function. 
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As an example for the matrix elements of the transition between the 
initial state n2 = 0, 12 = 0, ma = 0 and final state nh = n, 1; = 1, rnb = 0 
we get 

In particular 

/ (000/ e ~ ~ ( i k Z ) 1 0 0 0 ) / ~  = exp (-6) , 

The interpretation of the obtained equations becomes more obvious, 
if we substitute the parameter ,B in the last equations by its explicit 
expression: 

Let atom be initially in the ground trap state. In the process of 
photon absorption the atom should accept the recoil momentum hk and, 
hence, the recoil energy Ek = h2k2/(2M). Thus we can see from the 
equations (2.65) that the probability of atom transition from the ground 
to excited trap state, in the process of photon absorption, depends on 
the ratio of the recoil energy to the energy difference between the trap 
states. 

Notice that the process of the emission or absorption of photons by 
the trapped atom is similar to the process of emission or absorption of 
gamma photons by nuclei in crystals (Mossbauer effect). In the latter 
case the probability of the recoilless emission depends on the ratio of the 
recoil energy to the phonon energy. 

The time integration in the equation (2.62) results in the energy 
conservation law 

Ei + E; = El + E2 + h. 
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Thus the equations (2.62)-(2.64) determine completely the selection 
rules and the probabilities of the radiative transitions for the trapped 
hydrogen atom. In contrast to hydrogen atom, the hydrogenlike ions 
(2 > 1) can make the transitions between the atomic trap levels without 
change in the intra-atomic electron state. This type of transitions is 
described by the two last terms of the Hamiltonian (2.60). 



Chapter 3 

VARIATIONAL PRINCIPLE 
FOR SCHRODINGER EQUATION: 
ORBITAL INTERACTION 
IN HYDROGENLIKE ATOMS 

Here we start with the application of the canonical Lagrangian formal- 
ism to the problem of the many-particle system, in which the particles 
are coupled by the electromagnetic field. The Lagrangian L is the space 
integral of the local functions of the electromagnetic and material fields 
and their space and time derivatives. The field equations are determined 
from the principle that the action J L dt should be stationary when the 
fields are varied. The variational derivative of the Lagrangian is the 
'momentum' conjugate to that field. We explore the various invariance 
and conservation laws. The Hamiltonian function is the sum of all 
canonical momenta times the time derivatives of the corresponding fields, 
minus the Lagrangian. The Hamiltonian function provides us with the 
energy functional for the hydrogen atom, the variation of which yields 
the equation for the hydrogen atom wave function. The hydrogen atom 
spectrum is determined by the solution of this equation. 

3.1 Particle wave fields 
In the frame of quantum mechanics it is assumed that the micropar- 

ticles are the point particles, but the probability amplitudes for them 
to be in definite point in space at definite moment of time obey the 
wave equations. The wave equations reflect the presence of the wave 
properties in the behavior of microparticles. The matter fields, as well 
as the electromagnetic field, are characterized by their amplitudes at 
each spatial point at  any moment of time, therefore they are equivalent 
to the mechanical systems that have the infinite number of degrees of 
freedom. In the frame of the field theory formalism the wave function 
$J (r, t )  plays the role of the coordinate of the matter field. 
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3.1.1 Lagrange function 

The Lagrange function of the point particle depends in classical me- 
chanics on the coordinate, velocity, and time. Similarly, the Lagrange 
function of the matter field depends on the wave function, its space and 
time derivatives, and time 

where 6 = d$/a t .  The appearance of the space derivative, in addition 
to time derivative, is quite understandable, because the wave function 
is the continuous function of coordinates. It is this feature that reflects 
the infinite number of degrees of freedom of the matter fields. 

By integrating the Lagrange function over the space and time, we get 
the action 

The matter field equations are generated by the principle of the least 
act ion 

where 4, = d$/dx,. As well as the variation 6$ is arbitrary, then the 
equation (3.1) is equivalent to the following differential equation 

The last equation is called by the Euler-Lagrange equation. In general 
case, the wave function is a complex function, therefore the matter field 
is really the two-component field 

Hence, the Lagrange function is the function of the two real wave fields 
in general case. Of course, instead of real and imaginary parts of the 
wave function, we can use the functions $ (r, t )  and $* (r ,  t )  as the field 
coordinates: 

The action should be independently varied over the functions $ and $*. 
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3.1.2 Hamiltonian function 
The generalized momentum, canonically conjugated to the field coor- 

dinate $, is defined by 
d L  

7r = -. 
a$ 

With the help of this definition we can introduce the Hamiltonian 
function 

H = 7r4 - L, (3.3) 

which enables us to introduce the Hamilton equations for field 

The Hamilton equations are convenient when we make the secondary 
quantization. In this case we should substitute the classic Poisson 
brackets by the quantum Poisson brackets. 

Let the Lagrange function be 

The variation of action with respect to the wave function $* results 

The obtained equation coincides with the Schrodinger equation (2.1) 
with the Hamiltonian (2.2). 

The variation of action with respect to the wave function $ results in 
the following equation 

It is seen that the obtained equation is complex conjugate of the equa- 
tion (3.6). 

For the Lagrange function (3.5) the generalized momentum canoni- 
cally conjugated to $ is 
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The Lagrange function (3.5) does not include the derivative 4*, therefore 
the generalized momentum conjugated to the field coordinate $* is 
identically equal to zero. 

Thus we can see that the principle of the least action enables us 
to derive the Schrodinger equation from the Lagrange function (3.5). 
Therefore the equation (3.5) is equivalent, in certain sense, to the equa- 
tion (3.6). 

It should be noted that there is a qualitative difference in transfor- 
mation properties of the Lagrange function given by equation (3.5) and 
the Lagrange function for a classical particle. In classical mechanics, the 
Lagrange function depends only on the square of the particle momentum 
both in relativistic and non-relativistic cases. The motivations for this 
are twofold. Firstly, the Lagrange function of free particle can not 
depend on the coordinate and time, this is due to homogeneity of space 
and time. Secondly, it can not depend on the direction of particle 
propagation, this is due to the isotropy of the space. In contrast to this 
the Lagrange function (3.5) depends on the product of field coordinate 
$* and generalized momentum $*. AS a result the Lagrange function 
(3.5) is not invariant with respect to transformation t + -t. If we 
substitute the product $*d by the term proportional to 4*4, which is 
invariant with respect to the time reversal, then the resultant equation 
for particle will be the differential equation of the second order with 
respect to the time derivative. It means that the Lagrange function in 
the form of (3.5) selects one of the two possible solutions of the second 
order differential equation. Let us try to answer the question which of 
the two solutions should be selected. Notice that the Lagrange function 
(3.5), and hence the action, is not self-conjugate. As a result the selected 
solution could not be the real function of time. The wave function 
should definitely be the complex function of time. Only in this case the 
Lagrange function is invariant with respect to combined transformation 
including the time reversal and complex conjugation. To satisfy this 
requirement the Lagrange function (3.5) is taken in such a form that the 
generalized momentum conjugated to the field coordinate $* is equal 
to zero. As a result the Lagrange function (3.5) selects from the two 
possible solutions those which corresponds to the desired relationship 
between the particle energy and momentum: the particle energy should 
increase with the increase of its momentum, in complete analogy with 
the classical mechanics. 

It should be noted, that the Lagrange function does not correspond 
to some observable, therefore it needs not to be a hermitian function. It 
should only provide us the correct equations of motion. Contrary, the 
Hamiltonian function corresponds to the observable, because the volume 
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integral of the Hamiltonian function is the energy. By substituting the 
equation (3.5) into the equation (3.3) we get the following equation for 
the Hamiltonian function 

ti2 
H = -V$*V$ + $*U$. 

2mo 

It is seen that the Hamiltonian function is hermitian. The energy of a 
particle is 

We can see that, in accordance with the general definitions of the 
quantum mechanics, the energy is the quantum mechanical average of 
the Hamiltonian operator H O .  We have used the hat symbol in the last 
equation to distinguish the Hamiltonian function from the Hamiltonian 
operator. 

3.1.3 Action for particle interacting wi th  electromagnetic 
field 

The action for a particle interacting with the electromagnetic field 
depends on the particle variables and potentials of the electromagnetic 
field. The Lagrange function of the free electromagnetic field is 

1 2  2 L f = - ( ~  - B ) ,  
8.rr (3.7) 

where the strength of the electric E and magnetic B fields is defined by 
the well known equations 

The action for the particle interacting with the electromagnetic field 
can be obtained from the action of free particle with the help of standard 
replacement of the four-momentum operator by the generalized four- 
momentum operator 

Q . a a -ihV -+ -ihV - -A, zh- -+ ih- - qcp. 
C at at 

In result we get the following equation for action of the particle inter- 
acting with the electromagnetic field 

1 aA 2 s = L 87r // [(--- f v ~ )  - (curl A ) ~  dvdt + I 
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The Euler-Lagrange equation, when S is varied with respect to $*, is 

It is seen that the obtained equation coincides with the equation (2.4). 
The variation of S with respect to II, results in the equation complex 
conjugated to (3.10). 

Variation of action (3.9) with respect to A and cp results in the fol- 
lowing equations for vector and scalar potentials of the electromagnetic 
field 

1 a 
Acp + - - div A = -47rp, 

c dt 

where the charge p and current j density are defined by the equa- 
tion (2.8). 

If we shall use the Lorentz gauge 

-- I " + div A = 0 
at 

then the electromagnetic field equations become 

It should be noted that, in the frames of the probability interpretation of 
the wave function, the particle is the point particle and the particle wave 
field is the field of amplitude of probability for particle to be at given 
point in space at given moment of time. Therefore the vector and scalar 
potentials in the equation (3.10) are the potentials that are produced 
by the external particles. The potentials of the electromagnetic field 
produced by particle itself are determined by the solution of equations 
(3.11). The electromagnetic field produced by a particle exists in the area 
outside of the particle localization point. It is seen from the equations 
(3. ll), that the velocity of electromagnetic wave propagation is equal to 
the light velocity. The velocity of particle propagation is always smaller 
that the light velocity, therefore one can say that the particle has no 
opportunity to interact with its own field. 
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3.2 Symmetry properties with respect 
to  orthogonal transformat ions 

The symmetry properties of solutions of the eigenvalue problem for 
equation (2.12) are completely determined by the symmetry properties 
of the physical system under consideration. For example, if we study 
the motion of a particle in the external field of the axial symmetry, then 
the admitted solutions should reflect this symmetry, i.e. the rotation 
of the coordinate frame around the symmetry axes should not affect on 
the quantum mechanical averages of the observable variables. Another 
example is an isolated ensemble of the interacting particles. It is well 
known that an isolated ensemble of interacting particles possesses sym- 
metry with respect to rotation of ensemble, as a whole, around any axis; 
the particle permutations should not change the energy of ensemble if the 
particles in ensemble are identical, and so on. Hence, it is very useful1 to 
examine the symmetry and invariance properties of the equations. This 
analysis gives us information on the properties of the admitted solutions. 

3.2.1 Orthogonal transformations 

The basic quantum mechanical operators are the generators of orthog- 
onal transformations such as the spatial translation, three-dimensional 
rotation, space inversion, etc. The energy of an isolated ensemble of par- 
ticles is invariant with respect to these transformations, therefore these 
operators commute with the Hamiltonian and, hence, the observable 
corresponding to these operators are conservative. 

The transformations of translation, rotation, and inversion can be 
considered in the alternative way. For example, the rotation can be 
considered as rotation of some object at the fixed position of the reference 
frame, or as rotation of the reference frame at  the fixed position of 
the object. These two transformations are close connected with each 
other, because in both cases we transform the particle coordinate. The 
orthogonal transformations can be represented in the following general 
form 

x! z = a . . x . + a i ,  a3 3 (3.12) 

where the matrices aij satisfy the condition aijajk = d ik .  The trans- 
formations (3.12) include the spatial translations, three-dimensional 
rotations, and space inversion. 

The transformations of the particle coordinates with respect to the 
given reference frame and transformations of the reference frame at a 
given position of particle are mutually reciprocal one to another. Indeed 
the spatial translation of the particle results in the following transfor- 
mation of its coordinates r' = r +a. On the other hand, the translation 
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of the reference frame at the same vector a results in the following 
transformation of the particle coordinates r' = r - a. Nevertheless, these 
two transformations are really not absolutely equivalent. 

In general case, the equations for a particle moving in some external 
fields are not possessed by the translational invariance. By moving the 
particle alone we change the magnitude of forces that act on the particle 
from the particles producing these external fields. The transformations 
of the reference frame mean always that the coordinates of the considered 
particle and coordinates of the particles, producing the external fields, 
are simultaneously changed. The translational invariance is the property 
appropriate to an isolated ensemble of particles only. The presence of 
the external particles, having the fixed positions, means that thc whole 
system is not isolated. 

The second difference is in the fact that the equations for interacting 
particles, along with the particle equations, should include the equation 
for the fields realizing the interaction. The symmetry properties of the 
equations for the fields with respect to transformations (3.12) could not 
coincide with the symmetry properties of the particle wave equations. 
Therefore the symmetry properties of the equation for single particle can 
be significantly different from the symmetry properties of equations for 
an ensemble of interacting particles. 

Let us consider the spatial transformations. By applying the trans- 
formation (3.12) to the Schrodinger equation (3.10) for particle a we get 

where Ab (r,) and yb (r,) are the potentials of the electromagnetic field 
produced by the particle b in the spatial position of the particle a. In 
accordance with the equations (3.11) these potentials obey the following 
equations 

2 

- o'$;* (r', t) - $; (r', t) ] - Qb$;* (r', t) A; (r', t) $J; (r', t)), (3.144 
mbc 

1 d2 
Notice that the dlAlamber operator A - -- is invariant with 

c2 dt2 
respect to any transformation prescribed by equation (3.12). Hence the 
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variations of the field potentials can only be due to the variations in the 
right-hand-sides of the equations (3.14). 

The invariance of the equation with respect to the orthogonal trans- 
formations (3.12) means, that there are such operators T,  defined by 

which transform the equations in the primed reference frame into the 
equation in the initial unprimed reference frame. The operators T ,  real- 
izing the above transformations, are the generators of the corresponding 
transformations. 

Under the spatial transformations (3.12), the momentum operator is 
transformed in the following way 

Let us initially consider the infinitesimal transformations when the ma- 
trix aij is infinitesimally close to the identity matrix: 

where ~ i j  is the matrix of the infinitesimal transformation. As far 
as matrix aij is unitary matrix, then the matrix ~ i j  is antisymmetric. 
Indeed 

aijaik = 6jk +ei j  +&j i  + ... = 6jk 

At the infinitesimal transformation (3.15), the momentum operator is 
transformed in the following way 

therefore it is convenient to write the primed vector potential A' (r') in 
the following form 

A: (r') = (6ij + &ij) Aj (r') + 6Ai (r) . (3.16) 

The first term in the last equation is due to the vectorial nature of A, 
the second term is due to the variation of A in result of the infinitesimal 
transformation of the radius vector r. 

By substituting the equation (3.16) into the equation (4.13a), we get 
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where 6jb (r)  is the variation of the current density jb (r) associated 
with the transformation of the wave function due to the infinitesimal 
transformation of the radius vector r 

The first terms in the both sides of the equation (3.17) are mutually 
canceled, because they coincide with the equation in the initial non- 
primed reference frame. The residual terms establish the connection 
between the variation of vector potential and variation of the wave 
function, where both of them are due to the infinitesimal transformation 
of the radius vector r .  

The similar relation can be easily obtained for scalar potential cp (r,  t ) ,  
but this relation is evident because both cp (r ,  t) and wave function are 
scalar functions. Notice that under the infinitesimal transformation the 
charge density is transformed in the following way 

P' (r', t) = q ($* (r,  t) + 6$* (r ,  t)) ($(r, t) + 6$ (r1 t)) = P (I., t ) + 6 ~  (r1 t)  . 
(3.18) 

By substituting the transformation (3.16) into the equation (3.13)) we 
get 

Hence, the variations of Hamiltonian are completely due to the infinites- 
imal transformation of the radius vector r and they are not associated 
with the vectorial manner of the generalized momentum operator. 

Thus the relativistic invariant form of the electromagnetic field equa- 
tions and the quadratic dependency of the Hamiltonian on the general- 
ized momentum operator exclude the variations of Hamiltonian associ- 
ated with the vectorial manner of the appropriate variables and remain 
only the variations that are due to the infinitesimal transformation of 
the radius vector r .  

3.2.2 Space  inversion 

The matrix aij of the space inversion transformation is 
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The space inversion transformation is the discrete transformation. The 
space inversion transformation of the wave function is given by 

$' (r') = $ (- r)  = P4 (r)  . (3.20) 

Hence, the operator, P, of the space inversion transformation is defined 
I-JY 

P$ (r) = $ (-4 . 
The eigenvalues of the operator P are determined by the solutions of the 
following equation 

p$ (4 = A$ ( r )  . (3.21) 

As we have shown in the previous chapter, the eigenvalues are 

Thus, the space inversion transformation shows us that the eigenfunc- 
tions of the Schrijdinger equation can be scalar or pseudoscalar functions. 

As well as P p  = -p and P$'*$' = $*$, then it follows from the 
equations (3.14a), (3.14b) that under space inversion transformation the 
electromagnetic field potentials are transformed in the following way 

A ( I )  = A ( r )  = A (r)  , cp' (r') = cp' (-r) = cp (r) . 
Hence, by applying operator P-l to the equations (3.13), (3.14) we 
transform these equation to their initial unprimed form. 

Thus, the coupled set of equations (3.13), (3.14) is invariant with 
respect to the space inversion transformation. 

3.2.3 Spatial translation 
Let us consider now the spatial translation transformation. At the 

infinitesimal translation of reference frame, Sa, the particle coordinates 
are transformed in the following way 

By applying this transformation to the wave function we get 

$' (r') = 4 ( r - Sa) = $ (r)  - SaV$ (r)  = (1 - 6aV) $ (r) . (3.22) 

Therefore, the operator of the infinitesimal spatial translation is defined 
by 

T6a = 1 - SaV. (3.23) 

In the case of the spatial translation transformation, the matrix E i j  is 
eij = 0, hence, in accordance with the equations (3.17)-(3.19), we get 
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According to the definition of the operator of the infinitesimal spatial 
translation (see (3.23)), we have 

TG' f' (r') gt ( r t )  = TG' f ' ( r t )  T6lgt  (r t )  . 

Notice, that the equation (3.18) is the particular case of this general 
relationship. It can be easily seen, that if we apply the operator TG1 to 
both sides of the equations (3.13), (3.14) we transform them into their 
initial unprimed form. Thus, the coupled set of equations (3.13), (3.14) 
is invariant with respect to spatial translation transformation and the 
operator of this transformation is defined by the equation (3.23). 

3.2.4 Three-dimensional rotations 
The matrix aij describing the rotation by the angle cp around the z- 

axis is 
coscp sincp 0 

The matrix a(R) is the matrix of continuous transformation because it 
depends on the rotation angle cp, which can be varied continuously. 

At the infinitesimal rotation of reference frame around the x-axis, the 
particle coordinates are transformed in the following way 

Hence, the matrix ~ i j  of the infinitesimal three dimensional rotation is 

At the infinitesimal rotation of reference frame around an arbitrary 
axis the particle coordinates are transformed as 

r' = r - [Sq r] . (3.24) 

Hence, the transformation of the wave function at the infinitesimal three- 
dimensional rotations is defined by 

Thus, the operator of the infinitesimal three dimensional rotation is 
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Hence, we get 

P' = P - [h PI , A' (r') = TRA (r) - [69 A (r)] , (p' (r') = T R ( ~  (r) . 

By substituting the last equations into the equations (3.13), (3.14) and 
taking into account that the terms proportional to ~ i j  are mutually 
canceled (see eq. (3.17)), we obtain finally 

Thus, by applying operator T ~ I  to both sides of the last equations we 
transform them into the initial unprimed form. 

3.2.5 Transformations including t ime  axis 

The Schrodinger equation is non-relativistic equation, therefore the 
orthogonal transformations (3.12) do not concern the time axis in this 
case. Nevertheless it is useful to discuss some transformations including 
the time axis. 

T i m e  shift 

The time shift transformation 

is similar to the spatial translation transformation, and, as a result, it 
can be analyzed in completely similar way. At the infinitesimal time 
shift, the wave function is transformed in the following way 

Hence, the operator of the infinitesimal time shift is defined by 

Hence, if we apply the operator T&' to both sides of the equations (3.13), 
(3.14) we transform them to the initial unprimed form. 
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Time reversal 

There is a significant difference between the time reversal transfor- 
mation and other transformations (the spatial translation, three dimen- 
sional rotations, etc.). Indeed, the orthogonal transformations discussed 
above are the transformations of the reference frame, which mean that, if 
the observer 0 sees a system in a state $, then the equivalent observer O', 
who looks a t  the same system, will observe it in a different state $', 
but the two observers must find the same quantum averages. When we 
change sign of time in classical equations of motion, then the particle 
velocity change sign. The symmetry of classical equations with respect 
to time reversal means that we are interested in the conditions, at which 
a particle will be involved into the motion reversed in time. Here, we 
analyze the time reversal invariance of the Schrodinger equation. 

So, a t  the time reversal transformation we change the sign of time, 
t -+ -t. It is seen that a t  the time reversal transformation the left- 
hand-side of the equation (3.10) changes sign. However if we make 
the time reversal and complex conjugation simultaneously, then the 
equation (3.10) becomes 

\ ,  

It is seen that with the help of transformations 

$' (r ,  t') = $* ( r7  -t) -+ $ (r, t) , 
A' (r, t') = A (r, -t) -t -A (r, t )  , (3.27) 

9' (r,  t') = cp (r, 4 + cp (r,  t) 

we return the equations (3.13), (3.14) to their initial unprimed form. 
The transformations (3.27) can be easily interpreted. Indeed in the 

classical electrodynamics the particle will make motion reversed in time, 
only in the case when the electric field remains invariable, E (-t) = 

= E (t), while the magnetic field changes sign, B (-t) = -B (t). By 
taking into account the definition of the electric and magnetic filed 
vectors (3.8) we can see that at transformations (3.27) the electric field 
is the even function of time and the magnetic field is the odd function 
of time. Thus the time-reversed motion of particle is described by the 
wave function $* (r,  -t). 

Charge  conjugation 

We have seen that under the transformations (3.27) the particle makes 
the time-reversed motion. But in the previous subsection we have 
assumed that the charges of the particles remain invariable. If we assume 
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now that charges of the particles change their signs qa,b + -qa,b, then the 
equations (3.13), (3.14) can again be transformed to the initial unprimed 
form. In this case we should make the following transformation 

$I (r,  tl) = $* ( r l  4 + $ (r,  t) I 
A1(r , t l )  = A ( r ,  -t) + A ( r , t ) ,  (3.28) 
p' ( r , t l )  = p ( r ,  -t) -+ -cp(r,t). 

It is seen that these transformations are again in agreement with the 
properties of the classical equations of motion. 

The opposite parity of the vector and scalar potentials with respect to 
the time reversal transformation follows from the relativistic invariant 
Lorentz gauge condition 

therefore there is no necessity to consider the transformations differing 
from (3.27), (3.28), because any other transformations will result in 
the violation of the Lorentz gauge that we have used in deriving of 
equations (3.11). 

3.3 Many-electron atom 
3.3.1 Action principle for many-electron a t o m  

The discussion given in the previous section has shown us that the 
equations for an ensemble of particles interacting via the electromagnetic 
field are invariant with respect of spatial translation, time shift and 
three dimensional rotations. It means that for the whole isolated system 
including both particles and electromagnetic field the conservation laws 
associated with the above mentioned transformations hold. Here, the 
detailed analysis of the equations for an ensemble of particles coupled 
by the electromagnetic field is presented. 

The action for the ensemble of particles coupled by the electromag- 
netic field is 

It is seen that the action is additive. 
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The variation of action (3.29) with respect to $f and electromagnetic 
field potentials results in the following equations 

where 

As well as the electromagnetic field equations are linear, then the 
field potentials are the sums of potentials associated with the individual 
particles of ensemble 

In particular, if the ensemble of particles interacts with the electromag- 
netic fields produced by some external particles (usually they are at 
infinitely large distance from the considered ensemble), then the integral 
field is the sum of the external field and fields produced by the particles 
of the considered ensemble 

Following the general formalism, discussed above, we introduce the 
generalized momenta of electromagnetic and matter fields 

and the Hamiltonian function 
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The space-integral of the Hamiltonian function is the energy of the 
system 

Let us use the following transformations 

( ~ p ) ~  = -pAp + div (pVp) , 

1 d 1 d A  1 d 2 p  + -p- div A = --Vp - ~ p - ,  
C c at c at c a t  

where the Lorentz gauge was used. By applying these transformations 
to the equation (3.32) we obtain 

Thus, the energy of an ensemble of particles coupled by the electromag- 
netic field is the sum of the electromagnetic field energy and kinetic 
energy of particles. It should be reminded here, that the operator 
(pi - (qi/c) Aj (ri)) /mi = ~i is the operator of i-th particle velocity. 

In the absence of the external fields the first term in the right-hand- 
side of equation (3.33) is the energy of the electromagnetic field produced 
by the particle of the ensemble. This energy depends on the relative 
positions of the particles of ensemble. For example if the ensemble 
consists of two oppositely charged particles the energy of electromagnetic 
field is equal to zero when the positions of the particles coincide. If the 
particles are far away from each other then the energy of the integral 
electromagnetic field is not equal to zero. The energy of the integral field 
increases with the increase of distance between the particles, because the 
integral field produced by the two oppositely charged particles is non- 
zero in a volume with the radius comparable with the distance between 
the particles. The steady states of an ensemble of particles correspond 
to the local or global minima of the energy functional (3.33) in the 
space of the particle wave functions &. When the interacting particles 
approach to each other then the potential energy of their interaction is 
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transformed into the kinetic energy of their motion. Hence the kinetic 
energy increases. In the steady states the optimal ratio between the 
potential and kinetic energy is realized. Thus the wave functions of the 
steady states of an ensemble of particles can be determined from the 
minima of the energy functional given by the equation (3.33). 

3.3.2 Hydrogen atom 

Let the considered ensemble of particles be the ensemble of the two 
oppositely charged particles. This ensemble is equivalent to the hydro- 
genlike atom. In the hydrogenlike atom one of the particles is electron, 
another is nucleus. As we have mentioned above we can find the wave 
functions of the steady states of this system by calculating the minima of 
the energy functional given by the equation (3.33). The global minimum 
of this functional is realized in the ground state of the system. The 
subsequent steady states realize the local minima, therefore we can find 
them by varying the energy functional under the additional condition of 
the orthonormalization of any new wave function with the wave functions 
of all previous steady states. 

The energy given by (3.33) is functional of the electromagnetic field 
potentials and particle wave functions. On the other hand the electro- 
magnetic field potentials are in their turn the functionals of the particle 
wave functions. Therefore it is convenient to exclude the electromagnetic 
field potentials from the equation (3.33) and vary the functional with 
respect to  the particle wave functions only. The strength of the static 
electric and magnetic fields is given by 

E = -Vp, B = curl A. 

Therefore with the help of the vectorial transformations 

( ~ 9 ) ~  = -yAy + div (yVp) , 

(curl A ) ~  = div [A curl A] + A curl curl A, 

we get the following equation for the electromagnetic field energy 

where we have used the Lorentz gauge, which, in the static case, is 

div A = 0. 
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We have already mentioned that, in the frames of the probability 
interpretation of the wave function, the elementary particles are the 
point particles and the wave function $ (r, t)  determines the amplitude 
for particle to be at the moment of time t in the spatial point r, therefore 
the particle could not interact with its own field. Hence, in the case of 
the hydrogen atom, the equation (3.34) reads 

+ 5 An (re) je ( re )  dve + J  Ae (rn) jn (rn) dvn, ' J  
where pa and j, are defined by the equations (3.31a) and (3.31b) respec- 
tively; cpb (r,) and A b  (r,) are the potentials produced by the particle 
b = ( 12 ,  e) at the position of the particle a = (e, n). 

By substituting the last equation into the equation (3.33) we get 

where $, = $, (re) is the electron wave function in the hydrogenlike 
atom, and $, = $, (r,) is the nucleus wave function. In derivation 
of the equation (3.35) we have used the Lorentz gauge condition. It is 
helpful to rewrite its again here 

diva Ab (r,) = 0. (3.36) 

The solutions of the static field equations (3.30b) and (3.30~) are 

These equations enable us to exclude the field potentials from the equa- 
tion (3.35). By substituting in the latter equations the equations (3.31a) 
and (3.31b) we get 
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where 

The last term in the equation (3.38) arises from the transformation of 
the expression (p$)* $ - $*p$ to the form $*p$. 

By substituting the equations (3.37a), (3.37b) into the equation (3.35) 
and using the wave function normalization condition we get 

The terms in the braces of the equation (3.39) have the following 
physical meaning. 

The first three terms in equation (3.39) are exactly coincide with the 
hydrogen atom Hamiltonian (2.44), that we have used in the previous 
chapter: 

To clarify the nature of the last term in the equation (3.39) it is 
convenient to use the following transformations. Firstly, the products 
v,pb can be identically transformed to the following form 

i h 
VePn = {[renve] [renpn] + (renve) ( r e n ~ n )  - (renvn) + 

T e n  
(3.41) 

Secondly, by substituting the equation (3.37b) into the Lorentz gauge 
condition (3.36) we get 

Notice here that in the previous chapter we have shown that the eigen- 
functions of the Hamiltonian (3.40) have the form $ (r)  = f lm (r,  0 )  x 
exp (imcp), where the functions f lm  (r, 6) can always be chosen as the 
real functions. Hence, we have 

and the condition (3.42) certainly holds. 
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Thus if the transformations (3.41) and (3.42) are applied to the last 
term in the equation (3.39) it finally becomes 

where 
tile = [renpe] , hln = [rnepn] . (3.44) 

It should be noted that the last term in the equation (3.43) is due to the 
fact that the operators 1, and 1, are the noncommuting operators. 

Thus we can see that the last term in the right-hand-side of the 
equation (3.39) is responsible for the orbital interaction in the hydrogen 
atom or the interaction of the electron and nucleus currents. This 
interaction can be more precisely defined in the following way: the 
magnetic field, resulted from the orbital motion of nucleus, acts on the 
electron, moving in its orbit in hydrogen atom, and vise versa. 

3.3.3 I n t e g r a l s  of motion 
As we have mentioned above the wave functions of the steady states 

can be determined with the help of variational principle 

where 
H = Ho+Hu.  

By varying the energy functional with respect to the function 
9 ( re ,  r,) = 4, (re)  4, (r,), we get the following wave equation 

It is convenient to introduce the center-of-mass reference frame 

r e - r  R =  m e r e  + mnrn 

me + mn 

The momentum operators, associated with the radius vectors r and R, 
are the relative motion momentum operator p and center-of-mass motion 
momentum operator P, respectively. They are 
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where M = me + m,. The equation for the Hamiltonian Ho in the 
center-of-mass reference frame becomes 

where m, = memn/M is the reduced mass. 
It is seen from the equations (3.47) and (3.43) that the Hamilto- 

nian (3.45) depends only on the radius vector re,. Hence, the Hamilto- 
nian (3.45) commutes with the operator of the total momentum 

The total angular momentum operator is defined as 

The orbital interaction Hamiltonian HL1, defined by the equation (3.43), 
depends on the angular momentum operators file and fil, (see (3.44)). 
Let us introduce the new auxiliary operators 

hli = [rp] , filz = [RP] , fi13 = [rP] 

These operators enable us to rewrite the angular momentum operators 
for electron and nucleus in the following form 

The commutation relations for operators L and li are 

Hence 

The Laplace operators A, and AR of the Hamiltonian Ho can be written 
in the following form 

It can be easily shown with the help of calculations similarly to (3.52) 
that the total angular momentum operator L commutes with the opcr- 
ators 1: and 1;. 
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Thus, we can see, the total angular momentum operator L commutes 
with the Hamiltonian (3.45) 

Hence, the total angular momentum of the hydrogen atom is the integral 
of motion. This is in complete agreement with the general consideration 
given in previous section, where we have shown that the equations for 
an isolated ensemble of particles are invariant with respect to the three 
dimensional rotations of the reference frame. 

3.3.4 Energy level shift due to orbital interaction 
in hydrogenlike atoms 

We have shown that the Hamiltonian (3.45)commutes with the total 
momentum and total angular momentum operators, therefore we can 
take the eigenvalues of momentum operator P, angular momentum 1 and 
its projection m as the quantum numbers characterizing the state of the 
hydrogen atom. If the atom is motionless then the total momentum is 
equal to zero, P = 0. In this case the quantum mechanical average of 
the operator l3 is equal to zero and we can use the following replacement 

Notice here again, that minus unity in the left-hand-side is due to the fact 
that 1, and 1, are non-commuting operators. The total angular momen- 
tum is the sum of the electron and nucleus angular momenta, or the sum 
of the relative motion and center-of-mass motion angular momenta. In 
motionless atom the total angular momentum is the angular momentum 
of the relative motion only. Of course, this operator commutes with 
itself. Thus for the case of motionless atom the equation (3.46) becomes 

It is seen that the spherical harmonics are the solutions of the angular 
part of this equation. Hence, we have 

and for radial part of the wave function we get the following equation 
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It is convenient to introduce the dimensionless coordinate x and en- 
ergy El: 

r x = -  ti2 E' , E = -  
a~ 2rn,ai ' 

where a B  = h2/(m,e2) .  By substituting these transformations into the 
equation (3.55) we get 

where a is the fine structure constant 

As far as the relative energy of the orbital interaction is proportional 
to a2m,/m, we can consider it as a correction to the energy of Coulomb 
interaction of particles. According to perturbation theory methods the 
first order correction to the energy of steady states is determined by 

To make the numerical estimations we need in the following integrals 

1 -$ R:~ ( r )  r2  dr 

0 

where Rnl are the radial wave functions for the problem of electron 
motion in Coulomb field. These functions were calculated in the previous 
chapter. By substituting Rn1 given by (2.30) into the above integrals 
we ~ e t  

By substituting the equation (3.59) into the equation (3.58) we obtain 
the following equation for the magnitude of the energy shift 

where the Rydberg constant R y  is defined by 
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It is useful to make the following remark concerning the for- 
mula (3.60). We can see from the equation (3.59) that the diagonal 
matrix elements (3.59) are divergent at 1 = 0. On the other hand the 
energy shift (3.60) is not. This is due to the fact that the energy of 
orbital interaction is proportional to 1 (1 + I), and this product, being 
in the numerator of the equation (3.60), cancels the same product in 
the denominator of this equation. On the first glans, it is looks like 
that including of the case of 1 = 0 into the general formula (3.59) is 
an artificial trick, but we should remember that the quantum number 1 
determines the angular momentum of the relative motion of particles. 
If the angular momentum of relative motion of particles is equal to 
zero it does not necessary mean that the particles are immovable. As 
we have mentioned above, the origin of the orbital interaction is in the 
interaction of the currents due to the motion of particles. Hence if the 
particles are not motionless then the currents are non-zero. 

Thus the energy level shift due to the orbital interaction (i.e. the inter- 
action of particle currents via the magnetic field) is about AE - lo-' Ry 
for the ground state and decreases with the increase of the principle 
quantum number n. According to equation (3.60) the scaling law for 
this correction is 

The Fig. 3.1 shows the diagram of 2S, 2 P  and 3S, 3P, 3 0  energy levels 
in hydrogen atom. We can see that the account for the orbital interaction 

Figure 3.1. The hydrogen level shifts due to the orbital interaction 
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removes the degeneracy of the nL energy states and as a result the 
frequencies of nL  H n'L' transitions are changed. But the comparison 
of the Fig. 3.1 and Fig. 1.1 shows that the calculated spectrum is not 
yet coincide with the results of the experimental measurements, the 
experimentally measured spectra show that there is a splitting of the 
energy levels in addition to their shift with respect to the Bohr formula. 
The further progress in the description of the hydrogen spectrum was 
achieved when the idea on the electron spin was implemented into the 
theory. 



Chapter 4 

PAUL1 EQUATION 

The series of experiments made in 1921-1925 years gave basis to 
assume [47-491 that the electron possesses the inner angular momentum 
of h / 2  and magnetic moment of p = eti/(2moc).  The operator of the 
electron inner angular momentum, or spin, can be introduced in the 
way similar to the angular momentum associated with the translational 
motion of particle. 

4.1 Spin 
It has been shown in the previous chapters that the angular momen- 

tum operator [rp]  is the generator of the group of three dimensional 
rotations. The angular momentum 1 and its projection m determine the 
angular dependency of the particle wave function and the transforma- 
tion properties of wave function with respect to the three dimensional 
rotations. The angular momentum of an isolated system of particles 
is the integral of motion, and it does not depend on the choice of the 
reference frame. However, the projection of the angular momentum m is 
conservative, only in the case, when we rotate the reference frame around 
the axis of the system rotation. If we decline the z-axis of the reference 
frame from the axis of particle rotation then the projection of the angular 
momentum on the new axis z' ceases to be the conservative value. Hence, 
in this case, the wave function becomes a superposition of the wave 
functions with all possible projections of the angular momentum onto 
the z'-axis of the new reference frame. As far as the angular momentum 
conserves, then the wave function of particle with the definite angular 
momentum and its projection, $Q,, becomes a superposition of 21 + 1 
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components with the different projections m' in the new reference frame 

$lm = C (lm'l ullm)Aml- 
m1 

Thus, under the three-dimensional rotations, the 21 + 1 wave functions 
$1, are expressed in terms of 21 + 1 wave functions 1CIlml, therefore 
these functions form the irreducible representation of the rotation group. 
Hence, the angular momentum 1 defines unambiguously the classification 
of the particle states with respect to the three-dimensional rotation 
transformation. 

4.1.1 Spin operator 
It is clear from the preceding discussion, that if the particle possesses 

the inner angular momentum s then to describe the inner degrees of 
freedom we can introduce the multi-component wave function $ (r, a) 
which depends on the quantum number a having (2s + 1) possiblc 
values. The angular momentum operator acts on the space coordinates 
of the particle wave function, therefore, in this case, the rotations of the 
particle and the rotations of the reference frame are equivalent transfor- 
mations. The spin operator s = (sx, sy, s,) acts on the spin variable of 
the wave function a therefore the form of this operator are exclusively 
determined by transformation the reference frame rotation. Indeed, we 
can always assume that the particle is at the origin of the reference frame, 
hence its coordinates remain invariable. However, the equivalence of the 
rotations of particle and reference frame for the translational degrees of 
freedom results in the coincidence of the commutation relations for the 
spin operator with commutations relations for the angular momentum 
operator 

[sx, sy] = is,, [sy, sz] = isx, [sz, sx] = isy ( 4 4  
These commutations relations can be obtained directly. Indeed it can be 
easily shown that the successive infinitesimal rotations of the referencc 
frame, initially around the x and y axes and then around the same axes 
but in the inverted sequence, are equivalent to the rotation around the 
z-axis by the angle equal to the product of the rotation anglcs around 
the x and y axes. 

The similarity in the commutation relations results in the similar 
properties of the spin and angular momentum operators. The spin 
square operator 

commutes with any spin projection operators. Hence the spin square 
operator can have the common set of eigcnfunctions with the spin 
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projection operator. The joint eigenfunctions of the operators s2 and s, 
obey the following equations 

where s = 0, 112, 1, 312, 2, ... and a = -s, -s + 1, ... , s. 
The total angular momentum is the sum of the orbital angular mo- 

mentum and spin 
j = l + s .  (4.4) 

As far as operators 1 and s are applied to the different arguments of 
wave function then they are commuting operators. The total angular 
momentum operator j obeys the same commutation relations as oper- 
ators 1 and s, because, as we have mentioned, the equations (4.1) are 
the general form of the commutation relations for arbitrary angular 
momentum operator. 

4.1.2 Pauli matrix and spinors 
The wave function of spin-112 particle is two-component, as well as 

(2s + 1) = 2. It is convenient to take it in the form of the two-row 
column, called by spinor, 

Hence the spin projection operators are proportional to the Pauli ma- 
trices cr = (a,, ay , a,) 

1 
S = -0 

2 ' (4.6) 
where 

The Pauli matrices a, possess the following properties 

a; = a 2  = a; = I ,  
Y 

a20y = ia,, CT~CT, = inz, aza, = iaY, (4.8) 

in the last equation the indexes (a,p, 7) are (x, y, z) or any sequence 
of them obtained by the even number of permutations of the indexes 
( x , ? ~ ,  z). The eigenfunctions of the operator a, corresponding to its 
eigenvalues a = A1 are 
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The equations (4.8) enable to derive the following identity 

(cA)  (oB) = A B  + io  [AB] . (4.10) 

The components of the spinor wave function (4.5) are transformed at 
the reference frame rotations in the following way 

The elements of the rotation matrix U are in general case complex and 
depend on the angles of the reference frame rotation. As far as the 
matrix U defines the transformation rules for the particle wave functions, 
the elements of this matrix should satisfy the definite requirements. 

Firstly, the matrix U should be the unitary matrix, because, in 
accordance with the probabilistic interpretation of the wave function, 
the bilinear combination 

defines the probability for particle to be at specific spatial point. This 
probability should not depend on the reference frame 

Hence 
u+u= 1 

Secondly, the matrix U should be unimodal. This is a general condition 
for any matrix of rotations. It means 

When the condition (4.13) holds the wave function normalization con- 
dition does not depend on the rotations of the reference frame 

Under the condition (4.13) the matrix U - I  is 
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By equating it to the conjugated matrix U' 

we get 
a =  d*, b =  -c*. 

It is seen that if the conditions (4.13) and (4.14) hold, then the four com- 
plex parameters a ,  b, c, d are the functions of the three real parameters. 
These three parameters are the three rotation angles that determine the 
reference frame rotation unambiguously. 

Let us make an infinitesimally small rotation 69 around the z-axis. 
The rotation matrix of this transformation is 1 + i6cps,. The z projec- 
tion of spin under this rotation remains invariable therefore the wave 
function 4 (a)  takes the form 4 (a)  + 64  (a) ,  where 

64  (a)  = iSps,$ (a) = i a 4  (a) 69. 

Hence for the finite rotation angle we get 

If the rotation angle is equal to cp = 27r, then the wave function 
components are multiplied by factor of exp (i27ra) = (-112" which is the 
same for each component a at any spin s. For the spin-112 particle this 
factor is equal to -1. Thus the 2~-rotation brings the particle into the 
initial state a t  integer spin s and changes the sign of the particle wave 
function a t  half-integer spin. 

It should be noted that, if the condition (4.13) holds, then the follow- 
ing bilinear combination is invariant 

this bilinear combination corresponds to the zero spin particle consisting 
of the two spin-112 particles. On the other hand, the condition (4.12) 
yields the following transformation 

By comparing the last two transformations we can see that the compo- 
nents 4; and $a are transformed as 42 and respectively. The same 
result follows from the transformation (4.11) directly. Indeed according 
to (4.11) we get 

This property of the spinor wave function is directly related to the 
symmetry of the wave equation with respect to the time reversal trans- 
formation. 
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4.1.3 Hamiltonian of Pauli equation 
In classical electrodynamics both angular momentum and magnetic 

moment of the particle are described by the axial vectors. The angular 
momentum operator in quantum mechanics is also the axial vector, 
therefore the spin particle possessing the inner angular momentum will 
possesses the inner magnetic moment 

Thus the Hamiltonian for the spin particle interacting with the electro- 
magnetic field is 

where 
B = curl A. 

The product of the two axial vectors p and B is invariant with respect 
to the space inversion transformation. Thus the Hamiltonian (4.17) for 
the particle moving in the spherically symmetrical potential, cp (r)  = 
= cp (r) ,  is invariant with respect to the space inversion transformation. 
As we have shown in the previous chapters, it means that the parity 
operator, P, commutes with the Hamiltonian (4.17). 

The total angular momentum of a spin particle is the sum of the 
orbital momentum and spin 

Ti 
hj = hl + hs = [rp] + -0. 

2 
(4.18) 

The magnetic dipole interaction breaks the spherical symmetry of the 
Hamiltonian, but if the magnetic field is the axially symmetric then the 
total angular momentum projection onto the symmetry axis remains 
conservative. The vector potential of the uniform magnetic field is given 
by 

1 
A. = - [Bar] . 

2 
By substituting this expression into the Hamiltonian (4.17), we get 

p2 e2 H = - + U (r)  + A ~ o [ r p ]  + 8mocZ [Bar] 2 + -Bas. lei ti (4.19) 
2mo 2moc moc 

By taking into account the definition [rp] = h1, the last equation can be 
rewritten in the following form 
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where Ho is the Hamiltonian defined by the equation (2.2) and p~ is the 
Bohr magneton: 

By assuming that the z-axis is directed along the magnetic field direc- 
tion Bo = e,Bo we can see that the z projection of the total angular 

commutes with the term of the Hamiltonian (4.20) proportional to the 
magnetic field 

The rest of the terms of Hamiltonian (4.20) do not depend on the spin 
operator and, hence, commute with the operator o,. The operator I ,  
commutes with Ho and with the last term in the Hamiltonian (4.20), 
because this term does not depend on z coordinate. Thus, the Hamil- 
tonian (4.20) commutes with the z projection of the total angular 
momentum operator. 

We have seen that the time reversal invariance of the Schrijdinger 
equation relates with the transformation $* (-t)  -t $ ( t ) .  But the mag- 
netic moment projection, as well as the angular momentum projection, 
changes sign at the time reversal transformation, therefore the wave 
function of spin-112 particle should be transformed in accordance with 
the following rules: $* (112) t 4 (-112) and $* (-112) t -4(1/2). 
These rules are agree with the spinor wave function transformations 
considered in the previous subsection. 

Thus, we have seen that the Hamiltonian (4.17) for the particle 
interacting with superposition of the Coulomb field (as a special case of 
the spherically symmetric potential cp (r) = cp ( r ) )  and axially symmetric 
magnetic field commutes with the parity operator and z projection of 
the total angular momentum operator. Therefore the energy, El parity, 
p, and total angular momentum projection, M = m + 012, are the 
set of quantum numbers characterizing the eigenstates of this problem. 

4.2 Geonium atom 
The problem on the particle motion in uniform magnetic field provides 

the simplest model of the geonium atom. This model describes the 
cyclotron motion of a particle in the Penning trap and precession of its 
spin. 
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4.2.1 E l e c t r o n  motion in h o m o g e n e o u s  m a g n e t i c  field 

Let us consider the problem on the electron motion in the homo- 
geneous magnetic field. By using the Hamiltonian (4.19) we get the 
following eigenvalue problem 

ti2 d e 2 ~ :  
A - ' 1 p ~ B o -  + 7 p 2  + ~ B B o ( T ,  $ ( r )  = E$ ( r )  . (4.22) 

dp 8moc I 
Recalling that the operators 1, and a, commute separately with the 
Hamiltonian (4.22) it is convenient to take the wave function in the 
following form 

$ ( r )  = U u  exP ( i m p  + % z )  f u  ( P I ,  (4.23) 

where the spinors u, are the eigenfunctions of operator a,: 

By substituting the wave function (4.23) into the equation (4.22) we get 
the following equation for the radial wave function f ( p )  

By introducing the new variable 

and the new unknown function R ( x )  

f ,  ( x )  = xm/2 exp (- ;) & (2) 

we can transform the equation (4.24) to the equation for the confluent 
hypergeometric functions 

where 
lel Bo 

By using the solutions of equation (4.25), the solution of the equa- 
tion (4.24) can be chosen in the following form 
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The solution (4.26) satisfies the boundary condition a t  p + oo and it is 
not divergent at p -+ 0 if the following condition holds 

where n is the non-negative integer, and m is arbitrary positive integer 
or negative integer obeying the condition 

The condition (4.27) results in the following equation for the energy 
spectrum 

where M  = m + 0/2 is the z projection of the total angular momentum. 
It follows from the equation (4.29) that the states with the same mag- 
nitude of sum n + M  are degenerated. 

The eigenfunction (4.23) is the product of the eigenfunctions of the 
angular momentum and spin. The operator of the total angular momen- 
tum projection, j, is also integral of motion. The eigenfunctions of the 
this operator 

jzuM = M U M  

are the following spinors 

Indeed. 

Hence, the superpositions of the eigenfunctions (4.23), corresponding 
the same energy eigenvalue, produce the eigenfunctions of the operator 
of total angular momentum projection. 

As already mentioned, at the non-negative integer n,  the confluent 
hypergeometric functions are coupled with the Laguerre polynomials, 
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therefore the normalized wave functions can be written in the following 
form 

nL (n  + m)! 

x exp ( - $) exp (imq + ik,r) , (4.31) 

where L the spatial size of the region available for electron motion along 
the direction of the applied magnetic field. 

The explicit form of the normalized radial wave function 

2 m/2 fnm ( p )  = JF (-1)" L L ~ )  (rip2) (ap  ) exp ( - $) 
n+ m)! 

for a number of the lower eigenstates is given below : 

The spatial profiles of these functions are shown in the Fig. 4.1. The 
Fig. 4.2 shows the energy level diagram. As far as the magnitude of the 
possible negative projection of the orbital momentum is limited by the 
condition (4.28), it is natural to assume that at  a given n the projection 
of the total orbital momentum lies into the interval -n - 112 < M < 
< n + 112. 

The energy of the state, with the largest negative projection of the 
total angular momentum M = -n - 112, is equal t o  zero and the 
eigenfunctions of these states are 
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Figure 4.1. The radial wave functions of the geonium atom: (a)  n = 0, m = 0; 
( b )  n = 1, m = 1; ( c )  n = 1, m = -1; (d) n = 1, m = 0 

Figure 4.2. The energy level diagram of the geonium atom 

According to the equation (4.20) the total magnetic moment is 

In the state of the smallest energy the projection of the total magnetic 
moment is 

m, = p~ (n + 1). 

Thus in the state of the smallest energy the magnetic moment is directed 
along the applied magnetic field. 
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The state of the largest energy at a given n is the state with M = n + 
+ 112. The energy of this state is 

where w~ = lei Bo/(rnoc) is the cyclotron resonance frequency. In 
this state the total magnetic moment is directed toward the applied 
magnetic field. 

4.2.2 Strength of induced magnetic field 
The orbital motion of electron results in the appearance of the induced 

magnetic field of response. It will be shown in chapter 6, that, for the 
case of the Pauli equation, the charge p (r, t )  and current j (r ,  t) density 
are defined by 

P (r, t) = e11,+ (r1 t) 11, (r ,  t )  I 

e2 eh 
j (r)  = lefl (V$+ 11, - 11,+V11,) - -$+A$ + -curl (11,+o$) . 

2m0 mo c 2m0 

By substituting the wave function (5.29), for the current density we get 

4&3P n ! 
= - e p p B c ~  ( n  + M - 1/21! (icp2) 

exp (- icp2) ~ i ~ - ~ / ~ )  (icp2) x 

where we have assumed that kZ = 0. It is seen from the last equation 
that the current density is equal to zero in the states of the smallest 
energy M = -n - 112. 

In order to calculate the magnetic field of response we can use the 
Maxwell equation 

47T 
curl B = -j. 

C 

By using the above equation for the current density we obtain 

-. 

4&pB n! 2 B 
Z - L (n+m)!  

1 (rn + x) xm-l exp (-2) ( L L ~ )  (2)) dx- 

w2 

Particularly, for the states of m = -n we have 
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It is seen that the magnetic field of response is equal to zero in the states 
of the smallest energy M = -n - 112. This is quite natural, because, as 
we have mentioned above, the electron current density is zero in these 
states. 

Figure 4.3. The spatial profile of the induced magnetic field produced by particle in 
the state: ( a )  n = 0 ,  m = 0; ( b )  n = I, m = 1; (c )  n = 1 ,  m = -1; ( d )  n = 1,  m = 0 

Fig. 4.3 shows the spatial profiles of the magnetic field for a number 
of eigenstates. It is seen that the induced magnetic field is directed 
opposite to the direction of the inducing magnetic field. It means 
that in the frames of theory based on the Pauli equation the electron 
response is diamagnetic. This is in complete agreement with the classical 
electromagnetic induction law, i.e. the induced currents tend to decrease 
the magnetic flux of the inducing magnetic field. 

4.3 Hydrogen atom 
4.3.1 Action for ensemble of non-relativistic spin-1/2 

particles 
There are the two moments only, that distinguish the Pauli equation 

from the Schrodinger equation. Firstly, the wave function of the Pauli 
equation is the spinor. Secondly, the Hamiltonian of the Pauli equation 
includes the interaction of the electron inner magnetic moment with the 
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magnetic field. Therefore, the action for an ensemble of the spin-1/2 
particles coupled by the electromagnetic field can be written in the form 

The variation of this action with respect to $J: and the field potentials 
results in the following equations 

1 4 ' 2 
ihB dt = C [I;;l; (PC :Aj ("4)) + q i ~ j  (ri, t) - k B j  ( r i , t )  di, 

j(#i) I 
(4.36a) 

1 d 2 A  47r A A  - -- = -- ji (r ,  t),  c2 d t2  c 
(4.3613) 

i 

where 

+ c curl (d: (r,  t )  pi$i (r,  t)) , (4.37a) 

pi (r ,  t) = qid: (r ,  t )  di (r,  t) . (4.37b) 

Since the field equations (4.36b), (4.36~) are linear equations, then the 
field potentials are the sums of potentials produced by the individual 
particles 
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Particularly if an ensemble of particles interacts with some external fields 
(usually produced by the external macroscopic bodies), then the integral 
field is the sum of the fields produced by the individual particles and 
external field 

A (r ,  t )  = Aut (r ,  t )  + C Ai (r ,  t ) ,  

The generalized momenta canonically conjugate to the electromagnetic 
and matter fields are defined by 

The Hamiltonian function is 

The space-integral of the Hamiltonian function is the energy of a system 

where the electromagnetic field potentials obey the equations (4.36b), 
(4.36~).  

The energy of electromagnetic field is defined as 

where the electric and magnetic fields are 

1 aA 
E = - Vp, B = curl A. 

at 
By substituting the latter equalities into Hf ,  we can transform it to the 
following form 

1 dA 2 
1 2  Hf = - (E + B2) = & [2 (=) + (curl A ) ~  - ( ~ p ) ~  + 
8n 1 

+-  - - + v p  v p .  
4~ I ( I a A  at > 
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In the previous chapter we have already used the following vectorial 
equalities 

( ~ p ) ~  = -PAY + div (pVp) , 

With the help of these equalities and equation (4.36~) the field energy 
becomes 

By substituting this equation into the equation (4.39), we finally get 

Thus, the energy of an isolated system of particles is the sum of the 
energy of electromagnetic field, produced by these particles, the integral 
kinetic energy of their motion, and the integral energy of interaction of 
the particle magnetic moments with the magnetic field of a system. 

It should be noted that equation (4.40) is gauge invariant. Indeed 
under the simultaneous transformation of the wave functions 

and electromagnetic field potentials 

the equation (4.40) remains invariable. 
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4.3.2 Orbital, spin-orbital, and spin-spin interactions 
Let us consider the interaction of the two spin-1/2 particles. This 

problem enables us to model the hydrogen atom again, and, as a result, 
to clarify the new features of the hydrogenic spectra associated with 
the spin of electron and nucleus and originated from the interaction of 
spins with the intra-atomic magnetic field. The general formalism of 
the analysis of the two-particle problem was developed in the previous 
chapter. According to this formalism, the wave functions of the steady 
states of a system are determined by the variation of the energy func- 
tional (4.40). The global minimum gives us the wave function of the 
ground state, the subsequent steady states realize the local minima of 
the energy functional (4.40). 

The energy given by (4.40) is functional of the particle wave functions 
and potentials of the electromagnetic field. On the other hand, the 
potentials of electromagnetic field are the functionals of the particle wave 
functions. Therefore we can vary the energy functional over the particle 
wave f~~nctions allowing for the constraint equations. Or, we can exclude 
the electromagnetic field potentials from the equation (4.40) (retaining 
only those part of the field energy that depends on the relative position 
of particles) and vary the energy functional with respect to the particle 
wave functions alone. 

In steady state case the equations relating the electric and magnetic 
fields with the field potentials are 

E = -Vp, B = curl A. 

By using now the vectorial equalities 

( ~ 9 ) ~  = -PAP + div (pVp) , 

(curl A)' = div [A curl A] + A curl curl A ,  

we get the following equation for the field energy depending on the 
relative position of particles 

1 Ef = - 
87r 
1 (E' + B') dV = ( p a p  + AAA) dV = 

Notice that in the latter equation we have used the Lorentz gauge 
condition. In steady-state case this condition is 

div A = 0. 
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Taking into account that the particle could not interact with its own 
electromagnetic field for the hydrogen atom we should write 

where pa and j, are defined by the equations (4.37a), (4.37b), pb (r,) 
and Ab (r,) are the potentials produced by the particle b = (n, e) at  the 
position of the particle a = (e, n). 

By substituting the equation (4.42) into the equation (4.40) we get 

where $, = $, (re) is electron wave function of the hydrogen atom, 
and $, = $, (r,) is the nucleus wave function. Deriving of the equa- 
tion (4.43) we have again used the Lorentz gauge condition 

diva Ab (r,) = 0. (4.44) 

In steady-state case the equations (4.36b), (4 .36~)  have the following 
integral solutions 

P b  (ra) d b ,  pa (ra) = / - 
I r a  - r b l  

By substituting here the equations (4.37a), (4.37b) we get 

,b + J cllrl ( @ ~ b * b )  
d b ,  

Ira - r b l  
(4.45b) 
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where 

Notice, that the last term in the equation (4.46) is appeared due to the 
use of the following transformation in the equations (4.45b), (4.45~): 
with the help of integration by parts the expression (p$)+ $ - $+p$ 
can be easily transformed to the following one, $+p$. 

By substituting the equations (4.45a)-(4.45~) into the equation (4.43) 
we get 

where qe$, is the direct product of the electron and nucleus spinor 
wave functions. The equation (4.47) is the desired form of the energy 
functional which is the functional of the particle wave functions only, 
and the potentials of the electromagnetic field were excluded with the 
help of the electromagnetic field equations. 

Let us dwell on the physical meaning of the different terms in the 
equation (4.47). 

(1) The sum of the first three terms coincides with equation for the 
Hamiltonian of the two spinless particles with the Coulomb interaction 
between them 

The eigenvalues and eigenfunctions of the Hamiltonian (4.48) have been 
found in the Chapter 3. 

(2) The forth term in (4.47) we have already met in the Chapter 3. 
With the help of the vectorial transformations 
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and the use of the Lorentz gauge condition (4.44) 

this term can be transformed to the following form 

where 
hie = [renpe] , hln = [rnepn] . (4.52) 

The Hamiltonian (4.51) describes the interaction of the electron and 
nucleus orbital currents in the hydrogen atom. It should be noted again 
that the last term in the equation (4.51) is due to the fact that the 
operators 1, and 1, are the non-commuting operators. 

(3) The next two terms in (4.47) are new ones and they describe the 
spin-orbital interaction: the nucleus magnetic moment interacts with the 
magnetic field resulted from the orbital motion of electron (i.e. electron 
orbital current), and vise versa 

(4) The last term in (4.47) is also new one and it describes the 
spin-spin interaction: the electron magnetic moment interacts with the 
magnetic field produced by the nucleus magnetic moment, and vise versa 

Thus, one can see that the account for the electron spin results in 
appearance of the new mechanisms of particle interaction. Undoubtedly, 
these new interactions affect on the structure of the hydrogenic spectra. 

4.3.3 Integrals  of motion for hydrogen a t o m  

The variation of the functional (4.47) with respect to the two-particle 
wave function (re, rn )  = 4, (re) 4 ,  (r,) results in the following wave 
equation 

(Ho + Hll + His + Has) 9 = E 9 .  (4.55) 

As we have discussed earlier, to characterize completely the eiegen- 
states of the equation (4.55) we should find the operators commuting 
with the Hamiltonian of this equation. In the previous chapter it was 
shown, from the first principles, that the total angular momentum of an 
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isolated ensemble of spinless particle is the integral of motion. Let us 
verify whether it is true for an ensemble of spin-112 particles. The total 
angular momentum of ensemble of particles possessing spin, 

is the sum of total angular momentum of the orbital motion of particles 

and the total spin 
S = se + s,. 

In analysis of the hydrogen atom problem it is convenient to use the 
center-of-mass reference frame 

*mere + mnrn r e - r ,  R =  
M 

and 

There are the following relationships between the momentum and angu- 
lar momentum operators in the center-of-mass and laboratory reference 
frames 

In the previous chapter we have shown that the commutation relations 
for the operator L and operators I,,,, defined by (4.52), are: 

We have also shown that the operator of the total angular momentum of 
orbital motion L commutes with the Hamiltonian Hll. Hence the total 
angular momentum operator J commutes with Hll too. 

It can be easily shown, with the help of the commutation rela- 
tions (4.59) and commutation relations for spin operators, that the oper- 
ator J commutes with the Hamiltonian of spin-orbital interaction, Hi,. 
Indeed 

[ J,) le~snpI = [La, kp] snp + 1,p [S,, s ,~]  = 
- 
- -ieaypleysnp -k ieapyleps,, = 0. (4.60) 
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The spin operator S commutes with the last term in the Hamiltonian of 
spin-spin interaction, given by equation (4.54). One can see 

However, the operator S does not commute with the first term of the 
Hamiltonian (4.54) 

On the other hand, the commutator of the operator L with the same 
term is 

[L1 (ser) ( ~ n r ) ]  = i [ ~ e r ]  (snr) + i (ser) [snr]. (4.63) 

Hence, the total angular momentum operator J commutes with the 
Hamiltonian of spin-spin interaction, H,,. 

Thus, the operator of the total angular momentum of the orbital 
motion L and operator of the total spin S do not separately commute 
with the Hamiltonian of the equation (4.55). The integral of motion of 
the equation (4.55) is the total angular momentum J: 

As far as the Hamiltonian of the equation (4.55) depends only on the 
radius vector r = re - rn, it is evidently, that the operator of the total 
momentum P = pe + pn is the integral of motion 

Thus, the eigenfunctions of the equation (4.55) can be expressed in 
terms of the eigenfunctions of operators of the total momentum , total 
angular momentum, and projection of total angular momentum. 

4.3.4 Angular dependency of hydrogenic wave functions 

Let us consider the motionless hydrogen atom, P = 0. In this case 
the Hamiltonian H of the equation (4.55) is slightly simplified 

where 
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ye(,) is the gyromagnetic ratio for the magnetic moment of electron 
(nucleus). The Bohr magneton p~ and nuclear magneton p~ are defined 
by the well known equations: 

The wave function q (re,  r,) of the equation 

H Q  = E!P (4.69) 

is the second rank spinor 

Q (re, rn) = $e (re) $n (rn) = $ (r, S e ,  sn) (4.70) 

i.e. the four row column. It is well known that the products of the 
two spinors are decompose into the two irreducible representations cor- 
responding to the spin zero particle and spin one particle, respectively. 
If we use the products of eigenfunctions of operators a(,,,),: 

GIf) =f I f ) ,  
where If) is the two row columns 

as the basis two-body wave functions, then the wave functions for these 
two representations can be written in the following form. The wave 
function of spin zero particle is 

The rest three linear independent wave functions describe the spin one 
particle and correspond to three different projection of the total spin 
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As it was shown in the previous chapters the eigenfunctions of the 
angular momentum operator, associated with the translational degrees 
of freedom, are the spherical harmonics. The angular dependency of the 
atomic wave functions, (re, r,), is determined by the rule of angular 
momenta coupling. For the spinless particle the angular wave function 
is the product of spherical harmonic and second rank spinor (4.71) 

For the spin one particle the angular wave functions, o$%,, are the series 
of products of the eigenfunctions of orbital momentum x,, and spin 

(1) momentum xm,. The coefficients of series are the 3 - j symbols 

At a given value of E there are the three solutions differing in the value 
of the total angular momentum j 

The eigenfunctions (4.73) and (4.75) are normalized by the condition 
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Thus, at given values of the total angular momentum j and its 
projection m the general solution of the equation (4.69) has the form 

where 

By substituting the expression (4.76) into the equation (4.69) and then 
integrating over the angular variables we can obtain the equations for 
the radial wave functions f ( r )  and gu ( r ) .  To do this we need to 
know the matrix elements of Hamiltonians of spin-orbital and spin-spin 
interactions. 

Notice finally that the case of the zero value of the total angular 
momentum, j = 0, is the special case, because, in this case, the two of 
the three linear independent solutions (4.77) are equal to zero. Indeed, 
at s = 1 the state with j = 0 can be obtained only if 1 = 1. The non-zero 
solution is 

Hence the case of zero value of the total angular momentum should be 
considered separately. 
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4.3.5 Angular matrix elements of Hamiltonian 
of spin-orbital and spin-spin interactions 

By applying operators se,,l to the wave functions (4.73) and (4.77), 
we get 

(on]) 'j:)=j+l,m = - ( j  + 2) '~.~)=j+~,m+ 

These equations enable us to determine easily the angular matrix 
elements for the Hamiltonian of the spin-orbital interaction. It is seen 
that the spin-orbital interaction couples only the states with the zero 
projection of the total angular momentum, m = 0. 

Particularly, for the diagonal elements of the spin-orbital interaction 
Hamiltonian we have 

To calculate the energy shifts due to the spin-orbital interaction exactly 
we should solve the equations for radial wave functions. However, in 
the frame of the perturbation theory methods, the first order corrections 
to the energy eigenvalues are determined by the quantum mechanical 
averages of the interaction Hamiltonian, i.e. we should average the 
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function l/r3 with the wave functions of Hamiltonian Ho. The ra- 
dial wave functions of Hamiltonian Ho depend solely on the quantum 
number 1, therefore the obtained equations enable us to estimate the 
relative shifts of the different states with the same I ,  at  least in the first 
order approximation. It is seen from the obtained equations that in the 
hydrogen atom, where the magnetic moments of electron and nucleus 
have the opposite signs, the spin-orbital interaction makes energetically 
more favorable the states with the smallest value of j at a given 1 > 0. 
The spin-orbital interaction tends to decrease the magnitude of the 
atomic magnetic moment and the value of the total angular momentum. 

Before calculating the matrix elements of the Hamiltonian of spin-spin 
interaction, it is convenient to express it in terms of the total spin. It 
can be done in the following way. The total spin square is 

hence 

By using the properties of the Pauli matrices we can write 

hence 

Finally, for the Hamiltonian of spin-spin interaction we get 

It follows directly from the obtained equation that the energy of spin- 
spin interaction is equal to zero in spin zero state a('). For the spin one 
states we have 

s2!$') = s (s  + 1) a(.') = 2di;. 
d m  d m  (4.80) 

By applying the operator (Se) to the wave functions (4.72) we get 
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where I$,  (0, p) is the spherical harmonics. By using the obtained 
equations and the matrix elements for spherical harmonics 

we get the following equations for the angular matrix elements of the 
first term in Hamiltonian (4.79) 

It is seen that the spin-spin interaction couples only the states with the 
non-zero value of the total spin projection. The sum of the diagonal 
elements of (4.81) is equal to 2. Hence, accounting the equation (4.80)' 
we can see that the sum of the diagonal elements of the Hamiltonian 
of spin-spin interaction 3 ( ~ e ) ~  - S2 is equal to zero. Besides, it follows 
directly from the definition of this operator. 

With the help of the equations (4.81) we obtain the following form of 
the diagonal matrix elements of Hamiltonian of spin-spin interaction 

Reminding the remarks, made with respect to the spin-orbital interac- 
tion, we can make some preliminary conclusions on the influence of the 
spin-spin interaction onto the hydrogen energy spectrum. It is seen from 
the above equations that the spin-spin interaction makes energetically 
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more favorable the states with the smallest j at a given I > 0. The energy 
of spin-spin interaction is equal to zero in the antisymmetric state with 
the oppositely directed spins, and it is positive in the symmetric state 
with the oppositely directed spins. The spin-spin interaction tends to 
decrease the atomic magnetic moment and the total angular momentum 
of atom. 

As we have mentioned above, the case of j = 0 requires the special 
consideration. In this special case for spin-orbital interaction we have 

One can see that these equations follow directly from the appropriate 
equations (4.78). In this special case, the non-zero matrix element of 
spin-spin interaction Hamiltonian is 

It is seen that this matrix element does not follow from the equa- 
tions (4.81), because the equations (4.81) were obtained under assump- 
tion j > 0. 

4.3.6 Equations for radial wave functions 
Let us introduce the dimensionless energy E' and coordinate x: 

where the Bohr radius is 
ti2 

ag = - 
m,e2 ' 

In dimensionless units the equation (4.69) becomes 

22a2 m, +-- 
x3 All 

( I  - 1 - Tnsnl - (3(se)' - s2)) 'V = 0, (4.83) 
2 

where a is the fine structure constant. 
One can see from the equation (4.83), that the energy of orbital, 

spin-orbital, and spin-spin interactions is smaller than the energy of the 
Coulomb interaction in the ratio 
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when the distance between the electron and nucleus is about the Bohr 
radius, x = 1. However, the energy of these hyperfine interactions 
increases at x -4 0 faster then the potential energy of Coulomb inter- 
action or centrifugal energy. As a result the hyperfine interactions can, 
in principle, change the electron-nucleus interaction at small distances. 

Now, the equations (4.78) and (4.81) enable us to get the equations 
for radial wave functions. By substituting the wave function (4.76) into 
the equation (4.83) and then averaging over the angular variables we 
obtain the equations for the functions f (x) and go (x). We have already 
mentioned that the spin-orbital interaction couples the states with zero 
projection of the total spin, and spin-spin interaction couples the states 
with the non-zero projection of the total spin. Thus it is evident that the 
set of the four equations is decomposed into the two sets of the coupled 
equations: 

for zero spin projection 

and non-zero spin projection 
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where 
p = ~ ~ 2 % .  

M 
(4.86) 

Notice, that the equations (4.84) and (4.85) have been used to derive 
the last equations. 

4.3.7 Influence of orbital, spin-orbital, and spin-spin 
interactions on the energy spectrum of hydrogen 
atom 

The obtained equations for radial wave functions are identical each 
other and they differ only in the magnitude of the incoming coefficients. 
However, as well as the analytical solutions of equations of this type are 
not known we shall use the perturbation theory to analyze the structure 
of the energy spectrum. The basis for applicability of the perturbation 
theory methods is in the smallness of the parameter /3 defined by the 
equation (4.86). The equations of the zero-order approximation are given 
by the left-hand-sides of the equations (4.84), (4.85). These equations 
depend solely on the quantum number 1, therefore to systematize the 
levels of the corrected spectrum we can use the notations similar to the 
spectroscopic notations. The level with the principal quantum number 
n ,  total angular momentum j, orbital angular momentum L = 1, and 
spin s is designated as 

n(2~+1) L . 
3 '  (4.87) 

The capital L shows the orbital angular momentum of atom, i.e. the 
sum of the electron and nucleus angular momenta, but not the orbital 
angular momentum of electron alone. It should be also noted that the 
total angular momentum j in (4.87) is referred to J = j, + j, while it 
is often referred to the total angular momentum of electron, which is 
je = le + s,. 

As we have shown above the only operator J is integral of motion 
in general case, while the total orbital angular momentum L is not. 
But in zero order approximation, when the hyperfine interactions are 
neglected, the orbital angular momentum is integral of motion too. It 
gives a basis to introduce the notations (4.87) and explains the reason 
why these notations are widely used in spectroscopy. 

To facilitate reading, the Table 4.1 gives the correspondence between 
the states (4.87) and states of different j and s. 

One can see from the table that the S-state splits into the two 
sublevels, 'So and 3S1, the all other states split intothe four sublcvels, 
lLj ,  3Lj-l, 3 ~ j ,  3Lj+b 

The equations (4.84), (4.85) show that, in terms of Table 4.1, the 
spin-orbital interaction results in the coupling of n1 Lj  and nf3 Lj  states, 
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Table 4.1. Energy states of hydrogen atom 

and spin-spin interaction couples the states n3(L - l)j and nt3(L + l)j, 
where n and n' are the principal quantum numbers. It is also seen from 
the equations (4.84), (4.85) that, if the principle quantum numbers n 
and n' do not coincide, then the energy shift, due to the coupling of the 
unperturbed states, is the correction of the second order on the smallness 
parameter p. Indeed, in the frame of the perturbation theory methods 
the energies of the coupled states are given by 

where AE, and AE,,, are the partial shifts and coupling coefficients (i.e. 
the diagonal and non-diagonal elements of the Hamiltonian of hyperfine 
interactions), respectively. At I En - EntI >> AEnnt, the contribution 
of the non-diagonal element is about (AE,,I)~ / (En - En/) and we can 
neglect them. At n = n', the contribution of the non-diagonal elements 
becomes significant. 

The radial wave functions of the equations (4.84), (4.85) in zero order 
approximation were calculated in Chapter 3 and Chapter 4. With the 
help of these wave functions, at n = n', for matrix elements of 1/x3 we 
get the following formulas 
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Thus, the spin-orbital coupling of singlet and triplet states with the 
same 1 results in the corrections of the first order. The spin-spin coupling 
of the states 1 = j - 1 and 1' = j + 1 contributes only into the second 
order corrections. 

Consider firstly the equations (4.84) corresponding to the states of 
m = 0. At j = 0, the coupling coefficient is equal to zero, therefore the 
energy shifts are 

At j > 0 the levels become coupled. The partial shifts and coupling 
coefficient in this case are 

where the symbol L has been substituted by symbol J because at m = 0 
we have 1 = j .  By substituting these equations into the equation (4.88) 
we can easily get the corrected energy for the corresponding states. 

For the states with m f 0, hence j > 0, in accordance with the 
equations (4.85) and (4.89), we get for partial shifts 

The coupling coefficient for this case is exactly equal to  zero due to  the 
last integral in (4.89). 

In accordance with the discussion given above, the equations (4.90) 
and (4.92) are directly defined the first order corrections to the shifts 
of the corresponding energy states. The energies of the coupled levels 
n1 J j  H n3J j  are determined by the solutions of the equation (4.88)) 
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where the diagonal and non-diagonal elements of the Hamiltonian of hy- 
perfine interactions are given by equation (4.91). It should be reminded 
that the Rydberg constant Ry has been defined above as 

therefore in final calculations it should be replaced by Ry.(m,+mn)/mn. 
The energy level diagram including IS, 2S,  and 2P states of hydrogen 

atom is shown in Fig. 4.4. By comparing the Fig. 4.4 and Fig. 1.1, 
one can see that the equation (4.83) yields the results for the singlet 
and triplet sublevels of S state that are qualitatively agree with the 

............. L\ MHz 

21S0 

2 3P2 
2 3P1 

21P1 
22 MHz 

23P0 

2466 THz 

Figure 4.4. The Pauli equation corrections to the hydrogen atom spectrum: ( a )  IS ,  
2S, 2P states; ( b )  2S, 2P (magnified) 

experimental data. However, the numerical values of shifts differ from 
experimentally measured ones. The relative shifts of the states 23Po 
and 2' PI with respect to state 2P of electron in Coulomb field are 
qualitatively agree with thc experimental data, but their numerical 
values are again differ from the experimentally measured frequencies. 
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The shifts of states 23P2 and 2 3 ~ 1  differ from the experimental data not 
only in the numerical values but even in the direction of shift. 

Thus, we can see that the incorporation of the idea on spin of elec- 
tron has given significant improvements into the theory of hydrogenic 
spectra. The results of calculations are qualitatively agree with the 
results of the experimental measurements, but the numerical values of 
the transition frequencies remain still different from the experimental 
data. The further improvements in the theory were achieved with the 
help of relativistic equations of quantum mechanics. 



Chapter 5 

RELATIVISTIC EQUATION 
FOR SPIN ZERO PARTICLE 

The first quantum relativistic equation was proposed by Klein, Fock, 
and Gordon [50-521 in 1926. It is well known now that this equation 
corresponds to the spin zero particle. This equation enables us to 
calculate the energy spectrum of the hydrogenic system consisting of the 
two spin zero particles. There are a lot of the nuclei of zero spin. Hence, 
if we substitute the electron in the hydrogen-like ion by the spin zero 
particle, we get a system describing by the Klein-Gordon-Fock equation. 
The most famous system of this type is the mesoatom, when the electron 
is substituted by the p- meson. 

5.1 Klein-Gordon-Fock equation 
The Klein-Gordon-Fock equation, or relativistic Schrodinger equa- 

tion, for the case of a free particle is 

where M is the mass of a particle. It is seen that this equation has the 
relativistic invariant form, but it becomes more evident if we introduce 
the four dimensional radius vector 

x, = ( r ,  ict)  ( 5 4  

and four-dimensional momentum operator 

If we apply the transformations (5.2) and (5.3) to the equation (5.1), it 
becomes 

(p,p, + M2c2) $ = 0. (5.4) 
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We use here and shall use further, the generally accepted convention 
that the double-recurring index means summation over this index. 

It can be easily shown that the equation (5.1) results in the following 
continuity equation 

8~ - + div j = 0, 
at (5.5) 

where 

The equation (5.5) can be also written in the relativistic invariant form 

where jp = (j, icp). 
One can see from the equation (5.6) that the time-component of 

the current density four-vector is not the certainly positively defined 
variable. Indeed the equation (5.1) is the second order differential 
equation with respect to the time derivative, therefore to determine 
unambiguously the initial state of the particle we should assign the 
initial values both the wave function $ (r, 0) and its first time-derivative 
d$ (r ,  0) /at. Hence, if there are no any restrictions for these initial 
values then the initial value of p (r,  0) can be arbitrary, i.e. positive, neg- 
ative, or zero. On the other hand, in accordance with the equation (5.6) 
the time-component of the current density plays the role of the density of 
probability for particle to be at a specific spatial point at a given moment 
of time. Therefore, in the frames of the probabilistic interpretation of 
the wave function, it must be positively defined. We have seen that this 
requirement holds for the probability density of Schrodinger equation. 
It is the uncertainty of the sign of p (r, t) that stimulated Paul Dirac 
to look for another quantum relativistic equation. It was assumed for 
a long time that the equation (5.1) was not applicable to describe any 
elementary particles, until it was not recognized the correctness of this 
equation for the case of the spin zero particles. 

It becomes much easier to interpret the equation (5.1), if we introduce 
the electric charge and current density 
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where q is the elementary charge. In this case, by adjusting the sign 
of the time derivative d$/dt and sign of charge, we can always satisfy 

the condition that the probability density, p:')/ (t lql), is the positive 
defined value. 

By concluding the introductory remarks, we can notice the following. 
The second order (with respect to the time derivative) differential equa- 
tion has the two linear independent solutions. For example, the general 
solution of equation (5.1) for the case of free particle includes the two 
time-dependent functions 

$ (r ,  t )  = {CI exp [-i (Et  - pr)  /h] + C2 exp [i (Et  - pr) /h1}, 
P 

(5.10) 
where 

The substitution of the equation (5.10) into (5.6) yields 

Thus, the probability densities, pl,2 (r,  t), corresponding to the two linear 
independent solutions, have the opposite signs 

It is seen that, if the time-dependent solutions are the complex functions, 
then the sign of probability density does not vary in time, and only in 
the case, when the time-dependent solution is a real function of time, 
the probability density could change the sign in the process of system 
evolution. 

5.2 Interaction of zero spin particle 
with electromagnetic field 

Whether the particle possesses the non-zero charge or not, we can 
understand only by studying (or observing) the process of the particle 
interaction with electromagnetic field. As we have discussed above, 
the general algorithm of obtaining the equations for particle interacting 
with the electromagnetic field from the free-particle equations consists 
in the replacement of the four-dimensional momentum operator by the 
generalized four-dimensional momentum operator 
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By applying the replacement (5.12) to the equation (5.1), we get 

(in: - ep) $ = [ip - : A ) ~  + M ~ c ? ]  Y,. (5.13) 
c2 

The covariant form of the equation (5.13) is 

The covariant form demonstrates evidently, that the equation (5.14) is 
invariant with respect to the gauge transformation of the electromagnetic 
field potentials 

and wave function 

Notice that the gauge transformation coincides with the gauge transfor- 
mation for Schrodinger equation (see (2.13)). 

If we compare the equation (5.13) with the Schrodinger equation, 
then we can see that the symmetry properties of equation (5.13) with 
respect to the orthogonal transformations of reference frame will be 
different of those for Schrijdinger equation only in the case when the 
transformation includes the time axis. The equation (5.13) can be 
written in the relativistic invariant form (5.14), therefore its invariance 
with respect of Lorentz transformation is evident. Hence we really need 
not in the analysis of the symmetry properties of Klein-Gordon-Fock 
equation. There is only one moment worthy of attention. The orthogonal 
transformations are given by 

where matrix a,, obeys the condition 

The transformations (5. IS), (5.16) remain invariable the spacetime in- 
terval, and they describe the Lorentz transformation, three-dimensional 
rotations, and space inversion. By applying transformations (5.15), 
(5.16) to the equation (5.14) we can see that the wave function is 
transformed in the following way 
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where 
1x1 = 1. 

Particularly, at  the space inversion transformation 

for the parameter X we have 

because the twice repeated space inversion transformation is the identical 
transformation. 

Hence, the wave function is even (at XI = +1) 

or odd (at Xz = -1) 
$ (-r, t )  = -$ (r1 t) . 

Thus, the wave function of the Klein-Gordon-Fock equation is either 
scalar or pseudoscalar function. As it follows from the discussion given 
in the beginning of the previous chapter the scalar and pseudoscalar 
wave functions describe the spinless particles. 

5.3 Mesoatom 
Let us consider the problem on zero spin particle motion in Coulomb 

field. The problem on the pion motion in the field of the heavy nuclei is 
an practical example. The bound state of pion and nucleus is mesoatom. 

In the attracting Coulomb field the potential energy is 

z e 2  U (r) = ecp (r)  = --. 
r 

The substitution of equation (5.18) into the equation (5.13) results 

M ~ C ~  - E~ 2 ~ ~ e ~  1 [.- h2c2 
+-- +mT $ ( r ) = O .  

Z2e4 I (5.19) 
hc I- h c  r 

By taking into account that the equation (5.19) is spherically symmetric 
we can express the wave function in terms of the spherical harmonics 

Due to orthogonality of spherical harmonics we get for the radial wave 
functions the following equation 

d2 2 d 1 ( 1 +  1 )  - z 2 a 2  2EZa 1 - + -- - + -- - x ~ ]  Rl ( r )  = 0, (5.20) 
dr2 r dr r2 hc r 
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where a = e2/ ( f ic )  is the fine structure constant, and 

The equation (5.20) is quite similar to the equation for radial functions 
(see (2 .29)) ,  that was obtained from the Schrodinger equation for elec- 
tron moving in the Coulomb field. Therefore the solutions of the equa- 
tion (5.20) are again expressed in terms of the confluent hypergeometric 
functions 

E Z a  
R ( r )  = C l r S  exp ( - K T )  F ( S  + 1 - -, 2 ( s  + 1)  , 2 ~ r )  + 

K ~ C  

E Z a  + ~ ~ r - ( ~ + ' )  exp ( - K T )  F -s - -, - 2 s , 2 ~ r )  (5.22) ( nhc 

where 

= Jm- 112. (5.23) 

In the considered case, the boundary conditions for the eigenvalue prob- 
lem are the same as for the problem of electron motion in Coulomb 
field. The wave function should be finite at r = 0 and it should tend 
to zero at  r + w .  The second term in (5.22) is divergent at r -+ 0, 
therefore C2 = 0 .  Similar to solution (2.30) of equation (2.29) the first 
term in (5.22) tends to zero at infinity, r t w, when the first argument 
of the confluent hypergeometric function obeys the condition 

where n, is the non-negative integer. This condition yields the equation 
for the energy spectrum of the bound states. Notice, that, in analogy 
with the solution of the Schrodinger equation, it is convenient to intro- 
duce the principle quantum number 

then the energy spectrum takes the form 

where 

6 1 = ~ - 1 =  Jm- (1 + 112) .  

It is seen that the energy spectrum of the particle obeying the Klein- 
Gordon-Fock equation, in contrast to the energy spectrum of particle 
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obeying the Schrodinger equation, includes the fine structure. Indeed 
the spectrum (5.25) depends on the two quantum numbers: principle 
quantum number n and angular momentum I .  The energy distance 
between the levels with the same n and different 1 can be easily estimated 
in the case when Z a  << 1. In this case we have 

By expanding (5.25) in the series on Zo,  we get 

If mass M coincides with electron mass then the first term in the 
expansion (5.26) is equal to 

Thus the first term in the expansion (5.26) coincides with the Bohr 
formula (2.33). The second term of expansion depends on the principle 
quantum number n and angular momentum 1. Let us take, for example, 
states with 1 = 1 and 1 = 0 and the same n. For energy distance between 
them we have 

It is natural to compare energy of this splitting with the energy shift 
due to  the hyperfine interactions. For example the energy shift of nlSo 
states due to the hyperfine interactions is (see equation (4.90)) 

One can see that the energy distance between the states with different 1 
exceeds the energy of hyperfine splitting approximately in the ratio 

For the hydrogen atom this ratio is mp/m, % 1836. Fig. 5.1 shows 
in comparison the normalized energy spectra of the hydrogen atom 
(AEs,,/(m,c202)) and mesoatom (AEKGF/(Mc2a2)). 
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Hydrogen Mesoatom 

1=0 1=1 1=2 

I:::: 

Figure 5.1. The normalized energy spectra of hydrogen and mesoatom. The sublevels 
of the mesoatom spectrum at  the principle quantum number n = 2, 3, 4, 5 are shown 
in the magnified scale (right column) 

The energy spectrum (5.26) does not coincide with the hydrogenic 
energy spectrum calculated by Sommerfeld [53] on the basis of Bohr 
quantization rules 

where k = - (I + 1) ,1. The Sommerfeld spectrum coincides much better 
with the experimentally measured spectra than the spectrum (5.26). It 
was a serious basis to hesitate in the adequateness of the Klein-Gordon- 
Fock equation for description of electron. In the next chapter we shall see 
that the Dirac equation yielded the equation for hydrogenic spectrum, 
which is much closer to the experimentally measured spectra. 

5.4 Wave functions 
The normalized radial wave functions are 
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where z 1 
(5.29) 

In analogy with the Bohr radius we have introduced in (5.29) the radius 
of orbit for T -  meson atom: 

The radial wave functions given by equation (5.28) tends to zero at  
r -, 0, when 1 > 0. In the case of 1 = 0, the wave functions is singular 
at  r = 0, because 

is negative. However at  Z a  << 1 the singularity is weak and the 
difference between the wave functions (5.28) and non-relativistic wave 

Figure 5.2. The radial wave functions of the KGF equation (solid lines) and 
Schrodinger equation (dashed lines) for the state of n = 1 and 1 = 0 at  different 
nucleus charge Z = 1 (a ) ,  20 ( b ) ,  30 (c) 
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functions (2.35) is small. For the nuclei with the high value of charge 
( Z a  t 112) the singularity increases and the difference between the 
relativistic and non-relativistic wave functions becomes more significant. 
It follows from the equation (5.30) that the radius of orbit in n--meson 
atom is smaller than the radius of orbit in hydrogen atom in the ratio 
of electron mass to meson mass. Hence, the T- meson is much closer to 
the nucleus than electron in hydrogen atom. As a result the difference 
between the Coulomb potential and potential produced by the highly 
charged nucleus, having the finite size, becomes more significant. The 
substitution of Coulomb potential by some more realistic intra-atomic 
potential removes the problem of singularity of the wave function. It 
should be noted that the charge density, defined by q (r) = R2 ( r ) r2 ,  
has no singularities at any 1. 

The Fig. 5.2 shows in comparison the wave functions (5.28) and non- 
relativistic wave functions (2.35) for the state of n = 1 and 1 = 0 at a 
different charge of nucleus Z = 1 (a), 20 (b) ,  30 (c). The dimensionless 
coordinate is normalized to aM for T-meson atom and ag for hydrogen 
atom. It is seen from the figure that the difference in the profiles of wave 
functions becomes visible only at Z = 30. 

Table 5.1. The normalized radial matrix elements of transitions 1s --- nP for mesoatom 

The matrix elements of transitions 1s t n P  (i.e. transitions between 
the states n l  = 1, l I  = 0 and n2 = n,  l 2  = 1) 

( n P  rl 1s) = Rnp ( r )  RIS (I) r3 dr. 
0 

are given in Table 5.1. By comparing the data of Tabl. 3.1 and Tabl. 5.1 
we can see that the difference in the magnitude of normalized matrix 
elements is about for the lower states and tends to zero with the 
increase of the principle quantum number for the final state. 
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DIRAC EQUATION 

The intrinsic angular momentum or particle spin was introduced in 
the Chapter 4 on the basis of analogy between the spin and angular 
momentum associated with the translational degrees of freedom. As far 
as the wave function of the particle with the angular momentum 1 has the 
(21 + 1) components, corresponding to the different values of the angular 
momentum projections -1 5 m 5 I ,  then the wave function of the 
particle of spin s should have the (2s + 1) components. This number of 
components realizes the irreducible representation of the group of three- 
dimensional rotations. However, this analogy becomes incomplete when 
we turn to the equations of the relativistic theory. Indeed, the group of 
three-dimensional rotations is really a subgroup of the four-dimensional 
transformations. In classical physics, the rotations of the reference frame 
and the rotations of particle are equivalent transformations. In quantum 
mechanics, the elementary particle is a point object therefore the spin of 
the particle is completely associated with the rotations of the reference 
frame. Hence, the structure of the wave function should be adjusted 
with the group of the four-dimensional rotations. As a result, the wave 
function of the spin- 1/2 particle became the four-component function or 
bispinor. 

6.1 Dirac matrices 
The Klein-Gordon-Fock equation has the relativistic invariant form. 

At the same time we have mentioned in Chapter 5 that the time com- 
ponent of the current density four-vector is not the certainly positively 
defined value. If we impose constraint on the structure of the particle 
many-component wave function, by demanding that the time component 
of the current density four-vector should be the bilinear combination of 
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the wave function components of the following type 

it results unambiguously that the equation for the wave function should 
be the differential equation of the first order with respect to the time 
derivative. To satisfy this condition we should factorize the differential 
operator of the Klein-Gordon-Fock equation. The required factorization 
can be made in the following way 

The self-conjugated matrices a and P realizing the required factorization 
should obey the following conditions 

It was shown by Paul Dirac that the matrices a and P satisfying the all 
required conditions should be the four-dimensional matrices. One of t)he 
possible representations of the matrices ai and P is 

where o is two-dimensional Pauli matrices introduced and discussed in 
the Chapter 4. 

Thus, the Hamiltonian of the Klein-Gordon-Fock equation which is 
the differential operator of the second order with respect to the time 
derivative is factorized in the product of the two differential operators 
of the first order with respect to the time derivative. Notice that if the 
wave function is a solution of the first order differential equation then it 
should be the solution of the second order differential equation too. By 
using the identical transformation 

+ c (ap) + Pmoc2 

the factorized equation can be written in the following form 

The Hamiltonian of the Dirac equation (6.4) is 

HD = c (ap) + Pmoc2. 
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The Hamiltonian (6.5) includes the four-dimensional matrices, hence the 
wave function of the equation (6.4) should be the four row column. 

It can be easily shown that the Dirac equation (6.4) results in the 
following continuity equation 

8~ - + divj = 0, 
at 

where 
p = e 9 + 9 ,  j = ecqSa9.  (6.7) 

The second possible equation, resulted from the factorization (6.1), is 

a*' itz- = - ( c  (ap) + ,Bmoc2) 9'. 
at 

It is seen that this equation differs from the equation (6.4) only in the 
sign of the time derivative. As far as the charge density is the time 
component of the current density four-vector then we get the following 
equation for the current density four-vector of the particle obeying the 
equation (6.8) 

p = -e9'+9/, j = e c W a ~ ' .  (6.9) 

By comparing the equations (6.7) and (6.9) we can see that the equations 
(6.4) and (6.8) correspond to the oppositely charged particles. 

Let us write the four-component wave function 9 of the equation (6.4) 
in the form of the bispinor wave function 

where 9 = (E:) and x = (E:) are the three-dimensional spinors. By 

applying the transformation (6.10) to the equation (6.3) we get for the 
spinors cp and x the following coupled set of equations 

av 2 ifi- = capx + moc p, 
at 

ax 2 iii- = copp - moc X. 
at 

,pplying the Hermitian conjugation to the equation (6.11a) we get 

It is seen that the spinor x obeys the equation which is quite similar 
to the equation for the Hermitian conjugate spinor cp. Thus it should 
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be anticipated that the transformation properties of the spinor x with 
respect to the orthogonal transformations will coincide with the trans- 
formation properties of the spinor cp+ and differ from the transformation 
properties of the spinor cp. 

Let us turn again to the properties of the three-dimensional spinors. 
In the Chapter 4 we have shown that the matrix of the three-dimensional 

rotations U = ((1 i) should be the unimodal and unitary matrix. 

The conditions o the unimodality and unitarity of the transformation 
matrix leave only the three real independent parameters from the eight 
possible ones. There are only three rotation angles that are required 
to specify unambiguously the three-dimensional rotations. But if we 
need in the invariance with respect to the four-dimensional rotations 
we should reject one of the two above mentioned conditions which are 
applied to the transformation matrix. Earlier we have already mentioned 
that the unimodality condition ad - bc = 1 is the common property of 
any arbitrary rotations. This condition holds for the three-dimensional 
rotations and for the Lorentz transformation as well. The unitarity 
condition applied to the transformation matrix U means that the bilinear 
combination $'+$I = $+UtU$ = $+$ is a scalar. However, this 
bilinear combination is the time component of the current density four- 
vector. Hence it could not be the scalar in the extended group of 
four-dimensional rotations. The condition of the unimodality imposes 
only two constraints on the eight real parameters of the transformation 
matrix U .  The left six parameters assign the six rotation angles in the 
four-dimensional reference frame. It is seen from the equations (4.11)- 
(4.14) that the transformation properties of the spinors and Hermitian 
conjugate spinors are not identical. It is this property that provides the 
linear independency of the spinors of the bispinor wave function (6.10). 

6.2 Covariant form of the Dirac equation 
Before turn to the study of the transformation properties of the Dirac 

equation (6.4) it is convenient to transform it to the symmetric form. 
Indeed the time and space derivatives in the equation (6.4) are not 
symmetric, the space derivative is multiplied by the spin operator and 
the time derivative is multiplied by constant. If we multiply the both 
sides of the equation (6.4) by the matrix /3 then the equation becomes 
symmetric, because the term, defining the rest energy of electron, takes 
the pure scalar form. However, it is more convenient to introduce the 
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following matrices 

It is seen from the equations (6.12) that the matrices y,, ( p  = 1,2,3,4) are 
the self-conjugated matrices and they obey the following commutation 
relations 

TpYu + YuTp = 2JPu. (6.13) 

By multiplying both sides of the equation (6.4) by the factor -iP/c, 
we get 

(y,,p, - imoc) Q = 0. (6.14) 

As in Chapter 5 we have used here the following notations for the four- 
vector of coordinate x,, = (r, ict) and the four-momentum operator 

The equation for the Dirac adjoint wave function 

is 
@ (yppp + irnoc) = 0. (6.16) 

It is seen from the definition of Dirac adjoint function (6.15) that 9 is 
a row vector, but not a column as q .  Hence the Dirac adjoint wave 
function 9 is multiplied by the spin matrices y,, from the left, as a result 
the differential operators, acting on the Dirac adjoint function, are on 
the right side of it. 

There is additional convenience to introduce the matrices y,, and the 
Dirac adjoint function % because the continuity equation takes the clear 
relativistic invariant form 

- 0 
ax, 

where the current density four-vector j,, is 

j,, = (j, icp) = (ecQf a*, ice*+*) = iecGy,,Q. (6.17) 

It should be noted that the equations (6.12) give the standard rep- 
resentation of the matrices 7,. In principle, the matrices yp are the 
arbitrary four by four matrices. Indeed with the help of the unitary 
transformation of the wave function, Qu = Uq,  the equation (6.12) can 
be transformed to the following form 
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where the commutation relations for matrices yr) = u ~ u - '  coincide 
with that given by equations (6.13) 

To obtain the equation for the particle interacting with the elec- 
tromagnetic field we can use the standard replacement of the four- 
momentum p, by the generalized four-momentum 

where A, = (A,@) is the four vector of field, the spatial component 
of which is the vector potential A ( r ,  t) and the time component is the 
scalar potential p (r,  t) of the electromagnetic field. 

6.3 Symmetry properties of the Dirac equation 
with respect to the orthogonal 
transformations 

In the relativistic case, the orthogonal transformations are the trans- 
formations of the coordinate four-vector x, = (r ,  i d ) :  

where the transformation matrix a,, obeys the condition 

The transformations (6.19), (6.20) remain invariable the spacetime in- 
terval AX, = xz, - XI,, since 

The transformations (6.19), (6.20) include the discrete (space inversion 
and time-reversal) and continuous (spacetime translations, three- and 
four-dimensional rotations) transformations. 

Notice, that the components of the matrix yl, are the numbers, which 
remain invariable under the coordinate transformations (6. lg), (6.20), 
and the four-momentum operator is transformed in the following way 

It is seen that the free particle Hamiltonian (6.5) is invariant with 
respect to the infinitesimally small spacetime translation, a, = 6x,. 
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Similar to the non-relativistic case the generator of this transformation 
is the four-momentum operator p,, = -iti(d/dx,,). Thus, we can assume 
now that a,, in the equation (6.19) is equal to zero and consider further 
the transformations due to the matrix ap, only. 

If we apply the transformations (6.19), (6.20) to the equation (6.14) 
it becomes 

(ypp; - imoc) 9' (x') = 0. (6.21) 

The difference between the wave function in the transformed reference 
frame, 9' (x'), and the wave function in the initial reference frame, 9 (x), 
is due to both the transformation of its arguments and the transforma- 
tion associated with the column vector manner of the wave function. 

As we have mentioned in the previous chapters the equation is sym- 
metric with respect to the transformations (6.19), (6.20) if there is such 
a matrix, S, 

9' (x') = 5'9 (x) , (6.22) 

that transforms the equation (6.21) to the initial unprimed form given 
by (6.14). 

By applying the transformation (6.22) to the equation (6.21), we get 

(y,,a,,,p, - imoc) S9 (x) = 0. 

Multiplying the last equation by the matrix S-' from the left, we finally 
get 

(s-'y,,~a,,,p, - imoc) 9 = 0. (6.23) 

It should be noted the the matrix S is applied to the components of the 
bespinor wave function, while the matrix a,,, is applied to the coordinate 
indexes, therefore these two matrices are commuting ones. 

Thus we can see that the equations (6.23) and (6.14) coincide if the 
following condition holds 

The obtained equation yields the relationships between the matrices y, 
and yJ, = S-'y,,S, hence, we can calculate the explicit form of the 
matrix S .  If we shall use the orthogonality condition (6.20) then the set 
of equations (6.24) can be rewritten in the form 

When we deal with the continuous transformations it is convenient to 
start with the infinitesimally small orthogonal transformation 
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where E ~ ,  is the infinitesimally small tensor of the second rank. Similar 
to the non-relativistic case, the tensor E ~ ,  should be an antisymmet- 
ric tensor to satisfy the orthogonality condition (6.20) applied to the 
matrices a,,. Indeed by substituting the equation (6.26) into the equa- 
tion (6.20) we get 

Hence, EX,  = -&,A. 

At the infinitesimally small transformation (6.26), the matrix S differs 
from the identity matrix by a small component proportional to the 
tensor cp, 

1 
Sap = 6,p + f'$~,,. (6.27) 

If the transformation (6.27) is applied to the equation (6.25), we get the 
following equation for the generator of transformation C$: 

The solution of the last equation is 

Thus, for the infinitesimally small continuous transformations, the ma- 
trix S is defined by 

1 
S = I + -E,"y,yv. 

4 
(6.29) 

6.3.1 Three-dimensional rotations 
The matrix of reference frame rotation by the angle 6' around the z 

axis is 
cos 6' sin9 0 0 

(6.30) 

Hence, the matrix of the infinitesimally small rotation by the angle 66' 
around the z axis is 
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By substituting the last equation into the equation (6.29)) we get 

As we have mentioned above, the generator of the transformation of 
the infinitesimally small rotations is the intrinsic angular momentum 
operator. Therefore, the matrix C3, having the form 

relates with the spin projection operator. By rotating the reference 
frame around other spatial axes we can easily get the general equation 

SR (be) = I + 56eX, (6.32) 

To generalize the equation (6.32) for the case of any finite rotation 
angle we need in the operator of powers of (nX), where n = (nl, na, ns) 
is the arbitrary unit three-dimensional vector. The square of the opera- 
tor (nX) is 

By taking into account the commutation relations for the Pauli matrices, 
aioj + ojoi = 2bij, we get 

Thus, the all even powers of the operator (nX) are the identity operator, 
( n ~ ) ~ ~  = I, and the all odd powers are ( n ~ ) ~ ~ "  = (nX). Finally, for 
the matrix of rotation by the finite angle 0 around the axis of n we get 

8 8 
SR = exp (:ex) = cos - + i (nX) sin -. 

2 2 
(6.36) 

It follows from the equation (6.36) that under the rotation by the 
angle 27r the transformed wave function does not coincide with the initial 
wave function, it takes the opposite sign 

*' (XI) = s, (2,) 9 (x) = -!P (x) 
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Thus, the transformation of the three-dimensional rotations, for the 
bispinor wave function of the Dirac equation, is realized by the matrix X. 
Therefore in the Dirac theory the spin operator is defined by 

6.3.2 Lorentz transformation 
The matrix of the Lorentz transformation is 

cosp 0 0 sinp 
1 0  

- sinp 0 0 cos p 

where t a n p  = iv lc .  The matrix (6.38) describes the transformation to 
the reference frame moving along the x axis with the velocity v with 
respect to the initial reference frame. 

The matrix of the infinitesimally small Lorentz transformation is 

By substituting the last equation into the equation (6.29) and applying 
the equalities 

71% = -7471 = i ~ 1 ,  

we get 
1 Sv 

S, (6v) = I - ---ctl. 
2 c 

(6.39) 

By making the similar transformations with the remaining spatial axes 
we can easily get for the arbitrary vector Sv = n6v the following matrix 

1 Sv 
SL (Sv) = I - --a. 

2 c 

Hence, similar to (6.34), we get (na12 = I. Thus, the Lorentz transfor- 
mation, at the arbitrary finite velocity v = nu, is realized by the matrix 

1 1 
SL (v) = cosh (- tanhK1 - (nu) sinh ( 5  tanh-I 2 )  

2 C C 
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6.3.3 Space inversion 

The matrix of the space inversion transformation is 

The space inversion is the discrete transformation, therefore to  determine 
the explicit form of the transformation matrix S we should directly solve 
the equations (6.24) or the equivalent equations (6.25). By substituting 
the matrix up, given by (6.42) into the equations (6.25) we get 

where i = 1,2,3. It can be easily seen that the solution of the equa- 
tions (6.43) is 

SP = b 4 ,  (6.44) 

where X is the arbitrary constant. The double space inversion transfor- 
mation can be considered as an identical transformation. In this case, 
we get the following equation for the constant X 

the solutions of which are 

However, we have seen above that, for the bispinor wave function, the 
rotation by the angle 27r is not the identical transformation. Hence if we 
assume that the double space inversion is equivalent to the rotation by 
the angle 27r we get the following equation for the constant X 

Hence 
X 3 = i ,  X4=-i. 

The choice of the value of constant A,  among its four possible values, 
depends on the internal parity of a particle. 

6.3.4 Time reversal 

When we discussed the symmetry properties of the Schrodinger equa- 
tion we have pointed out that, as the Schrodinger equation is the first 
order differential equation with respect to time derivative, so the time re- 
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versa1 transformation should inevitable include the complex conjugated 
wave function. The Dirac equation is also the differential equation of 
the first order with respect to time derivative. Hence, the time reversal 
transformation will also include the Hermitian or Dirac adjoint. 

Let us write the equation (6.14) in the form 

By applying the time reversal transformation and complex conjugation 
to this equation, we get 

We look for the transformation 

Xi?* (- t) = ST Q ( t )  , 

which converts the equation (6.47) to (6.14). Multiplying the equa- 
tion (6.47) by matrix -ssl from the left we get 

Thus the transformation matrix ST should satisfy the equations 

S T ? ' ~ = Y ~ * S T ,  STY=Y*ST.  (6.48) 

In the standard representation of the matrices yp (see eq. (6.12)) the 
solution of the equations (6.48) is 

where AT is the constant of the unit modulus, 1 AT[  = 1. 

6.3.5 Charge conjugation 
As we have discussed above, the standard replacement (6.18) trans- 

forms the equation for the free particle into the equation for the particle 
interacting with the electromagnetic field 

The charge conjugation transformation defines the symmetry properties 
of equation with respect to the replacement q -+ -9. Making this 
replacement in the equation (6.50), we get 
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The complex conjugation of the equation (6.50) yields the following 
equation 

We should find such a matrix, Sc, 

that transforms the equation (6.52) to the equation (6.51). Multiplying 
the equation (6.52) by the matrix -SZ' from the left we get the following 
equations for the matrix Sc 

In the standard representation of the matrices yp the solution of the 
equations (6.53) is 

sc = ~ c w  (6.54) 

where Xc is the constant of the unit modulus, lXcl = 1. 

6.3.6 CPT invariance 

By summarizing the results of the last three subsections we write the 
space inversion, time reversal, and charge conjugation transformations 
all together: 

a) space inversion 

b) time reversal 

f *  (r, -t) = X~y3y1f (r, t )  or f (r, t )  = X$y1~3f* (r, -t) ; (6.56) 

c) charge conjugation 

f *  (r ,  t) = X c ~ 2 f c  ( r ,  t )  or f c  (r, t )  = X2yzf* (r ,  t )  . (6.57) 

The combined transformation can be written as follows 

PT f (r ,  t )  = X>X$y4yly3f* (-r, -t) , 
CPT f (r ,  t )  = X;7X>X$y2ygyly3f (-r, -t) = -X>X>X$y5f (-r, -t) 

(6.58) 
where 
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In the frames of the Dirac theory there is some freedom in the choice of 
the coefficient of the combined CPT transformation, XCPT = - X E X $ X $ .  
Its value is determined by the internal symmetry of the particle. It is 
usually assumed that XCPT = i. 

Thus, the CPT theorem can be formulated in the following way: any 
solution describing the particle motion in the external electromagnetic 
field has the counterpartner solution describing the space-inverted and 
time-reversed motion of the antiparticle. 

6.4 Free particle 
So we have seen in section 6.1 that the second order in space and 

time differential operator of the Klein-Gordon-Fock equation for the 
free particle is factorized into the product of the two operators, which 
are the first order in space and time differential operators. It is evident 
that any solution of the first order differential equation is at the same 
time the solution of the second order differential equation. The two first 
order differential equations are 

aq l  ih- = (c (ap) + pmoc2) Q1, 
at 

We have seen that the equation for the wave function Q1 results in 
the following equation for the current density four-vector 

j,(,l) = (j, icp) = (ecQ:aQ1, icePf91) , (6.61) 

while the equation for the wave function Qz yields the current density 
four-vector for the particle of the opposite charge 

In the steady-state case, the wave functions are P1,2 (r, t) = Q1,2 (r) x 
x exp (-iEl,zt/h). It is seen that the steady-state equations (6.60~~) 
and (6.60b) coincide when E2 = -El. Taking into account the equations 
(6.61) and (6.62) we can assume that the equation (6.60a) describes the 
particle and the equation (6.60b) describes the antiparticle. Hence, it 
is seen that the solutions corresponding to the particle and antiparticle 
have the opposite sign of energy. This will help us in systematization of 
the solutions of the equations (6.60a), (6.60b). 
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6.4.1 Plane waves 

Let us consider the equation for particle (6.60~~).  The equations for 
the spinors p and x of the bispinor wave function (see (6.10)) are 

acp 2 ih- =  cop^ + rnoc2v, ih% = copp - rnoc X. 
dt  

(6.63) 
at 

We can exclude one of the spinors from the coupled set of equa- 
tions (6.63). For example, by excluding spinor x, for the spinor cp we 

The general solutions of the equation (6.64) for spinor cp, and similar 
equation for spinor X ,  are 

( 7 )] exp (-i?) + + A_, exp -2- 

(6.65) 

( y ) ]  exP (-i?) + x (r, t )  = [c, exp (i:) + C-, exp -i- 

where 
Ep = Jm. 

and A*,, Bfp, Cfp,  Dkp are the constants. These constants are really 
coupled, because not all of the solutions of the equation (6.64) are 
the solutions of the coupled equations (6.63). By substituting the 
solutions (6.65) into the equations (6.63) we get 

The solutions (6.65) correspond to the free particle of a given energy Ep. 
We assume that particle makes a one-dimensional motion in finite vol- 
ume V with the ideal boundaries. To account for the three-dimensional 
motion we shall further make a summation over the all directions p. 

It is evident from the equation (6.65) that both equations (6.60~~) 
and (6.60b) have the solutions of positive and negative energy. Thus in 
the case of free particle there is no necessity to solve the equation for 
antiparticle (6.6Ob), because the general solution of the equation (6.60~~) 
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includes the antiparticle solutions as well. The solutions of the equation 
(6.60a) of the positive and negative energy are respectively 

where 

here w + ~  and wLp are the arbitrary two-dimensional spinors which obey 
the normalization conditions wf p ~ k p  = 1. It is seen that the spinors, 
at positive and negative energy solutions, are orthogonal 

In the particle rest frame, p = 0, the bispinors u(') take the form 

So, in the particle rest frame one of spinors in the bispinor wave function 
became zero. The solution u(+), having the non-zero upper spinor and 
zero lower spinor, corresponds to particle, the solution u(-) corresponds 
to antiparticle. 

6.4.2 Helicity 
It is seen from the equations of the previous subsection that the gen- 

eral solution of the positive energy Ep depends on the two spinors wkp. 

It is quite natural, because the energy eigenvalue Ep is degenerated with 
respect to the two directions of momentum f p .  Let us discuss how we 
can choose the explicit form of the spinors ~ 5 ~ .  

The momentum operator commutes with the Hamiltonian of the 
equation (6.60), hence the momentum is the conservative value. The 

ti 
orbital momentum operator ti1 = [rp] and the spin operator s = - X  do 

2 
not commute with the Hamiltonian HD of the equation (6.60) 
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The commuting operator is the operator of the total angular momentum 
ti 

hj = h l +  - X .  
2 

(6.70) 

As far as  (jp) = (Ep) /2, then the conservation of the total angular 
momentum results in the conservation of the helicity. The helicity is the 
projection of the spin on the direction of the momentum (En) ,  where 
n = plp .  We can check it directly 

[(En) , (an)] = 2iakekijninj = 0, [ (En) ,  ,f3] = 0. 

If in the initial state the spin and momentum are parallel each other, 
then it is convenient as the linear independent spinors wkp to take the 
eigenfunctions of the equation 

where e, = plp .  These two spinors are 

In general case, when a particle moves in the direction defined by the 
angles 0 and cp in the spin state reference frame, the linear independent 
spinors are the eigenfunctions of the eigenvalue problem 

(on) W(O) = ow(u), 

which are 

( There are the following relationships between the spinors w:: 

and w g )  
(.=+I) - - iwg=-l) (0-1) (u=+l) 

w - ~  , W-p = iwP (6.74) 
Hence, the general solution of the equation (6.60a) can be written in the 
following form 

(r, t )  = 

= c c [.p,u~fdexp (-i ~ , t  f i  - pr ) + B , , . u ~ ~  exp (i Ept  P ~ ) ]  , 
P u=fl  
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= C C [A;,~$; exp ( i ~ , t  ji - pr ) + ~;,,4;! exp ( - I  n 
P o=fl E p t  - P r ) l ,  

where 

(A=* 1) The spinors up,a are normalized by the following condition 

Thus, at  a given magnitude of the energy, we have the three binary 
quantum numbers to classify the particle states. They are the energy 
E = fEpl momentum f p ,  and helicity a = f 1. Therefore the linear 
independent solutions can be chosen in the two equivalent forms: (1) the 
four combinations of the different energy E = fEp  and helicity a = 
= f 1  solutions, at a given momentum p; (2) the four combinations of 
the different energy E = f Ep and momentum f p solutions, at  a given 
helicity a. 

6.4.3 Particle a n d  antiparticle 

In the frames of the quantum field theory formalism the linear inde- 
pendent solutions can be chosen in the following way: the solution at 
coefficient Ap,u in equation (6.75) is associated with the electron, and 
the solution at  coefficient B:,, in equation (6.76) is associated with the 
positron. However, it is more convenient to choose both electron and 
positron solutions having the positive energy. In this case, the electron 
solution is given by the positive energy part of the wave function (6.75). 
The positron solution is given by the positive energy part of the charge 
conjugated wave function qc = SZ'$* = X;r2\II*: 

qc = C C [ ~ ; , ~ o u j ? , ~  exp i 
p u=fl ( - 

(+I - B;,,au-,, enp (4 E p t - p r ) ]  tz (6.79) 
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The wave function normalization condition follows, as usual, from the 

where the current density j and charge density p are defined by the 
equation (6.7). By integrating the continuity equation over the volume V 
we get 

d J (r ,  t ) d ~  = - j (r ,  t)dS, 
d t  

v ! S 

where S is the boundary surface of the volume V. 
If the wave function obeys the boundary condition 

then the continuity equation generates the charge conservation law 

J p (r, t) dV = const, 

v 

where the charged density is integrated over the infinite volume. The 
charge conservation law determines the normalization condition for the 
wave functions of the bound states 

The wave functions of the continuous spectrum are normalized by the 
condition (see Chapter 2) 

1 9: (r, t) Q ~ I  ( r ,  t) d~ = ( 2 ~ h ) ~  b(p - (6.82) 

By applying the normalization condition to the wave function (6.75) 
we get 

Thus the normalization conditions (6.81) or (6.82) specify both the 
charge and the integral number of the particles. 

6.4.4 Spherical waves 

The free-particle Dirac equation (6.60) is the rotationally invariant. 
Hence, the solutions of this equation may be classified according to 
their total angular momentum j and parity. For a given j ,  the wave 
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function may be expanded in the spherical harmonics &,, with the 
orbital angular momentum 1 = j + 112 and 1 = j - 112, but the definite 
parity ( - ~ ) j ? l / ~ .  As already shown, the upper and lower spinors of the 
bispinor wave function (6.10) have the opposite parity, hence, we can 
only have 1 = j 112 in p  and 1 = j i 112 in X. The usual rules 
of the angular-momentum addition then yield the following two linear 
independent spherical spinors 

The spherical spinors (6.84) are orthonormalized 

Q$,C2j/l/m, sin 0  d0 d p  = bjj/bll/bmm/. 

The relativistic total angular momentum is 

h 
hj = h l+  ,X, 

hence the bispinor wave function of the 
momentum j and its projection rn is 

state with the total angular 

We have shown above that, in the case of the free particle, the coupled 
set of equations (6.63) can be transformed to the second order differential 
equations for spinors p  and x in separate 

By substituting here the wave functions in the form 
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we get for the radial wave functions the following equations 

The solutions of the equations (6.87), satisfying the boundary conditions 
at r +m, are 

where A and B are the constants, K = d-/(he), and jl (x) is 
the spherical Bessel function. Thus, the radial wave functions are the 
spherical Bessel functions. 

To find the relationships between the coefficients A and B in (6.88), 
we should substitute the equations (6.88) into the equations (6.63). It 
is convenient to use the following transformation 

(m) (op)  = rp + ia [rp] = 

Hence, 

Notice, that there is the following relationship between the spinors Qjlm 
and Rjllm: 

(nra) Rjlm = i l l - lQj l~m.  (6.89) 

This equation can be easily derived with the help of the explicit form of 
the matrix a, = (n,o). So, we get finally the following equation for the 
wave function 

I 

(6.90) 
where C is the normalization constant. 
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The second linear independent solution (see equation (6.86)) can be 
derived in the similar way 

* ~ = j + 1 / 2  (r, t )  = C 
w j l + l  (KT) flj,~+l,m ') exp . 

- W j l  (KT) ajlm 

(6.91) 
According to the definition (6.84) the spinors Rjl,  are transformed 

under the space inversion in the following way 

Hence, 

and 

Thus, as we have already mentioned, the the upper and lower spinors 
of the bispinor wave functions (6.90) and (6.91) have the opposite parity. 

6.5 Particle interaction with electromagnetic field 
The Dirac equation for a particle interacting with the electromagnetic 

field is 
(% (p, - A )  - imoc) * (r,  t )  = 0. (6.94) 

Before start with the analysis of this equation it is helpful to  make 
the following comments. We have already mentioned that there is a 
close connection between the Dirac equation for the free particle and the 
Klein-Gordon-Fock equation. Indeed, 

As long as the components of the four-momentum operator p,, = 

= -itid/dx,, commute with each other, then, with the help of the 
commutation relations (6.13), we finally get 

It is seen that the right-hand-side of the last equation is the operator of 
the Klein-Gordon-Fock equation for the case of free particle. 
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However, the components of the generalized four-momentum operator 

do not commute with each other. The commutation rules for them are 
8 e 8 e 

[(ih- ax, - -A,), (-in- - -A, 
ax, C 

where Fp, is the electromagnetic field tensor. As a result, the product 
of the two first order differential operators does not coincide with the 
operator of the Klein-Gordon-Fock equation for a particle interacting 
with the electromagnetic field. Instead of that, we have 

Thus, there are the two additional terms in the right-hand-side of the 
equation (6.95) with respect to the operator of the Klein-Gordon-Fock 
equation for particle interacting with the electromagnetic field. 

In analysis of the solutions of the Dirac equation for the case of free 
particle we have already used the following technique. The coupled 
set of equations for the upper and lower spinors of the bispinor wave 
function is transformed into the second order differential equation for 
each of the spinors in separate. Of course, not all of the solutions of these 
two second order differential equations are the solutions of the Dirac 
equation, because the upper and lower spinors, of the desired bispinor 
wave function, are not independent. However, the substitution of the 
obtained solutions into the Dirac equation enable us to relate the upper 
and lower spinor and find the solution for the bispinor wave function of 
the Dirac equation. 

In the analysis of the Dirac equation for the particle interacting with 
the electromagnetic field it is also helpful often to find initially the 
solutions of the second order differential equation 

(7" (pi, - f A,) + imoc) (7, ( p ,  - %A,) - irnoc) = 0. (6.96) 

To exclude the unnecessary solutions of the second order differential 
equation (6.96) we can use the following technique. If the function 

(r, t) is a solution of the equation (6.96), then the solution of the Dirac 
equation (6.94) is defined by 

Indeed, it is seen that the function (r ,  t )  satisfies the Dirac equa- 
tion (6.94). 
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6.5.1 Pauli equation 
With the application of the definitions (6.12) the equations (6.94) 

reads 

where we have introduced the potential energy U (r, t )  = ecp ( r ,  t )  to 
avoid the confusion of the electromagnetic field scalar potential cp ( r ,  t )  
and the upper spinor of the bispinor wave function (6.10). 

Let us start with the case when the particle kinetic energy is much 
smaller than its rest energy. In this case it is convenient to use the 
following transformation of the wave function 

The substitution of the equation (6.99) into the equation (6.98) results 
in the following coupled set of equations for the spinors cp' and X' 

e e 
where P = p - -A = -ihV - -A. By neglecting the time derivative in 

C C 
the equation (6.101), we get 

The substitution of the last equation into the equation (6.100) results in 
the closed equation for the spinor cp' 

With the help of the identity (4.10) we get 

Hence in the case U << moc2 the equation (6.102) becomes 
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It is seen that the obtained equation coincides with the Pauli equation 
(see section 4.1.3), where the electron magnetic moment is 

In the non-relativistic approximation the current density four vector is 
I+ 1 P = ~ ( Y + P + x + x )  "ep P ,  (6.105) 

ie h e2 eh 
- (Opt+ . - p'+Vp') - -p1+Ap' + --- curl (cp'+op') . 
2mo ma c 2mo 

(6.106) 

Non-relativistic approximation 
To derive the equation accounting for the highest order of the non- 

relativistic approximation (v << c) we can use the following technique 
proposed in [54]. Let us write the equation (6.101) in the form 

where the inverse operator is defined by the following power series 

The equivalence of the inverse operator to the series (6.107) can be shown 
in the following way. Let us consider the equation 

dx - + ax = f (t) . 
dt 

The solution of this equation can be written in the following form 

x (t) = exp (-at) f (z) exp(az) dz = S 0 

1 1 exp ( -a t )  
= -f (t) - exp (-at) 1 exp(a2) d r  - 

a a  f (0) = 

0 
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By continuing further the obtained chain, we can see that the series 
(6.108) coincides with (6.107). In the equation (6.108) we can remove 
the terms depending on the initial conditions, because in our case a = 
= -i2moc2/h and we must omit these terms in non-relativistic approx- 
imation, even if the initial conditions are non-zero. 

The substitution of series (6.107) into the equation (6.100) produces 
the closed equation for spinor cp'. If we take into account the only first 
two terms of series, we get 

84 e 2  e h  ih- dt = {k ( p  - ;A) +U-I;;E;E~B- (2moc2 ek2 - u)' F ( ~ - : A ) ] -  

eh2c2 -- div ( E ) + iTocurl eh2c2 1 1 aA 
2 (2moc2 - u ) ~  ((2rnoc2 - u ) ~  --I+ c at 

where 

( 
c2 

( r , )  = l+oP 
(2moc2 - U )  

(6.110) 

= ( 1 -  ( 2 0 c u ) 2 ) -  ml m o  

The equation (6.109) generates the following equations for components 
of the current density four vector 

i e h  e2 
j = - (v$+ . $ - $'v$) - -$+A$ - 

e2 c2 h 

2m1 m l c  (2moc2 - U )  
2$+ [W $. 

(6.111) 
In the case U << moc2, the Hamiltonian of the equation (6.109) is 
simplified and takes the form 

Thus we can see that the Hamiltonian of the equation (6.109) includes 
the extra terms in comparison with the Hamiltonian of the Pauli equa- 
tion. Hence the structure of the hydrogenic spectra will differ from that 
calculated in the Chapter 4 on the basis of the Pauli equation. However 
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we do not present here the analysis of the equation (6.109), because the 
Dirac equation for the problem of the electron motion in the Coulomb 
field has the analytically tractable solution. The Hamiltonian (6.112) 
is useful in the interpretation of the results of the exact analytical 
calculations. 

6.5.3 Motion in Coulomb field 

Energy spectrum 

Let us consider the problem on the electron motion in the Coulomb 
field 

where Z is the charge of nucleus the hydrogenlike atom. 
As we have mentioned in the beginning of this section, we can find ini- 

tially the solutions of the second order differential equation (6.96), then 
the solutions of the Dirac equation are defined by the equation (6.97). 
The second order differential equation for the considered problem is 

2 2 E Z a 1  z 2 a 2  . Z a  
A - K  +--+- SZ-a, a = 0,  

tic r  r2 r2 I 
where 

and we have introduced the fine structure constant a = e2/(Ac). Let us 
write the wave function of the second order differential equation in the 
form 

then for spinors E and r] we get the following coupled equations 

The Coulomb potential is the spherically symmetric, hence in accor- 
dance with the analysis given in subsection 6.4.4 the spinors ( and r] are: 

a)  for j = 1 + 112: 

1 )  = P I  , = -  (0, P , r]i (r) = q~ (r) Rj,1=j+l12 ( 0 , ~ )  ; 
(6.117) 
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b) for j = 1 - 112: 

Notice, that the equations (6.116) are symmetric with respkct to 
spinors J and q, therefore we need not in the analysis of the equations 
(6.116) for the cases (6.117) and (6.118) separately. If we have got the 
solutions for the case j = 1 + 112, then the transposition of the upper 
and lower spinors in the wave function (6.115) generates the solutions 
for the case j = 1 - 112. By substituting the equations (6.117) into 
the equation (6.116), we get the following equations for the radial wave 
functions p (r)  and q ( r )  

The solutions of the coupled set of equations (6.119) can be easily 
found with the help of the solutions of the following equation 

The last equation coincides with the equation for the radial wave func- 
tions of the Schrodinger equation for particle moving in the Coulomb 
field, and the solution of this equation, which is finite at x -4 0, is 

where F (p, q, z )  is the confluent hypergeometric function. It is seen that 
we can assume that the radial wave functions p ( r )  and q (r) are 

E Z a  
p (r)  = AT'-' exp (-KT) F u - -, 2u, 2kT) , ( ~ C K  

E Z a  
(6.121) 

q (r) = ~ r ~ '  exp ( -m) F (v - --, 2v, 2nr) , 
~ C K  

where 

and A and B are the arbitrary constants. By substituting the equa- 
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tions (6.121) into the equations (6.119) we get the coupled set of the 
algebraic equations for coefficients A and B 

( z ~ c ~ ~ - z ( L + ~ ) - c ) A + z ~ B = o ,  
(6.123) 

ZcvA - (Z2a2 - (1 + 1) (1 + 2) - c) B = 0. 

The condition of existence of the non-trivial solutions of the algebraic 
equations (6.123) yields the following two values for the coefficient c: 

Hence, 

(6.125) 

where 
Za 

'= J w + j + 1 / 2 .  

(6.127) 

Thus, in the case when j = 1 + 112, the two linear independent solutions 
of the second order differential equation (6.114) are 

Qj,l=j-1/2,m 
-~Qj,l=j+l/2,m 

(6.128) 
-~Qj,l=j-l/~,rn 

Qj,~=j+l/2,m 

where 

(1 2) E Z a  R ' ( r )  = r"1,2-1 enp (-KT) F v1.2 - -. 2v1,2, ?KT) . (6.129) 
3 ( hcti 

The solutions (6.128) satisfy the boundary condition at  r t 0. The 
radial wave function (6.129) satisfies the boundary condition at  r -+ cc 
when the following condition holds 

EZa - (12) 1 - - - - n T  , 
~ C K  

(6.130) 

where n?'2) is the non-negative integers. The equation (6.130) yields 
the following equation for the energy spectrum 
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It is seen from the equations (6.125) and (6.126), that the obtained 
spectrum is degenerated. Indeed, by introducing the following notations 

we get the general equation for the energy spectrum 

moc2 (n, + v) 
Enr.i = Jm' 

and the following equations for the wave functions 

flj,~=j-l/2,rn rV-I exp (-w) F (-n,, 2v, 2 m ) ,  
-qfl.i,~=~+1/2,rn 

As we have mentioned above we need not in separate analysis of the 
case of j = 1 - 112. The energy spectrum is again defined by the equa- 
tion (6.132), and the wave functions follow from the equations (6.133) 
with the help of transposition of the upper and lower spinors in these 
equations 

flj,i=j+1/2,m 
@3(r) = rVexp ( - ~ r )  F (1 - n,, 2v + 2 , 2 ~ ) ,  

-qfl.i,~=~-1/2,rn 

-~flj,l=j+1/2,rn 
@ 4 ( 4  = rU-' exp (-fir) F (-n,, 2v, 2 ~ ) .  

flj,l=j-l/2,m 
(6.134) 

It should be reminded here that there are the superfluous or unneces- 
sary solutions among the solutions of the second order differential equa- 
tion (6.113). These solutions are the solutions of the equation (6.113), 
but they are not the solutions of the Dirac equation 

We have mentioned above, that the general technique, to obtain the 
Dirac equation solutions from the solutions of the second order differ- 
ential equation, is in the following. If @ is a solution of the second 
order differential equation, then the solution of the Dirac equation is 
defined by 
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In the case when j = 1 + 112, the general solution of the second order 
differential equation is 

@ ( r )  = A @ l ( r )  + B@2(r)  . (6.136) 

The equations for @I,:! can be symmetrized with the help of the recur- 
rence relations for the confluent hypergeometric functions: 

2 v F  (-n,, 2v, 2rcr) = 

= - n , F ( l  -n, , ,2v+ 1 , 2 ~ r )  - (n, $ 2 ~ )  F ( - n , , 2 v +  1,2rcr), 

2 ~ r F  ( 1  - n,, 2v + 2,2rcr) = 
(6.137) 

= ( 2 v  + 1)  F ( 1  - n,, 2v + 1,2rcr)-(2v + 1)  F (-n,, 2v + 1,2rcr) 

If we apply the equations (6.137) to the equation (6.136) we can easily 
find the coefficients A and B that realize the equality (6.135). The 
resultant wave funct,ion is 

where 

(2K)3/2 E 
f n j  ( r )  = - (2rcr)"-l exp (-rcr) x r (2v + 1) 2moc2 

The wave function (6.138)-(6.140) is normalized by  the condition 

1 QGm ( r )  Qnjm ( r )  dV = 1. 
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The energy spectrum (6.132) depends on the two quantum numbers 
n, and j .  Hence, in contrast to the Bohr formula the spectrum (6.132) 
describes the fine structure, i.e. the splitting of the nPl12 and nP312 
levels. The first terms of expansion of the spectrum (6.132) in pow- 
ers ( 2 ~ ) ~  are 

where n is the principle quantum number, which is defined by 

It is seen that the equation (6.141) coincides with the Sommerfeld 
formula (5.27). 

The spectrum (6.125) differs from the Bohr formula in the dependency 
on the charge Z of the ion. It  is seen from the equation (6.125), that 
there is the critical charge Zo, defined by 

It  is impossible in the frames of the Dirac theory to consider the Coulomb 
field with Z > Zo. At Z < Zo, the dependency of the parameter v on Z 

Figure 6.1. The relative energy shift of the 2PlI2 and 2P3/2 levels as a function of 
the ion charge 2. The insert shows the normalized spectri of hydrogen and ion of 
charge Z = 100 for 1 = 0 and 1 = 1 
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changes the magnitude of the relative shifts of the different states. The 
Fig. 6.1 shows in comparison the spectra given by equation (6.132) for 
hydrogen and for ion of the charge 2=100. The energy of states are 
normalized by the energy of I s  state Enl/E1,. The states of 2 1. n 1. 10 
are only depicted. It is seen from the figure that the 2s state of ion lies 
below the 2s state of hydrogen (i.e. the relative energy of this state of 
ion is smaller than the relative energy of the same state of hydrogen). 
At n > 3, the relative energy of the ns states of ion is higher than the 
relative energy of the appropriate states of hydrogen. At 1 > 0, the 
relative energy of the all states of ion is higher than the relative energy 
of hydrogen, and the energy shift exceeds significantly the energy shift 
at 1 = 0. The graph in Fig. 6.1 shows the relative energy shift, 

as a function of the ion charge. It is seen that at Z > 50 the energy 
shift of 2p3/, and 2plI2 states is about a few percents of the ground state 
energy. 

Wave functions 
To compare the wave functions (6.139), (6.140) with the wave func- 

tions of the non-relativistic Schrodinger equation, given by the equa- 
tion (2.35), it is convenient to introduce the dimensionless coordinate 

where ae is the Bohr radius. Let us introduce additionally the effective 
principle quantum number 

Let us consider the case of j = 1 + 112. In this case, a t  Za << 1, the 
parameter v is approximately equal to 

then for the effective principle quantum number N we get 

It is seen that in the limiting case of Z a  -+ 0 the quantum number N 
approaches to the principle quantum number, n = n, + 1 + 1, of the 
Schrodinger theory. 
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By substituting the equations (6.142), (6.143) into the equations 
(6.139), (6.140), we get 

At 1 > 0, there is almost complete coincidence between the wave func- 
tion (6.145) and the radial wave function Rnl (x) of the Schrodinger 

Figure 6.2. The comparison of the Dirac and Schrodinger wave functions for the IS 
state of the ion of charge Z = 10 
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Figure 6.3. The comparison of the Dirac and Schrodinger wave functions for the 1P 
state of the ion of charge Z = 10 

eq~at~ion.  At the same time, there is some difference between the radial 
wave functions of the s states. Indeed, the confluent hypergeometric 
function has the following asymptotical form at  x t 0: F ( a ,  b, x)ll+o = 
= 1. Hence, at  x --+ 0 we get the following asymptotical expression for 
the wave function (6.145) 

We can see that the wave function $ (x) is divergent at x -+ 0. The diver- 
gency is weak, when Z a  << 1. The Fig. 6.2 shows in comparison the wave 
function R (x) (curve (a)) and difference f (x) - R (x) (curve (b)) for the 
I s  state of the hydrogenlike ion of charge Z = 10. The curves (c) and (d) 
illustrate the charge density distribution q  (x) = R2(x) x2 and the differ- 
ence dq = ($+ (x) 9 (x) - R2(x)) x2. The charge density distribution is 
not divergent, and the ratio of dq to q is dq lq  5 3 . lop3. The Fig. 6.3 
shows the wave function R(x)  (curve (a)), the difference f (x) - R(x)  
(curve (b)), charge density distribution q  (x) = R ~ ( x )  x2 (curve (c)), 
and the difference dq = (*I/+ (x) * (x) - R2(x)) x2 (curve (d)) for the 21, 
state of the hydrogenlike ion of charge Z = 10. The wave functions are 
not divergent at I > 0, and the ratio of dq lq  is about of the same order 
of magnitude as for the s states. 



150 Dirac equation 

Continuous spectrum 
The states of the energy E > moc2 correspond to the continuous 

spectrum. In this case the parameter r; becomes pure imagine, and it is 
convenient to introduce the new parameter 

J~2-mgcl  , 

k = = 2K. 
tic 

The two linear independent solutions of the second order differential 
equation (6.114) are still given by the equation (6.128), where we should 
make the following replacement r; -+ -ik, so 

R(') ( r )  = (2kr)'-l exp(ikr)F (v - iq, 2v, -22kr) , 
(6.149) 

R ( ~ )  (T) = (2kr)' exp(ikr)F (v + 1 - iq, 2v + 2, -i2kr) , 

where 

With the help of the recurrence relations (6.137) and the Kummer 
transformation F (a ,  b, z) = exp ( z )  F (b - a, b, -z), the wave func- 
tions (6.139) and (6.140) are transformed to the following form 

f (r) = c v ' ~ ( 2 k r ) ' - l  x 
x Im {exp [i (kr + J)] F (v - iq, 2v + 1, -22kr)) , 

(6.151) 

g (r)  = c J-(2l~r)~-' x 
x Re {exp [i (kr + ()I  F (v - iq, 2v + 1, -i2kr)) , 

where C is the normalization constant, and we have introduced the 
following parameter 

- ( j +  112) - ir lmoc2/~ exp (i2t) = 
u - iq 

(6.152) 

The normalization constant C is determined by the asymptotical form 
of the wave function at  r -4 m. Finally, for the normalized wave function 
we get 

x Im {exp [i (kr + J)] F ( V  - iq, 2v + 1, -i2kr)), (6.153) 
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x Re {exp [i ( k r  + E ) ]  F ( u  - i q ,  2u + 1 , - i 2 k r ) ) .  (6.154) 

The asymptotical form of the functions (6.153), (6.154) at r + cc is 

where 

- ( j  + 112) - ir1moc2/E r ( v  + 1 - iq) exp (2i6k) = exp [ i ~  (1 - u ) ]  . 
u - iq l7 (Y + 1 + iq)  

(6.156) 



Chapter 7 

THEORY OF SPIN-112 PARTICLES 
INTERACTING WITH 
ELECTROMAGNETIC FIELD 

The hydrogenic spectrum, calculated on the basis of the Dirac the- 
ory [4, 55, 561, was in good agreement with the experimental data of 
that time. Indeed, the fine structure splitting, a4moc2/32, is in good 
agreement with the experimental data and this value, which is only the 
first order correction to the Bohr formula, coincides with the correction, 
calculated earlier by Sommerfeld [53] with the help of quantization rules. 
As we have mentioned, the next step in the development of the theory 
of atomic spectra was stimulated by the experimental observation of the 
Lamb shift [57]. The researches, directed towards the explanation of the 
Lamb shift, triggered the development of the quantum field theory. The 
application of the powerful technique of the quantum field theory enables 
to calculate precisely the hyperfine structure of the hydrogenic spectra. 
The radiative correction theory is based on the account of the virtual 
processes of the charged particle interaction with the electromagnetic 
vacuum and vacuum of the electron-positron pairs. The main technique 
here is the invariant theory of perturbations. The smallness parameter 
of the perturbation theory is the fine structure constant. Indeed, the 
mean potential energy of electron in the hydrogen atom is equal to 
Uat = e2/aB, where a B  is the Bohr radius. The ratio of Uat to the 
electron rest energy is ~ , ~ / ( m ~ c ~ )  = a2 .  However, in the case of 
the hydrogenlilte ions, the characteristic constant of interaction is the 
parameter Zcu, which increases with the increase of the ion charge 2. 
Hence, the perturbation series becomes less convergent with the increase 
of 2. Therefore, the development of the non-perturbative approach is of 
the great interest. 

By comparing the quantum mechanics and quantum field theory ap- 
proaches, we can see that the princip!e difference between then1 consists 
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in the following. In the frames of the Schrodinger and Dirac theories 
the charge density is p (r, t)  = e6+  (r ,  t )  9 (r, t). Hence, the charge 
conservation law fixes both the integral charge and integral number of 
particles, because 

/ 6' (r ,  t )  Q (r ,  t )  dV = I A ~ ~ ~ ,  

where the index i numerates the linear independent solutions of the 
quantum mechanical equation, and Ai are the amplitudes of these solu- 
tions. 

On the other hand, the quantum field theory, including into consid- 
eration the virtual processes, removes any restrictions for a number of 
particles involved in the interaction. Hence, to account for the many- 
particle processes we should reconstruct the normalization condition in 
a way allowing the variation of the total number of particles. Notice 
here, that the particle and antiparticle has the opposite sign of charge. 
It gives us some hint, how we can construct the wave function nor- 
malization condition in order to satisfy the charge conservation law, on 
the one hand, and to remove the restrictions on the integral number of 
particles, on the other hand. It is evident that such kind normalization 
condition could not be incorporated into the theory, which is based on 
the differential equation of the first order with respect to time derivative, 
because the continuity equation should have the relativistic invariant 
form. The theory, which met the all above mentioned requirements, was 
proposed recently 1581. The calculated spectrum 1591 is in reasonably 
good agreement with the e~periment~ally measured spectra of hydrogen 
and deuterium. Here, we give an overview of the theory and demonstrate 
its application to the theory of hydrogen atom, geonium atom, and 
problem of the electric dipole moment of spin-112 particles. 

7.1 Action principle 
Let the action for the spin-112 particle interacting with the electro- 

magnetic field be 

+ "1  ~7LA7,,~,,6 dV dt, (7.1) 
2 

where F,, = V,,,A, - V,A, is the electromagnetic field tensor; V, = 
= a/dx,, x, = ( r ,  ict); A,, = (A, icp) is the four-potential of the 
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electromagnetic field; yp are the four by four matrices; mo, qo and po is 
mass, charge, and magneton (i.e. magnitude of the magnetic moment), 
respectively. The wave function 8 of the equation (7.1) is the bispinor 

where cp and x are the three-dimensional spinors. The Dirac adjoint 
wave function is 

\I! = 

It is seen that the main difference of the action (7.1) and action for 
the Dirac equation is in the following: Firstly, the action (7.1) is the 
quadratic form of the four-momentum operator. Secondly, it enables to 
introduce the three independent material constants characterizing the 
particle properties - mass mo, charge qo, and magneton po. 

The Euler-Lagrange equation, when S is varied with respect to \I!, is 

The variation of S with respect to Ap results in the following equation 

where 

It is seen that the current density four vector satisfies the continuity 
equation 

V,j, = 0. 

The spatial component of the current density four vector is the current 
density 

and the time component is the charge density 
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7.2 Connections with the Dirac equation 
Let us use the following identity 

where 
40 a 90 Pp = p, - ;A, = i h -  - -A,. ax, 

With the help of this identity the equation (7.3) can be rewritten in the 
following form 

+ imoc) ( y , ~ ,  - imoc) Q = imo ( po - - :ire) ~ ~ T A + Q .  (7.8) 

Let us assume now that the magneton, introduced in the equa- 
tions (7.1),  is equal to the Bohr magneton 

In this case the equation (7.3) becomes 

(yPP,  + imoc) (y,P, - imoc)  8 = 0. (7.10) 

Thus, we can see, that in the case, when the magneton is equal to the 
Bohr magneton, any solution of the Dirac equation 

is, at the same time, the solution of the equation (7.3). However, the 
opposite is not true, because the number of the linear independent 
solutions of the second order differential equation is twice larger. 

If the assumption (7.9) is applied to the equation (7.5),  the current 
density four vector takes the form 

- [a (?, ( - i h a  Ox,, + P ~ A , )  c - imoc)]  . ?,Q} (7.12) 

The equation (7.11) for the Dirac adjoint wave function reads 
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If we apply the equations (7.1 1) and (7.13) to the right-hand-side of the 
equation (7.12), then the equation for the current density four vector 
becomes 

jf" = i ~ q ~ ~ ~ , b .  (7.14) 

Thus, if a particle wave function obeys the Dirac equation (7.11), then 
the equation for the current density four vector (7.5) takes the form of 
the current density four vector in the Dirac theory: 

j,iD) = (j, i cp)  = ( c q o ~ + a ~ ,  icq09'*).  

Thus, we can seen that in the case of ,LLO = pg (i.e. when the magneton 
is equal to the Bohr magneton), any solution of the Dirac equation is 
also a solution of the equation (7.3). 

7.3 Symmetry properties with respect 
to orthogonal transformat ions 

Let us study the symmetry properties of the equation (7.3) with 
respect to the orthogonal transformations 

where the matrix up, obeys the condition 

We have explored symmetries in the previous chapters, therefore we 
can exclude some specific cases. Firstly, there is no necessity to study 
the transformation properties of the equation (7.3) for the case of free 
particle, because the left-hand-side of this equation has evidently rela- 
tivistic form. Hence, the transformation properties of the equation (7.3) 
for the free particle are completely determined by the transformation 
properties of the bispinor wave function 6. We have discussed them 
in the previous chapter. Secondly, there is no necessity to discuss the 
transformation properties with respect to the translation in spacetime, 
because they are the same for all quantum-mechanical equations, and 
we have discussed them in the previous chapters. Hence, we can assume 
up = 0 and consider further the following transformations 

If the transformations (7.17) are applied to the equation (7.3) we get 
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As we have mentioned in the previous chapters, the invariance of the 
equation with respect to the orthogonal transformations means that 
there is a matrix S, defined by 

*I (XI) = SQ (x) , (7.19) 

which transforms the equation (7.18) into the equation (7.3). By substi- 
tuting the transformation (7.19) into (7.18) and then multiplying both 
sides of the obtained equation by S-' from the left, we get the equation, 
which coincides with the equation (7.3), if the following condition holds: 

By taking into account the orthonormality of matrices ap,  (see (7.16)), 
we can rewrite the equation (7.20) in the form 

In spite of the fact, that the obtained equations (7.20), (7.21) differ 
from the corresponding equations of the Dirac theory (see (6.24), (6.25)), 
the transformation properties of the equation (7.3) are quite predictable. 
Indeed, both equations (7.3) and (7.11) are the relativistic invariant 
equations. Hence, their transformation properties with respect to the 
three- and four-dimensional rotations will coincide, because these prop- 
erties are determined by the symmetry properties of the wave function, 
i.e. the internal symmetry of the particle. 

The equivalence of the symmetry properties of equations (7.3) 
and (7.11) with respect to the space inversion is not so evident. 
Indeed, the left-hand-side of the equation (7.3) is invariant with 
respect to the space inversion, but the right-hand-side of this equation 
includes the electromagnetic field tensor Fpw. Some components of the 
electromagnetic field tensor are projections of the polar vector, some 
of them are projections of the axial vector. However, the right-hand- 
side of the equation (7.3) is proportional to the product of the two 
antisymmetric tensors, therefore there is some reason to assume that 
the symmetry properties of the equations (7.3) and (7.11) with respect 
to the space inversion may be similar. 

The time reversal and charge conjugation transformations require 
the separate consideration, because these transformations include the 
complex conjugation. In the frames of the Dirac theory formalism, 
the time reversal transformation is applied to show the symmetry of 
the free particle equations. In some sense, the time reversal plays an 
auxiliary role in comparison with the charge conjugation transformation. 
Indeed, the time reversal transformation changes sign only of the time 
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derivative. The time-reversed equation can be returned to the initial 
form only with the help of the complex conjugation. So, the positive and 
negative energy solutions of the differential equations of the first order 
with respect to time derivative are, in general sense, the solutions of the 
different equations. As we have discussed in the previous chapter, the 
positive and negative energy solutions are associated with the particles 
and antiparticles, respectively. Hence, the particles and antiparticles 
are not completely equivalent in the frames of theories, based on the 
differential equations of the first order with respect to time derivative. 
Contrary, the particles and antiparticles are certainly equivalent in the 
frames of theories based on the equations of second order with respect 
to the time derivative. However, the real symmetry of particles and 
antiparticles can be revealed only with exploring of their interaction 
with the electromagnetic field, because the equations describing the 
interaction depend explicitly on the particle charge. At the charge 
conjugation transformation we change sign of the charge and make 
complex conjugation simultaneously, as a result the equation (7.11) as 
well as the left-hand-side of the equation (7.8) do not vary under this 
transformation. Hence, the transformation properties of the equation 
(7.3) with respect to charge conjugation are determined primarily by the 
transformation properties of the right-hand-side of the equation (7.8). 

7.3.1 Space inversion 
In the case of the space inversion transformation, the matrix up, is 

By multiplying both sides of equation (7.20) by matrix S from the left, 
we get 

where i, j = 1,2,3. It can be easily seen that the matrix 

is the solution of the equations (7.22). In complete analogy with the 
case of the Dirac equation, there is a freedom in the choice of the 
value of constant X p .  If we assume that the double space inversion 
transformation is the identical transformation, then we get Xp = *l. 
However, if we assume that the double space inversion transformation 
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is equivalent to the rotation by the angle 2n, then we get Xp  = f i. In 
both cases lXpl = 1. Thus, the space inversion transformation of the 
wave function of the equation (7.3) is realized by the matrix 74 .  

7.3.2 Three-dimensional rotations 
When we explore the continuous transformations, it is convenient to 

consider initially the infinitesimally small transformations 

where cpv is the infinitesimally small tensor of the second rank. As 
far as the matrix up, obeys the condition (7.16), then the tensor cpv is 
completely antisymmet ric tensor 

At the infinitesimally small transformations (7.24), the transforma- 
tion matrix S differs from the identity matrix by a small component 
proportional to the tensor 

By substituting the equation (7.26) into the equation (7.21), we get 

It is seen from the structure of the last equation, that its solution should 
have the form Cap = Xyayp, where X is the constant. By substituting 
this expression into the equation (7.27), we get 

I(' - 1) ( ~ p y p b a ~  + yp~vbap) - (yPyabpv + yayvbpp)] Eap = 
- - 

- 1) (ypypSav + ~ p ~ v S a p )  cap - (yPypSav + ypyvba,) &pa = 
- 
- (2X - 1) (7p7pbav + ~pyvbap) Eap = 0. 

Thus, we get finally 
aP - 1 

C - syays  (7.28) 

The three-dimensional rotations touche only the spatial components 
of the four-vectors. Therefore, by taking into account the following 
properties of the matrices yl, T ~ ,  "13: 

y . - ie . .  C a 7 ~ -  a j k  k ,  (7.29) 
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for the matrix of the three-dimensional rotations we get 

i SR (be) = I + -69nX, 
2 

(7.30) 

where n is the unit vector of the rotation axis, and the matrix X is defined 
by the equation (6.33). Thus, in both cases of the equation (7.3) and the 
Dirac equation, the three-dimensional rotations are realized by the same 
matrix. Therefore, it can be easily understood, that the transformation 
matrix for the finite angle of rotation will coincide with that given by 
equation (6.36): 

e 0 
SR = exp (:OX) = cos - + i (nX) sin -. 

2 2 

7.3.3 Lorentz transformation 
The Lorentz transformation, or the four-dimensional rotation, is also 

continuous transformation. Hence, to find the matrix of this transfor- 
mation we can again use the equations (7.26) and (7.28). The matrix 
E ~ ,  of the Lorentz transformation to the new reference frame, moving 
along the x axis with the velocity bv, is 

where 69 = iSv/c. By taking into account the equalities 

we get 
1 6v S, (bv) = I - --al. 
2 c 

(7.32) 

By combining the similar transformations touching other spatial axes, 
we get the following vectorial equation 

Thus, we can see again, that in both cases of the equation (7.3) 
and Dirac equation, the Lorentz transformation is realized by the same 
matrix. Hence, at the arbitrary finite velocity v = nu, the matrix of the 
Lorentz transformation is 

1 1 
SL (v) = cosh (1 tanh-I - (na) sinh (5 tanh-' 9 . (7.34) 

C c 
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7.3.4 Time  reversal 
As already mentioned, the time reversal transformation establishes the 

connection between the positive and negative energy solutions. There- 
fore we should compare the equation for bispinor wave function 6 (r,  t) 
and Dirac adjoint wave function g (r, t). It is convenient to rewrite the 
equation (7.3) in the following identical form 

+ mgc2 + 2mo,uo (iaE - XB) 6 = 0. (7.35) I 
The equation for the Dirac adjoint wave function (r, t) is 

+ mgc2 + 2mopo (iaE - XB) = 0. (7.36) I 
The time reversal transformation is usually applied to the free-particle 

equation. However, the free-particle equation (7.3) is evidently invariant 
with respect to time reversal. Therefore, it is useful to generalize the 
transformation and to consider the equation for a particle interacting 
with the electromagnetic field. Let us use the following notations 

p ,  t = ( i ,  - )  c at = - ( i ,  2 )  at = -p; (r, -t) . 

It is seen, that the same equalities are valid for the generalized four- 
momentum 

h a  go 
(r ,  t )  , - -  - - ( )  at 

when 
A (r, t )  = A (r ,  t )  , cp (r, -t) = cp (r ,  t )  . (7.37) 

Hence, the four-momentum pp and generalized four-momentum PCL 
are transformed in the same way, if the four-potential of electromagnetic 
field is transformed under time reversal according to (7.37). As we 
have mentioned in subsection 3.2.5, the classical particle makes the time 
reversal motion in the case when the following conditions hold 

E (r, -t) = E (r,  t) , B (r,  -t) = -B (r, t) . (7.38) 
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It is seen that the conditions (7.38) are identical to the conditions (7.37). 
By using the equations (7.37), we can transform the equation (7.36) 

to the following form 

+ mic2 + 2mop ia + 2~ (r, -t) = 0, (7.39) ( 
where tilde matrix is the transposed matrix. Thus, the transformation 
matrix, defined by 

5 (-t) = STQ ( t )  , (7.40) 

should satisfy the following equations 

s?l&sT=a, S ? ~ ~ S ~ = - Z .  (7.41) 

The solution of the equations (7.41) is 

ST = X T ' y 4 ~ 3 ~ 1  = X T Y ~ Y ~ Y ~ ,  (7.42) 

where, as above, we have used the standard representation of the 
matrices yp. By taking into account that the double time reversal 
transformation is identical transformation, we get IXTI2 = 1. 

7.3.5 Charge conjugation 
The charge conjugation transformation establishes the connection 

between the solutions of the equation (7.3) and equation, obtained from 
it, with the help of the following replacement: go -+ -90 and po + -PO. 
Thus, the wave function of the charge conjugated particle is a solution 
of the following equation 

We should find the matrix transforming the transposed equation (7.36) 
into the equation (7.43), i.e. 

It is easily seen from the comparison of equations (7.36) and (7.43), that 
the transformation matrix should satisfy the following equations 

sCasE1 =-a, sC&3E1 = -E (7.44) 
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In the standard representation, there are the following relationships 
between the transposed and direct matrices: = q 3 ,  = -a2, 

= and C2 = -C2. With the help of these relationships, the 
solution of the equations (7.44) can be easily found. It is 

2 where lXc l  = 1. 

7.3.6 CPT invariance 
The combined transformations of the time reversal, space inversion, 

and charge conjugation can be written in the following way: 
a) T-transformation 

ST* (r ,  t) = 5 (r ,  -t) , 

- 
S p S ~ *  (r, t) = G (-r, -t) , 

SCSPST* (r, t) = qC (-r, -t) . 

Hence, the combined transformation is 

It is seen, that the combined CPT-transformation is realized by the 
matrix 

this matrix coincides with the matrix realizing the CPT-transformation 
of the Dirac wave function. The difference between the transformations 
(7.46) and (6.58) can only be in the choice of the coefficients in these 
equations. In the equation (7.46) the coefficient is equal to -iXCXPX~. 
The exact value of this coefficient depends on the internal symmetry 
of a particle. The internal symmetry of a particle describing by the 
equation (7.3) will be discussed below. 

As it is seen from the equation (7.46), the CPT-invariance provides 
a precise correspondence between the particle motion and reversed 
in time and space motion of antiparticle. The matrix of the CPT- 
transformation, 75, satisfies the anticommutation relations 
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where p = 1,2,3,4. As a result, it does not commute with the Hamil- 
tonian of the Dirac equation. It is not surprised, because the particle 
and antiparticle obey the different equations in the frame of the Dirac 
theory. Indeed, the Dirac equation for the wave function QD is 

Operating on this equation with matrix 75, we get 

However, the equation 

can, in principle, have the solutions, which do not coincide with the 
solution given by - 7 5 9 ~  (r ,  t). 

Contrary, the matrix of the CPT-transformation, 75, commutes with 
the Harniltonian of the equation (7.3). We shall see in the next chapters, 
that it is this difference between the Dirac equation and equation (7.3), 
which results in the crucial difference between the solutions of these two 
equations. 

7.4 Wave function normalization condition 
The wave function normalization condition is unambiguously deter- 

mined by the continuity equation 

where the current j and charge p density are defined by the equa- 
tions (7.6) and (7.7), respectively. Integrating the equation (7.49) over 
the volume V, we get 

where S is the boundary surface of the volume V. 
If the initial and final states of the particle interacting with the 

external fields satisfy the boundary condition 

' (r)lT-+m = '7 

then the equation (7.49) yields 
P 

J p (r, t )  = const, 

v 
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where the charge density is integrated over the infinite volume (V t co). 
There are at least the two reasons, indicating that the space integral 

of the charge density is not definitely positive defined value. Firstly, 
the time derivative d 9 l d t  may be both positive and negative, and, in 
principle, it can change sign in the process of evolution of the particle 
state. Secondly, the product P9 for the case of the bispinor wave 

function 9 = (3 is 

Therefore, it is seen, that the space integral of the function (7.52) is not 
definitely positive defined value. 

Exploring the Klein-Gordon-Fock equation, we have mentioned that 
the problem of the positivity condition, J p(r ,  t) dV > 0, can be elim- 
inated by a proper choice of the sign of a particle charge. But, as we 
have mentioned above, the Hamiltonian of the equation (7.3) commutes 
with the operator 75. Hence, if the wave function 9 is a solution of 
the equation (7.3), then the wave function 9' = ys9 is also a solution 
of this equation. However, it is seen from the equation (7.52), that 
9 = - 9 .  We shall see later, that the sign of J p( r ,  t )  dV is 
the fundamental characteristic of the solutions of equation (7.3), which 
provides the invariant definition of the particle and antiparticle states. 

As we have discussed above, it is assumed, in the frames of the 
quantum field theory, that the positive energy solutions 

corresponds to particles, and the negative energy solutions 

!Pa (r, t)  = 9 (r)  exp z- (3 
corresponds to antiparticles. However, in the frames of the Dirac theory, 
it is impossible to differ the particle state (7.53) from the antiparticle 
state (7.54), because the Dirac equation is the first order differential 
equation with respect to the time derivative. Hence, in order to define 
unambiguously the initial state we need only in the initial value of 
the wave function. Contrary, the charge density p ( r , t ) ,  defined by 
the equation (7.6), depends not only on the initial value of the wave 
function 9 (r,  O) ,  but on the value of the time derivative d 9  (r, 0) /at, 
too. Therefore, in the frames of the theory based on the equation (7.3), 
the initial value of the charge density will be different for particle and 
antiparticle even in the case, when the particle and antiparticle wave 
functions differ only in the sign of energy. 
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The wave function of particle, which is in the stationary state of 
energy En, is 

Q ( r , t )  = !Pn(r)exp (7.55) 

If the state of a particle is the bound state, then the wave function 
satisfies the boundary condition (7.50). In this case the equation (7.51) 
reads 

-%!- J G. (.) (E ,  - pop ( r ) )  ( r )  dV = const, (7.56) 
mgc2 

v 
where V -+ oo. 

Thus the normalization condition can be written in the following form 

J (') d~ = G ( r )  E n  - p ( r ) )  n ( r )  d = 1 .  (7.57) 
40 

It is seen that the bound state normalization condition (7.57) means 
that the charge S pdV is equal to +qo or -qo, where qo is the elementary 
electric charge appearing in the equation for action (7.1). We can always 
assume, that the condition 

corresponds to particle, and the condition 

1 p ( r )  dV = -so 

corresponds to antiparticle. 
It should be noted that the normalization conditions (7.58) and (7.59) 

do not impose any restrictions. As already mentioned, the Harniltonian 
of the equation (7.3) commutes with the operator ys, it means that the 
particle and antiparticle possess the equivalent properties in the frames 
of the theory based on the equation (7.3). 

7.5 Plane waves 
The momentum operator commutes with the free-particle Hamilto- 

nian of the equation (7.3), therefore the free-particle wave function reads 

( E )  ! P E , ~  ( r ,  t )  = up exp [-i Epth prl * 

Substituting this wave function into the equation (7.3), we get 
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Hence, the linear independent solutions can be taken in the form 

As we have mentioned above, the dimension of the phase space of the 
equation (7.3) is doubled with respect to that of the Dirac equation. 
Indeed, the equation (7.3) is the second order differential equation both 
in time and space, and the wave function is the bispinor. Hence, there 
are the eight linear independent solutions of the equation (7.3) in general 
case. To label the free particle states we can use the energy, momentum, 
and charge. The charge of particle in the states (7.62) is defined by 

The four states, t!$), correspond to the positively charged particle, 

and the four states, !I$$, correspond to the negatively charged particle. 
Thus, at a given value of energy rp, the eight linear independent free- 

particle solutions of the equation (7.3) may be classified according to the 
values of the following three binary quantum numbers: energy Ep/rp = 
= f 1, momentum f p/ Ipl = f 1, and charge q/qo = fl .  

The normalization condition of the free-particle wave functions is 
completely similar to that of the Schrodinger equation: 

In this case, the charge of the particle is defined by the sign in the right- 
hand-side of the last equation, q = f go. The values of the energy Ep/rp, 
momentum projection e(+Ip, where e(+) = +p/p, and charge q/qo for 
the eight linear independent states of free particle is shown in Table 7.1. 

It is seen from the equations (7.62) that the positive energy solutions, 
Ep = I?,, for particle lg!, and antiparticle are orthogonal. The 

(3) negative energy solutions, Ep = -rp, for particle Q*, and antiparticle 

qyi are also orthogonal. The solutions qf!, are orthogonal due to 
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Table 7.1. Classification of linear independent free-particle solutions 

normalization condition (7.64). Thus, the general solution for the free 
spin-112 particle has the following form 

(7.65) 
where X E  = Ep/rp = f 1, and the bispinors u and v are 

The general solution depends on the two pairs of the arbitrary three- 
dimensional spinors cp* and x+. These spinors can be chosen in the 
following way. The Hamiltonian of the equation (7.3) commutes with 
the operators of momentum, angular momentum, spin, and helicity. If 
the direction of the momentum coincides with the direction of the z axis 
of the spin state reference frame, then the eigenfunctions of the equation 

(,2w(4 = (,W(fl), 

can be taken as the basis spinors. They are 

In general case, when the particle moves in the direction determined by 
the angles 6 and cp in the spin state reference frame, the basis spinors 
are the eigenfunctions of the equation 

which are 
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In the latter case, the direction of the momentum -p is determined by 
the angles 8' = T - 6 and cp' = cp + .rr, hence 

(u=+l) - iwk=-l) (u=-1) (u=+l) 
W-, - W-, = iw, 

At 8 = 0 and cp = 0, the equations (7.68) and (7.67) coincide, therefore, 
in general case, we can assume 

7.5.1 Particle-antiparticle transformat ion 
Let us compare the CPT-transformation of the Dirac equation and 

equation (7.3). As it was shown in the previous chapter, the CPT- 
transformation of the Dirac equation is realized by the matrix 75 = 
= 71727374 (see (6.58), (6.59)). The matrix 75 anticommutes with 
matrices yp 

7 5 7 ~  + 7p75 = 0, (7.71) 

where p = 1,2,3,4. As a result, the matrix 75 does not commute with 
the Hamiltonian of the Dirac equation. Indeed, let the wave function 
XI', obey the Dirac equation 

- imoc) Q, = 0. (7.72) 

The current density four-vector of this equation is 

Let us introduce the wave function 

The Dirac adjoint wave function is 

By taking into account the commutation relations (7.71), we can see 
that the wave function Q, obeys the equation 

(7ppP + imoc) 'Pa = 0. (7.76) 

The current density four-vector, corresponding to the last equation, is 

The current density four-vectors (7.73) and (7.77) coincide completely. 
Indeed, with the help of equations (7.74) and (7.75), we get 
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On the other hand, the solution of the equation (7.76) can be written 
as follows 9, (r ,  t )  = XQ, (-r, -t), where X is the constant. Hence, the 
equation (7.76) describes the time-reversed and space-inverted particle 
motion, remaining invariable the current density four-vector. If, simul- 
taneously with the transformation (7.74), we change the sign of charge 
qo -+ -40, then the current density four-vector will change sign too. 

As we have seen above, the CPT-transformation of the wave function 
of the equation (7.3) is also realized by the matrix 75 (see (7.46), 
(7.47)). However, the operator 75 commutes with the Hamiltonian of 
the equation (7.3). As a result, if the wave function 9, is the solution 
of the equation (7.3)) then the wave function Q, is also the solution 
of the equation (7.3). With the help of matrix 75, the positive energy 
solutions (7.62) of the equation (7.3) can be written as follows 

9 g  = @ g .  (7.78) 

The similar relation holds for the negative energy solutions (7.62). 
We have already shown, that the free-particle wave functions 9, 

and Qa = y5Qp correspond to the oppositely charged particles. By 
substituting the wave functions (7.74) and (7.75) into the equation for 
the current density four-vector (7.5), we get 

$1 = -$I. (7.79) 

Thus, the wave functions Qp and Q, correspond to the spin-112 particles, 
that have the opposite charges and opposite magnetic moments, i.e. 
they correspond to the particle and antiparticle. So, we can see the 
principle difference between the physical meaning, attributed to the wave 
functions Qp and q, = 759p in the frames of the Dirac theory and 
theory based on the equation (7.3). 

7.5.2 Space inversion, three-dimensional rotation,  
Lorentz transformation, and  t ime  reversal 

The relativistic parity operator is defined by 

p = 74p3, (7.80) 

where P3 is the three-dimensional space inversion operator acting as 
follows: P3 f (r)  = f (-r). 

The wave functions of the even and odd 9;-) states are the 
eigenfunctions of the following equation 

PQF) (r ,  t) = 74Qih) (-r, t) = &+Sf) (r ,  t) 

(*I If 9, is the particle wave function, then the antiparticle wave function 
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(%) is *i') = 754'). By applying the operator P to the wave function !Pa 
we get 

~ ( ~ ~ * r ) ( r ,  t)) = %%qF)( - r ,  t) = -% P*F)(r ,  t) = T75~$i)(r, t). 
(7.81) . , 

Thus, the particle and antiparticle wave functions have the opposite 
parity. 

The operators of the three-dimensional rotation SR and Lorentz trans- 
formation SL are defined by 

8 e 
SR = cos - + i (nX) sin -, 

2 2 

1 
tanh-' E) - (na) sinh ( 5  tanh-' 2 )  

C C 

i 
As far as Xi = --eijkyjyk and a = i ~ ~ y ,  then the operator 7 5  com- 

2 
mutes with SR and SL. Hence, the particle and antiparticle have the 
same transformation properties with respect to the three-dimensional 
rotations and Lorentz transformation. 

The time reversal transformation is 

T* (r, t) = X;717~** (r, -t) . (7.82) 

By applying the transformation (7.82) to the wave function 

(u=f  1) 
*(I) p,u=il = (... , ) exp ( - i v )  , 

we get 
(1) (1) 

T* ,,,= *I (r, t) = T~X$Q-,,,=*~ (r, t) . (7.84) 

It is seen that the wave function (7.84) describes the particle motion, 
which is time-reversed with respect to motion described by the wave 
function (7.83), because the particle momentum changes its sign. It 
can be easily understood that the transformation properties of the 

(2) antiparticle wave function Q,,, are similar to (7.84), because, in the 
standard representation, we have 7: = 75, and matrix 75 commutes with 
the products of matrices yc, and 7,. 

7.5.3 Charge conjugation 
The charge conjugation transformation is 

C* (r ,  t) = -iXcyzS* (r, t) . (7.85) 

By applying the transformation (7.85) to the wave function (7.83), 
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where 

(3) *.,. (r, t) = ( :u)) exp (17) . 
W P  

As far as the charge conjugation operator(7.85) is the linear operator 
with respect to matrices yc, (the matrix 72, in the standard represen- 
tation), then the particle Q p  and antiparticle 9, wave functions are 
transformed with the opposite signs. 

Let us compare the parity of the particle and charged conjugated par- 
ticle. The wave function of the charged conjugated particle qc (r, t )  = 
= -iXc72** (r, t )  is transformed under space inversion in the following 
way 

l%c (r, t) = ~ x ~ ~ ~ P \ I I *  (r, t) = 7 9 ~  (r, t) , 
therefore the particle and charge conjugated particle have the opposite 
parity. Hence, the positive energy particle solution is transformed, under 
charge conjugation, into the negative energy antiparticle solution. For 
the case of a free particle, it is directly seen from the equations (7.62). 

Thus, the general positive energy solution for the free particle is 

where 

The charged conjugated solution is the negative energy solution 

qc (r ,  t) = ihc o (A;,nupu - B~,u,,) exp ( i v ) .  
P u=fl 

(7.89) 
By comparing the equations (7.87) and (7.89), we can see that the pos- 
itive and negative energy solutions are really the degenerated solutions. 
We shall see below, that the degeneracy is appropriate not only to the 
case of free particle, but to the case of particle motion in the external 
fields too. Therefore, we can really take into account the positive energy 
solutions only. Notice, that the physical sense of the charge conjugation 
transformation may be completely understood only if we consider the 
interactions of the particles. We shall see later, that this symmetry 
means that the change of sign of all particles in an isolated system does 
not affect on the dynamics of the system evolution. 
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By substituting the wave function (7.87) into the normalization con- 
dition (7.64), we get 

It is seen, that, in contrast to the Schrodinger theory and Dirac theory, 
the normalization condition (7.51), applied to the wave function of the 
equation (7.3), means only the conservation of the charge, but it does 
not demand the conservation of the integral number of particles and 
antiparticles. 

7.6 Spherical waves 
7.6.1 Spherical spinors 

The free-particle Hamiltonian of the equation (7.3) commutes with 
the total angular momentum operator 

and operator of its projection j,, therefore the angular part of the free- 
particle wave function can be expressed in terms of the spherical spinors 
of the total angular momentum j and its projection m. As we have 
mentioned in the previous chapter, according to the rules of the angular- 
momentum addition, at a given value of the total angular momentum j, 
total angular-momentum z component m, and parity (-l)jr1l2, there 
are the two linear independent spherical spinors corresponding to the 
two possible values of the orbital angular momentum 1 = j 112. These 
spinors are 

We have mentioned in the previous chapter, that the spinors (7.92) are 
orthonormalized 

I IRj*lmflj~l~,~ sin 0  d0 d p  = SjjlSll~Smm~. 
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There are the following useful relationships between these spinors 

where a, = era. 
For further applications, it is helpful to express the free-particle solu- 

tion in terms of the spinors (7.92). Accounting the previous discussion, 
the general solution of the positive energy E, total angular momentum j ,  
and its projection m reads 

where 

and 

The four linear independent solutions (7.94) have the following parity 

where P is the parity operator defined by the equation (7.80). Thus, if we 
deal with the problem of a particle motion in the external field, then the 
solutions possessing the definite parity are the following superpositions 

(1) ( 2 )  ( 2 )  of the eigenfunctions: u,, f h u .  and u i 75u(1) 
3m 3 ,  Jm' 

By substituting the wave function (7.94) into the equation (7.3), we 
get for the radial wave functions f (n) the following equations 

The solutions of the equations (7.97) are the spherical Bessel function 
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therefore, the general solution (7.94) reads 

With the help of the obtained free-particle solutions, we can easily 
construct the general solution for the particle moving in the spherically 
symmetric external field. Indeed, the general free-particle solutions of 
the parity (-1)' or (-1)'" are, respectively: 

It should be noted that, in the case of particle motion in the external 
electric field, the equations for the radial wave functions of the upper 
and lower spinors of the bispinor wave function form the coupled set of 
equations. Hence, instead of the two independent equations (7.97) we 
shall have the coupled set of equations, the general solution of which has 
the following form 

where the index i numerates the linear independent solutions of the 
coupled set of equations. Thus, the general solution of the parity (-1)' 
for the particle moving in the external field has the following form 

7.6.2 Plane wave expansion in spherical harmonics series 
In the study of the scattering problems, it is usually assumed that the 

incident particle is in the plane wave state. Therefore, it is helpful to 
express the plane waves in terms of the spherical waves. Let the incident 
particle be in the following plane wave state 

where the spinors u, are the eigenfunctions of the equation 
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which are 

In the case of free motion, the particle and antiparticle solutions are 
not coupled, therefore, without loss of generality, we can take the wave 

function in the form 6 = , where the spinors cpkj,, in accordance 

with the equation (7.98), are 

The projection of the total angular momentum in the states (7.99) is 
equal to m = f 112. Hence, we get 

and 

il+l 

d2) ~,1+l,m=-1/2 - - (-m qy\ exp (-iy) 
&i iE+l&Fifi+l 

where Ffm) (cos 0) is the associated Legendre polynomial. 
Let us use the well known expansion 

03 

exp(ikz) = (21 + 1) ilfl (cos 0) jl (kr). (7.104) 
E=O 

By substituting the equations (7.102) into the equation (7.101) and 
summing over I ,  we get, with the help of (7.104), the following results: 
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when the coefficients Al and Bl in the equation (7.101) are equal to 

Al = -B1 = Jm, (7.105) 

and 

cPj,m=-112 ( r )  = ( ) exp(ik2) 
. . 

when the coefficients Al and Bl in the equation (7.101) are equal to 

A~ = B~ = d m .  (7.106) 

Thus, the wave function (7.101) is transformed into the wave func- 
tion (7.99) under appropriate choice of the coefficients Al and B1 in the 
equation (7.101). 

7.6.3 Convergent and  divergent spherical waves 
According to the definition of the orbital angular momentum opera- 

tor 1, its radial projection 1, = le, = 0 is identically equal to zero. Hence, 
the radial projection of the spin C, conserves when particle moves in the 
spherically symmetric external field. Therefore, it is useful to find the 
eigenfunctions of the operator a,. These eigenfunctions can be directly 
obtained from the relationships (7.93). Indeed, we can easily get 

where 

The spinors R(&) are orthonormalized 

By substituting the equation (7.107) into the equation (7.101), we get 

Particularly, at m = f 112, with the help of equations (7.105) and 
(7.106), we can easily obtain the following asymptotical wave functions 

exp (f i k r )  
c~n,m=*i/2 (r) = J?;; a ( d + l  4$*1/2 g + 

1=0 
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Thus, at m = 1/2, the wave function is the sum of the divergent spherical 
wave with the spin radial projection a, = +1 and convergent spherical 
wave with the spin radial projection a, = -1. At m = -1/2, the spin 
radial projections of the divergent and convergent waves change their 
signs. 

With the help of the recurrence relations for the associated Legendre 
polynomials, the spinors a(') can be transformed to the following form 

1 
aj2=112 = i1 - (fi - fi+1) (- exp (ip) cot - Q) 2 , 

OW ,,...=-I, = +g(fi + (-exP 1 tan - :) . 
Thus, in the case m = f 1/2, the spinors Q(*) are the products of the 
Legendre polynomials and spinors dU), which are the eigenfunctions of 
the equation a,w(") = 

With the help of the last equations, the asymptotical wave func- 
tion (7.108) can be transformed to the following form 

m 

1 (-1)"21+ 1)fi ( ~ 0 ~ 8 )  
+ LO w(-l)  exp (-ikr + i(p/2) 
JZ d i T Z 3  kr 

. (7.109) 

To interpret the equation (7.109), it is helpful to use the following 
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equations 
03 

1 C Pn (cos 6) = 
n=O JqF'zaj' 

1 
nPn (cos 9) = - 

n=O 2 J 2 ( c " a j '  

The equations (7.110) generate the following equations 

03 

C (-1)" (2n + 1) P, (cos 6) = 26 (1 + cos 6) . 
n=O 

Thus, the asymptotical wave function (7.109) at z -4 -m, i.e. 0 = T ,  is 

~k,rn=1/2/,,-a =-(0)  exp i k r  (-ikr) 6 (1 + cos 6) . 

By taking into account the following transformation 

exp(ikz) = exp (ikr cos 6) = exp (-ikr) , 

we can see that the divergent wave in the equation (7.109) is the incident 
wave. Indeed, at a = -m, this wave is the plane wave propagating into 
the positive direction of the z axis. At z -+ m, the asymptotical wave 
function (7.109) takes the form 

6 (1 - cos 6) , 

i.e. the angular spectrum of the transmitted wave (at z = +m) coincides 
with the angular spectrum of the incident wave. In the presence of the 
external field the angular spectrum of the scattered wave will differ from 
the delta function. The obtained equation for the asymptotical wave 
function (7.109) is of interest for the study the scattering processes. It 
enables us to exclude the incident plane wave from the general continuous 
spectrum solution of the problem on particle motion in the external field. 



Chapter 8 

PARTICLE MOTION IN STATIC 
EXTERNAL FIELDS 

In previous chapter, the general principles of the relativistic second 
order differential equation, describing the spin-112 particle, have been 
mainly applied to the free particle states. We have seen that there is a 
number of specific features of this equation, that give us some grounds 
to assume that, in this case, particle and antiparticle behave themselves 
in a way different of that prescribed by the Dirac equation. But the real 
specificity of particle behavior can be understood only in the study of 
their interaction with the external fields. In this chapter, we will consider 
the basic problems on particle motion in the external fields: the electron 
motions in Coulomb field and uniform magnetic field, and the neutron 
interaction with the static magnetic fields of the different spatial profile. 

8.1 Integrals of motion 
The very important category of the physical variables is the conser- 

vative variables. Let L be the operator of some physical variable. The 
mean value of the operator L in the state, described by the arbitrary 
wave function 9 (r, t), is defined by 

The physical variable corresponding to operator L is conservative, if the 
mean value (8.1) does not vary in time. The time derivative of the mean 
value is 
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Let us rewrite the equation (7.3) in the following form 

where 

and U (r, t )  = qocp (r, t ) .  Multiplying the equation (8.3) by $L fro; thb 
left, then, by multiplying the equation for the Dirac adjoint function $ 
by L 9  from the right, and, finally, subtracting the obtained equations, 
we get 

where H = Yi1~+Y4, notice, that this operator acts on the wave 
function %. Integrating both sides of the last equation over the whole 
space and transposing the action of the operator H to the function 9, 
we get 

h2 
6 ((HL - LH) 9) dV. (8.5) 

The wave function 9 is an arbitrary wave function. Hence, if the 
operator L commutes with the Hamiltonian (8.4) 

we get 
aQ - - i aI i - 
at 

- --U9, - = - 9 u .  
h at h 

Substituting the last equations into the equation (8.2), we can see, that 
if the operator L does not depend explicitly on time and commutes with 
the Hamiltonian, then the mean value of this operator does not depend 
on time: 
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Notice, if L commutes with H ,  then it commutes with U .  Thus, 
the operator L corresponds to the conservative variable, if it does not 
explicitly depend on time and commutes with the Hamiltonian (8.4). 

The Hamiltonian H commutes with itself, therefore the energy of a 
particle interacting with the static external fields is the conservative 
variable, or integral of motion. The wave function of the equation (7.3),  
for the case of particle interacting with the static external fields, is 

9, ( r ,  t )  = 9, ( r )  exp ( - iEnt /h )  , 

where the spatial part of the wave function is determined by the solution 
of the eigenvalue problem 

where 

The boundary conditions for the eigenvalue problem (8.7) are the same 
as in all previous chapters. The eigenfunctions of the equation (8.7) are 
orthonormalized. Indeed, if the wave function iDm ( r )  satisfies the equa- 
tion (8.7), then the Dirac adjoint wave function satisfies the equation 

2 1 
G~ ( r )  [& ((p + $A) + mic2 - - c2 (E ,  - u ( r ) ) 2 )  + 

Multiplying the equation (8.9) by 9, from the right, integrating the 
obtained equation over the whole space and transposing the action of 
Hamiltonian from the wave function 9, to XP,, we finally get 

Thus, the wave functions of the non-degenerated states are orthonor- 
malized by the condition 

4 1 Gm ( r )  ( E n  :Em - U ( r ) )  9, ( r )  dV = f brim. 
mo c 

At n = m the last equation coincides with the normalization condi- 
tion (7.56). 
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8.1.1 Free particle 

The solution of the equation (8.7) for the case of the free particle 
has been already obtained in the previous chapter. The free-particle 
Hamiltonian (8.8) is 

The Hamiltonian (8.12) commutes with the operators of parity, momen- 
tum p = -ihV, angular momentum hl = [ rp] ,  spin hs = hX/2, and, 
hence, total angular momentum 

FL 
hj = hl+hs  = [rp] + -E. 

2 
(8.13) 

Thus, the free-particle states are the eigenfunctions of all these operators. 
However, we have seen that there are the eight linear independent 
solutions at a given energy eigenvalue and momentum direction p = 
= f np. Hence, to label the eight linear independent solutions we need 
only in the three binary quantum numbers. In the previous chapter we 
have chosen the following quantum numbers: 3L = (AE, Xp ,  Xq) ,  where 
XE = El  /El, XP = (np) / Ipl, and Xq = q/qo. But, the sign of the energy 
is unambiguously related with the charge conjugation transformation, 
therefore we can use the quantum number Xc = qo/ lqO1 instead of 
quantum number XE. Instead of quantum number Xp, we can use the 
spin quantum number Q = f 1, which determines the spin state of the 
particle at given momentum p. 

As we have seen in the previous chapter, the quantum number Xq 
indicates whether a given state corresponds to particle or antiparticle 
solution. This quantum number is closely related with the eigenvalues 
of the operator 75. The operator 75 commutes with the Hamiltonian 
(8.8). In the standard representation of the matrices yp, the eigenvalue 
problem for the operator ys: 

has the following solutions 

where cp is the arbitrary spinor satisfying the normalization condition 
p+cp = 1. The wave functions of the particle up and antiparticle u, are 
the superpositions of the wave functions (8.15): 
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It can be easily seen, that, in standard representation of matrices yp, 
the wave functions up and u, are the eigenfunctions of the operator ya. 
Indeed, the eigenvalue problem for the operator 74, 

has the following solutions 

The operator y4 commutes with the free-particle Harniltonian (8.12) and 
does not commute with the Hamiltonian (8.8)  at E # 0. Hence, a state 
of fermion is the pure state of particle or antiparticle only in the absence 
of the external electric field. If the amplitude of the external electric 
field is non-zero, then the particle state is a superposition of the pure 
particle and antiparticle states. 

Notice, that, to simplify the reading, in this book we use the standard 
representation of the matrices yp, given by (6.12). However, we can 
choose these matrices as follows 

In this case the notation 7s is particularly appropriate, because the 
given above commutation relations for matrices yp and 7 5  show that 
the matrices yl,y2,y3,y4,75 provide the Clifford algebra in the five 
spacetime dimensions. It is seen that, in this case, the bispinors (8.16) 
are the eigenfunctions of the operator 7s. 

8.1.2 Particle motion in centro-symmetric fields 
When we analyze the particle motion in the external fields of the 

spherical or cylindrical symmetry, it is convenient to use the curvilinear 
coordinates instead of Cartesian ones. The relationships between the 
components of the matrix a in the curvilinear and Cartesian coordinates 
are determined by the general equations of the vectorial analysis. The 
projections of o in the spherical coordinates are 

a, = a+ sin 8 exp (-icp) + a- sin 8 exp (icp) + a, cos 8, 

0 0  = o+ cos 8 exp ( 4 9 )  + o- cos 6' exp (icp) - cr, sin 8, (8.18) 
a, = -ia+ exp ( 4 9 )  + ia- exp (icp) , 

where ah = (a, f iay) 12. The commutation relations for the matri- 
ces (8 .18)  are 

[act 081 = 2ieaprar (8.19) 
where a, p, y = r,  0, cp and erev = 1. 
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In spherical coordinates, the operator of the orbital angular momen- 
tum has the following form 

i 8 . d 1 = -i [rV] = es-- - e 2-. 
sin 8 acp 'P ae 

The operator of the square of the orbital angular momentum is 

2 2 2  1 =1,+1,+1,2=- sin2 0 acp2 + l z  sin 0 a0 (sine;)] . 

The operator l2 coincides with the angular part of the Laplace operator 

When a particle moves in the spherically symmetric external field, i.e. 
cp (r) = cp (r), the Harniltonian (8.8) takes the form 

It follows from the equations (8.20) and (8.21), that the angular mo- 
mentum operator 1 commutes with terms in square brackets of the 
Hamiltonian (8.22). It is convenient to use the equations (8.18) in order 
to find the commutation relations of the operator 1 and the last term in 
the Hamiltonian (8.22). According to (8.18), we get 

80, 80, - = U, sin 0, - 
dP 

a0 

Hence, 
1 aa . 

[Is, arEr (r)] = i E , - 2  = zE,a, = i [aEIo, 
sine acp 

a%- [l,, arEr (r)] = -iE,- = -iErae = i [&],. ae 
For the commutator of 1 and H ( ~ )  we get finally 

Thus, in contrast to the spinless particle, the orbital angular momentum 
ceases to be the integral of motion for the problem of the particle motion 
in the spherically symmetric external field. 

The commutation relation, for the spin operator and Hamilto- 
nian (8.8), is 

[x, H  (En)] = ~ Q O  ([aE] + 2 [xB] ) . (8.24) 
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Hence, in the spherically symmetric external field (U (r) = U (r) and 
A = 0) the total angular momentum operator j is the integral of motion. 
Indeed, 

1 1 
[j, H(')] = [I, H(')]  + - [x, H(')] = -b[aE] + -2p0 [aE] = 0. (8.25) 

2 2 

According to the definition of the orbital angular momentum, its 
radial projection 1, = (e,l) is equal to zero. Hence, the conservation 
of the total angular momentum results in the conservation of the spin 
radial projection 

[C,, H(')] = 0. (8.26) 

Thus, the total angular momentum and radial projection of the spin are 
the conservative variables in the case of particle motion in the spherically 
symmetric external field. The orbital angular momentum and other spin 
projections are not the conservative variables. 

The relativistic parity is also the integral of motion for the spherically 
symmetric external field. Indeed, 

8.1.3 Cylindrically symmetric external  fields 

Let us consider the particle motion in the axially symmetric static 
fields: cp = cp (p, z) and A = e,A ( p ,  z). In this case we have 

and the Hamiltonian (8.8) reads 

+ d c 4  - (En - u (P, z ) ) ~  + &A2(p1 z) + po(iaE - BB) . (8.28) 

The projections of the vectorial spin operator a in the cylindrical coor- 
dinates are given by 

ap = a+ exp (-icp) + a- exp (icp) , 
a, = -in+ exp (-icp) + ia- exp (icp) , (8.29) 

a, = a,. 

The commutation relations for the operators up, a,, a, are given by 

[a,, OD] = 2ieapyayl (8.30) 

where a, p, y = p, cp, z and epVz = 1. 
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In cylindrical coordinates, the operator of the orbital angular momen- 
tum has the following form 

It can be easily seen that the axial projection of the orbital angular 
momentum, 1, = -i(d/dcp), commutes with the terms in the square 
brackets of the Hamiltonian (8.28). It is convenient to use the equa- 
tions (8.29) in order to find the commutator of the operators l, and the 
last term in the Hamiltonian (8.28). It follows from the equations (8.29), 
that 

With the help of the last equations we get 

[l,, H(')] = -po([aE] + i [XB]), . 
Thus, in contrast to the case of the spinless particle, the axial projection 
of the orbital angular momentum ceases to be the integral of motion 
in the case of the axially symmetric external fields. This is due to the 
interaction of the orbital angular momentum and spin. 

The commutation relation of the operator C, and Hamiltonian (8.8) 
follows from the general equation (8.24): 

It is seen from the equations (8.32) and (8.33) that the axial projection 
of the total angular momentum is the conservative variable: [j,, H(')] = 
= 0. Thus, the axial projection of the total angular momentum is only 
conservative variable in the case of the particle motion in the external 
fields of the cylindrical symmetry. In general case, the axial projections 
of the orbital angular momentum and spin are not the conservative 
variables. However, it follows from the equation (8.33), that the axial 
projection of the spin is conservative variable, when a particle moves in 
the homogeneous magnetic field, B = e,B, or in the superposition of the 
parallel homogeneous magnetic and electric fields, B = e,B, E = e,E. 

The relativistic parity is the integral of motion, when a particle 
moves in the cylindrically symmetric external fields of the following 
type: cp (p, lzl) and A (p, lzl) Indeed, it is evident that in this case 
the parity operator commutes with the terms in the square brackets 
of the Hamiltonian (8.28). It also commutes with the last term of the 
Hamiltonian (8.28), because the electric field is antisymmetric in this 
case, E (-r) = -E (r), and y4a = -ay4, while the magnetic field is 
symmetric, B (-r) = B (r), and y4X = Xy4. 
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8.2 Electron motion in Coulomb field 
8.2.1 General  solution 

Let a particle move in the attracting Coulomb field. In this case 

ze2 U (r) = ecp (r) = --, 
r 

and the equation (7.3) becomes 

0 gr where r. = e2/hc is the fine structure constant, r.. = = (gr 1, 
here e, is the radial unit vector of the spherical coordinates. In t e 
equation (8.35) we have assumed qo = - [el and taken into account that 
the electron magneton is negative, hence the constant po is here the 
magnitude of the magneton. 

As far as the total angular momentum and parity are the integrals 
of motion in the Coulomb field, then the angular part of the wave 
function is given by the spinors (7.92). Therefore the wave function of 
the equation (8.35) has the following form 

where 1 = j i 1/2, 1' = 2 j  - 1, and spinors $2) are: 

j + m + l  

(8.36) 
Let us start with the case of j = 1 + 1/2. The equations for the 

radial wave functions f (r)  and g (r) can be easily obtained, if we use 
(2) the following relationship: Qjl+lm = -ia,Q$L. With the help of this 

relationship, we get 

d2 2 d ~~a~ - 1 ( 1 +  1 )  2EZa 1 -+- -+  Zl a 
dr2 rdr  r2 hc r r + -- - K ~ ]  f = g (8.37) 
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where Z1 and r; are defined by 

In order to find the solutions of the equations (8.37)) (8.38), it is 
convenient to use the solution of the following equation 

The solution of the last equation, which is not divergent at r = 0, is 

where F (p, q, z) is the confluent hypergeometric function. We have 
omitted the second linear independent solution of this equation, which 
is proportional to zl-QF (p - q + 1,2 - q, z), because it is convergent at 
z --+ 0. It is convenient to introduce the following function 

So, let the solutions of the equations (8.37)) (8.38) be 

where fo and go are the constants. By substituting the equations (8.41) 
into the equations (8.37), (8.38), we get the following algebraic set of 
equations for the coefficients fo and go: 

Zla fo  - (z2a2 - (1 + 1) (1 + 2) - y) go = 0. 

The condition of existence of the non-trivial solutions of the last equa- 
tions enables us to determine the unknown parameter y in the solu- 
tions (8.41). Employing this condition, we have 
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8.2.2 Discrete spectrum 
The radial wave functions (8.41) satisfy the boundary conditions at 

r -+ oo, when the parameter is the non-positive integer 

where n is the non-negative integer. By solving the last equation with 
respect to E, we obtain the following formula for the energy spectrum 

where the index i enumerates the roots of the equation (8.42), and 

The wave functions, associated with vl and vz, are 

where Cl,2 are the normalization constants, and 

As we have mentioned above, there is no need to consider separately 
the case of j = 1 - 1/2, because the corresponding solutions follow from 
the above obtained with the help of transposition of the upper and lower 
spinors in the equations (8.45): 

According to the discussion given in the previous chapter, one of the 
solutions (8.45) (or (8.46)) corresponds to the particle, and another 
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corresponds to antiparticle. Indeed, the particle charge in the states 
described by the equations (8.45) is 

By taking into account that the constant c is proportional to the fine 
structure constant a,  we can see that the solutions 9(') and 9(2) corre- 
spond to the particle and antiparticle, respectively. 

Similarly, the solutions 9(3) and 9(4) correspond to the antiparticle 
and particle. It is also seen that the sign of the constant go in the 
equation (7.3) does not determine the sign of the particle charge. In 
complete analogy with the case of the free particle, the sign of particle 
charge is determined by the integral S pdV. 

If we apply the charge conjugation transformation go -+ -go and 
po -+ -po to the equation (8.35), then the negative energy solutions 
will only satisfy the condition (8.43). However, the simultaneous change 
of sign of energy E and potential energy U (r) = qocp ( r )  results in the 
reversion of sign of the right-hand-side of the equation (8.47). Notice, 
that the wave functions of the charge conjugated states can be also 
obtained by the action of the operator c on the wave functions (8.45) 
and (8.46). Thus, the degeneracy of energy spectrum with respect to its 
sign is the demonstration of the charge symmetry, which means that the 
change of sign of all charges in the isolated system does not result in the 
change of the physical state of a system. 

The analysis given above shows that the positive energy solutions, 
corresponding to electron, are 

the energies of these states are defined by 

where v+ = vl, v- = vz. The normalization constants of the wave 
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functions (8.48) can be easily calculated. They are 

At a given value of j, the two solutions (8.48) have the opposite parity. 
It is natural to compare the spectrum (8.49) with the spectrum 

(6.132),  that was obtained from the solution of the Dirac equation. 
The principle difference between these two spectra consists in the fact, 
that the spectrum (6.132) depends on the total angular momentum j 
and does not depend on the mutual orientation of the orbital angular 
momentum 1 and spin s. Contrary, the spectrum (8.49) depends on the 
mutual orientation of the orbital angular momentum and spin. It means 
that the energy of the states with the same value of j and different values 
of 1 (or spin s )  is different. Particularly, the Lamb shift is appeared in 
the spectrum of hydrogen atom. Indeed, for the 2sIl2  and 2pl12 states 
we have 

7 (2s l I2 )  = (201)~ - i + Jl-(Zla)Z, 
7 pplI2) = (za)2 - 1 - Jl-(Zla)2. 

Of course, the fine structure of the hydrogenic spectra still remains. 
Indeed, 

7 ( 2 ~ ~ ~ ~ )  = (za)2 - 4 + J4-(Zla)Z. 
Thus, the equation (8.49) shows the presence of the shift between the 
2slI2 and 2pl12 states. 

It should be noted finally, that at po = p ~ ,  i.e. when the electron 
magneton is equal to the Bohr magneton, the shift of the 2sl12 and 2plI2 
states disappears and the energy spectrum (8.49) transforms into the 
energy spectrum (6.132) 

moc2 (n, + JGT5G) 
Enj = (8.50) 

J(n,+ J K T G F ) ~ + Z ~ ~ ~ '  

where n, is the radial quantum number, and k = 1, - ( 1  + 1 ) .  

8.2.3 Continuous spectrum 
In the case, when E > moc2, the parameter K becomes the pure 

imaginary number 



196 Particle motion in static external fields 

The radial wave function (8.40) takes in this case the following form 

G ( E ,  v, r )  = e ~ ~ ( i k r ) ( 2 k r ) ~ - ~ ~  (V - iq, 2v, -i2kr), (8.52) 

where 

The asymptotical form of the wave function (8.52) at r --, oo is 

x Iexp  [i (kr + s ln2kr  - - a r g r  (v + is))] + 

The states of the continuous spectrum are infinitely degenerated with 
respect to the total angular momentum and its projection. 

8.3 Geonium atom 
8.3.1 Electron motion in homogeneous magnetic field 

Let us consider the problem on electron motion in the homogeneous 
magnetic field, B = e,Bo. In this case the vector potential is A = 
= e, Bop/:! and the equation (7.3) takes the form 

&* (r)  . 
(8.55) 

where po is again the magnitude of the electron magneton. As we have 
mentioned above, the axial projection j, of the total angular momentum, 

is the conservative variable, when a particle moves in the homogeneous 
magnetic field. However, the Hamiltonian (8.55) commutes, separately, 
with axial projection of the orbital angular momentum 

and the axial projection of spin 
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Hence, without loss of generality, we can assume that one of the 
spinors of the bispinor wave function is equal to zero. Let the lower 
spinor be equal zero and we can take the upper spinor in the form 

where the spinors u, are the eigenfunctions of the operator a,: 

they have the form 

The substitution of the above wave function into the equation (8.55) 
results in the following equation for the radial wave function f (p): 

where 

Pmu = ( h2c2 tic 
The general solution of the equation (8.56) is 

l C m  i + m , K p 2 ) +  fm, ( p )  = ~1 (Kp2)m12 exp (-$) F (_Z_ - - 4r; ' 

2 -m/2 1-m Pmu + C ~ ( K P  ) exp (-$) F (--2-- - - 4r; , 1 - m ) , (8.57) 

where 

and 

It is seen that the substitution m -+ -m transforms the first term in the 
equation (8.57) into the second one. Hence, let us consider the function 

The function F (p, q,  z )  becomes polynomial, and, hence, satisfies the 
boundary condition at p -+ oo, when the following condition holds 
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where n is the non-negative integer. The normalized wave function is 

x LLm) ( K ~ ~ )  exp (imcp + ik,z) u,, (8.60) 

where L is the length of the region available for electron motion in 
the direction of the applied magnetic field, L?) (z) is the generalized 
Laguerre polynomial. The solution (8.60) is not divergent at r = 0, 
when the following condition holds m 2 -n. 

It should be noted that in the case, when the condition (8.59) holds, 
the two solutions (8.57) coincide, because 

n1 
L;;? ((t = (-z)rn -L@) (I) .  

(n+m)! 

8.3.2 Energy spectrum 
The condition (8.59) yields the following equation for the energy 

spectrum 

The solution (8.60) satisfies the boundary conditions at p = 0 and 
p t cm, when -n 5 m. Hence, by taking into account the wave function 
symmetric form given by (8.57), we should assume that in the equat- 
ion (8.61) the quantum number m lies inside the interval -n 5 m 5 n. 

Notice, that at po = p ~ ,  i.e. when the electron magneton is equal to 
the Bohr magneton, the equation (8.61) becomes 

Introducing the eigenvalues of the axial projection of the total angular 
momentum 

j z q M  = h M q M  (r=h 

the spectrum (8.61) can be rewritten in the form 

Thus, we can see that, at po = p ~ ,  the energy spectrum becomes degen- 
erated with respect to the sum of the quantum numbers, n + M. This 
is the characteristic feature of the spectra obtained from the solution 
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of the Pauli and Dirac equations. In the case, when huH << moc2, the 
equation (8.63) is simplified and takes the form 

It follows from the last equation, that the states with the smallest 
projection of the total angular momentum M = -n - 112, at given j 
and lc, = 0, have the zero energy, AEn,-n-1/2 = 0. 

In general case, when po # ,UB, the hyperfine structure is appeared in 
the spectrum of electron moving in uniform magnetic field 

The energy level (n, M), characterized by the quantum numbers n and 
M,  splits into the two sublevels (n, M , a )  with the energy difference 
of 2(p0 - pB) Bo between them. It is this splitting that was observed 
experimentally by Dehmelt and co-authors [15]. 

8.3.3 Induced magnetic field 
The wave functions (8.60) enable us to calculate the current density 

produced by electron in the state with the quantum numbers (n, m, a) .  
Substituting the wave function into the equation (7.6), we can easily get 

,$I2 n ! 
jnma = -eP4cpo- nL  (n + M - 1/2)! 

exp (-"p2) ("p2) x 

+ e,2c (Po - 

where L L ~ )  (2) is the generalized Laguerre polynomial. It is seen from 
the last equation, that, in the state with the largest negative projection 
of the total angular momentum, i.e. M = -n - 112, and k, = 0, the 
current density is non-zero and proportional to PO - PB. Contrary, if 
we shall use the wave functions obtained from the solution of the Pauli 
or Dirac equations, the current density is exactly equal to zero in this 
specific state (see section 4.2). 

To calculate the magnetic field, induced by the current density (8.65), 
we can use the Maxwell equation 

4n 
curl B = -j. 

C 
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Substituting the current density (8.65) into the equation (8.66) we get 

A simple interpretation can be given to the equation (8.67). Indeed, it is 
well known that the capacity of a cylindrical capacitor is proportional to 

0 . 0 0 0 6 h  , ow B 
0.0004 -0.25 

-0.50 
0.0002 -0.75 

0 -1.00 PIPO 

B 
0.0008 -0.5 

-1.0 
0.0004 -1.5 

-2.0 
0 1 2 3 4  

PIP0  

Figure 8.1. The spatial profile of the induced magnetic field for the states of electron: 
n = 1, m = 1, s = -1 ( a ) ;  n = 1 ,  m = 1, s = 1 ( b ) ;  n = 1, m = 0, s = -1 ( c ) ;  n = 1 
m = 0, s = 1 (d);  n = 1, m = -1, s = -1 ( e ) ;  n = 1,  rn = -1, s = 1 (f); n = 0: 
m = 0, s = -1 ( g ) ;  n = 0, m = 0, s = 1 ( h )  
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its length. By taking this into account, one can guess that the variable 

determines the energy density of the electrostatic field produced by the 
electron in the state (n, M).  Thus, we can see that the strength of the 
magnetic field, induced by the electron motion in the external magnetic 
field Bo, is proportional to the ratio of the energy of electrostatic field, 
produced by the electron in the given quantum state, to the electron rest 
energy. It is seen that the equation (8.67) consists of two terms, one of 
them is proportional to the magneton po and another is proportional to 
the Bohr magneton p ~ .  The detailed interpretation of these two terms 
will be given in the next chapter. 

The induced magnetic field as a function of the distance p is shown 
in the Fig. 8.1. It is seen that the induced magnetic field is opposite 
to the applied external field Bo in all states of electron, excepting the 
states of the smallest energy ( M  = -n - 112, a = -1). In the state of 
the smallest energy the induced field is parallel to the applied external 
field. Indeed, at m = -n the equation (8.67) becomes 

as far as /LO > p ~ ,  then at u = -1 the right-hand-side of the last 
equation stands positive. Thus, the response of an ensemble of free 
electrons may be both diamagnetic and paramagnetic. It is this feature 
that shows the qualitative difference between the Dirac equation and 
equation (7.3), because in the frames of the Dirac theory the response 
is always diamagnetic. 

8.4 Neutron motion in static magnetic field 
The specific feature of the equation (7.3) is that it includes the 

magneton as an independent material constant, as a result the particle, 
of zero charge and non-zero magneton, interacts with the electric and 
magnetic fields. In this section we consider the problems of the neutron 
motion in the static magnetic field. The problems on the neutron motion 
in the electric field will be considered in the next chapter, becausc the 
successive interpretation of the phenomena appearing in the neutron 
motion in the electric field is possible only with the application of 
the concept of thc electric polarization vector. This concept will be 
successively introduced in the next chapter. 



202 Particle motion in static external fields 

8.4.1 Neutron reflection by magnetic field 
Let us consider the neutron motion in static uniform magnetic field. 

The magnetic field is really uniform in the finite region of space, therefore 
it is more realistic to consider the problem, when an initially free neutron 
enters into the region of the non-zero magnetic field. Therefore, it is 
natural to assume that the strength of the magnetic field is determined 
by 

B (z) = Bo 
1 + exp (-Dz) ' (8.68) 

i.e. the strength of the field changes gradually from the zero value at 
z -+ -co to the value Bo at z -+ oo. The characteristic spatial width of 
the varying field region is about 1 = 1/P. 

In this case, the equation (7.3) is 

where 

(A + Q (r) = - 

As already mentioned, the equations for spinors of the bispinor wave 
function are independent , when a particle moves in the static magnetic 
field. Therefore, the neutron wave function can be taken in the form 

Q (r) = (q . 

The Hamiltonian of the equation (8.69) commutes with the operator of 
the spin projection on the direction of the magnetic field (ngE), where 
nB = Bo/Bo, therefore it is convenient to take the three-dimensional 
spinor of the wave function (8.70) in the form 

where the spinors uu are the eigenfunctions of the equation 

The operator of momentum projection on the plane perpendicular to the 
z axis commutes with the Hamiltonian of the equation (8.69). Hence, 
this momentum projection is the conservative variable, and we can 
assume Q ( r )  = Q (2). 

By substituting the equations (8.68) and (8.71) into the equa- 
tion (8.69), we get 
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where we have taken into account that the neutron magneton is negative. 
By introducing the new variable 

we can transform the last equation to the hypergeometric type equation 

The general solution of the equation (8.73) is 

f ,  (0 = cl(-J)-i"u F (-ik - iv,, i k  - iv,, 1 - 2iu,, J )  + 
+ c~(-()"" F (-ik + iv,, i k  + iv,, 1 + 2iv,, J )  , (8.74) 

where 

At z -+ CQ the solution (8.74) h i  'the following asymptotic form 

Hence, only the first term in equation (8.74) satisfies the required bound- 
ary condition a t  z --+ CQ. At z + -m, the asymptotical form of this 
solution is 

By normalizing this solution to the unit current of the incident particles 

for the coefficients r ,  and t ,  we get 

(-ik - iv,) I? (1  - ik - iv,) r ( i2k )  
r,, = r (ik - iv,) I? ( 1  + ik - LU,) r (-i2k) ' 
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The continuity equation, applied to the wave functions of the contin- 
uous spectrum, results in the current conservation law 

Hence, the energy reflection R, and transmission T, coefficients are 
defined by 

e,  ( ~ + t  . Qt - Gt . VQt) Z + m  - Re (v,) 
T, = 

e,  (VGo . Qo - $0 . VQ0) k lt,I2 . 

By substituting here the obtained wave function, we get 

sinh (7r (k - Re (v,))) sinh (27rRe (v,)) sinh (27rk) 
Ru= ( .  , To = 

sinh (7r (k + Re (v,))) sinh2(7r (k + Re (v,))) 
' 

(8.77) 
It is seen, that 

R, +To = 1. 

Notice, that according to the definition (8.75) we have Re (u+) = 0 at 
k < a and Re (v+) > 0 at k > a ,  while Re (up) > 0 at any k.  Thus, 
the tot,al reflection of neutrons with the polarization a = +1 occurs at 
k < a. It is quite natural, because the energy of the neutron polarized 
along the magnetic field (and, hence, the magnetic moment directed 
oppositely magnetic field) increases with the increase of the magnetic 
field strength. The reflection coefficient for the incident neutrons of 
polarization a = -1 is notably non-zero, only at k -+ 0. The reflection 
R% and transmission T% coefficients as a function of k are shown at 
Fig. 8.2. 

As we have mentioned in the Chapter 1, the main idea of experiments 
on search of the electric dipole moment of neutron is based on the 
comparison of the neutron spin precession frequency in the parallel and 
antiparallel magnetic and electric fields. Therefore, for further discussion 
it is convenient to calculate the spin precession frequency in the uniform 
magnetic field. It  is seen from the Fig. 8.2 that the reflection coefficient 
sharply drops at k = a and transr&sion coefficient tends to unity with 
the increase of k .  If the spin of the incident neutron is polarized along the 
magnetic field, then the direction of the spin does not vary with neutron 
propagation through the magnetic field, because the spin projection C, 
is integral of motion. If the incident neutron has the non-zero spin 
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Figure 8.2. The reflection R, and transmission T, coefficients as functions of 
wavenumber k for spin projection: a =-I (a ) ,  ( b ) ;  a = -1 ( c ) ,  ( d )  

projection on the plane perpendicular to the magnetic field, then the 
spin precession around the direction of the magnetic field occurs. Let the 
incident neutron be polarized along the x axis, then the spin projection 
vary with the distance traveled in the magnetic field in the following way 

'p+~,'p = cos ((v+ - v-) z) , cp+C,cp = sin ((v+ - v-) z) , (8.78) 

where v* is defined by the equation (8.75). 

8.4.2 Neutron scattering by localized magnetic field 

In the experiments on the neutron scattering by the gas of the po- 
larized atoms the magnetic field is strongly localized in the volume of 
the atomic size. To model this process we can assume that the spatial 
profile of the magnetic field is 

B (z) = Bo 
cosh2 (pz )  

In this case, the equation (7.3) takes the form 
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In accordance with the discussion given in the previous subsection, we 
have taken the wave function in the form of (8.70)-(8.72). We have. 
introduced in the equation (8.80) the dimensionless coordinate z' = /3z 
(in (8.80) and later, the primes are omitted), therefore the equation 
(8.80) depends on the parameter k = K / P ,  where the pararmeter K is 
the same as in previous subsection. 

By introducing the new unknown function 

and new variable 
1 

we can transform the equation (8.80) to the hypergeometric type equa- 
tion 

where 

The general solution of the equation (8.81) is 

where 

The asymptotical form of the solution f (z) at z -+ oo is 

Hence, the term proportional to the coefficient C2 is only satisfied to the 
required boundary condition at z++ oo. Thus, the solution reads 

f ,  (2) = exp(ikz)F 1 + s,, -s,, 1 - ik, ) . (8.84) 
1 + exp(2z) 

At z + -oo this solution takes the following asymptotical form 

- - 
r (1 - ik) r (-ik) 

(z)Jz+-, r (-ik - S) r (I - ik + s) 
exp(ikz)+ 
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Thus, by normalizing the function f (2) to the unit current of the incident 
particles (see (8.76)) and taking into account the definition (8.83) of the 
reflection and transmission coefficients, we get 

2 sin (rs,) sin (rs:) R, = Ir,l = 
sinh2 ( r k )  + sin (rs,) sin (rs:) ' 

rfa aq) 
, , '" I t " ' -  = sinh2(rk) + sin (rs,) sin (rs:) ' 

where we have taken into account, that at a > 114 and a == $1 
the parameter s, is the complex number. Indeed, in this case, the 
parameter s+ becomes 

It follows directly from the equations (8.86), that 

It is also seen from the equations (8.86), that the boundary of the 
reflection region is determined by' the-condition ko = Is[. It is seen. from 
the equation (8.82), that the parameter a is equal to the ratio c ~ f  the 
energy of magnetic dipole interaction, lpolBo to the energy fi2P2/1:2mo) 
that determines the kinetic energy of a particle localized in the pegion 
of the non-zero magnetic field. At a << 114, the boundary energy of 
reflection is given by 

Thus, at small values of the parameter a the boundary energy is the 
product of the magnetic dipole interaction energy and the parameter a. 
The non-zero difference of the reflection coefficients for the two sta~tes of 
the incident neutron polarization, a = f 1, occurs in the region AE+ - 
-AE- = 21pol B0.a. At a >> 114 we get AE+ % [pol Bo Fig. 8.3 shows 
the difference of the reflection coefficients AR = R+ - R- as a fu~lction 
of the wavenumber k at following values of the parameter a,: 1/40 (a), 
1/20 (b),  118 (c), 114 (d), 1 (e), 2 (f) ,  4 ( g ) ,  8 (h). It is seen that the 
increase in the strength of the magnetic field results in broadening of the 
region, where the neutrons of polarization a = +1 are reflected from the 
barrier and neutrons of polarization a = -1 pass through it. It is seen 
from the equations (8.86) that the reflection coefficient for the neutrons 
of polarization a = -1 becomes zero when the parameter s is equal to 
an integer. In this case we get AR = R+. Particularly, the curve f in 
Fig. 8.3 shows the case of s- = 1. 



Particle motion i n  static external fields 

I 
TI' 

* 
" 



Neutron motion in static magnetic field 209 

8.4.3 The bound states of neutron in magnetic field 
As we have discussed above, the energy of the magnetic dipole inter-' 

action is positive for the neutrons of polarization a = +l, as a result 
these neutrons are reflected by the magnetic field, when their kinetic 
energy is small. Contrary, the energy of the magnetic dipole interaction 
for neutrons of polarization a = -1 is negative, hence, these neutrons 
can form the bound states inside the magnetic field barrier. The energy 
of the bound state is negative, therefore 

With the help of the hypergeometric function transformation 

F (a, b, c, z) = (1 - z)c-a-b F (c - a ,  c - b, c, z )  , 

the wave function (8.84) can be written as follows 

The function (8.87) tends to zero a t  z t co. In order this function to 
be zero a t  z -+ -co, the following condition should hold 

where n is the non-negative integer. The condition E > 0 means that 

n < s,. 

As far as s+ is negative at a > 0, then the last condition holds true only 
for a = -1. Thus, the neutrons polarized opposite to the magnetic field 
can form the bound states in the magnetic field, because their magnetic 
moment is parallel to the magnetic field and, hence, the energy of the 
magnetic dipole interaction is negative. The condition (8.88) yields the 
energy spectrum of the bound states 

Hence 

There is a finite number of the bound states at a given magnitude of the 
magnetic field strength. 



Chapter 9 

ORIGIN OF LAMB SHIFT 

In the previous chapter we have applied the equation (7.3) to the 
analysis of a number of problems on particle motion in the static external 
fields. The analysis has shown that the equation (7.3) results in a number 
of specific features in the particle behavior that are qualitatively different 
from the predictions of other theories. Indeed, the spectrum of the 
electron moving in the Coulomb field shows the presence of the splitting 
of 2sl/z and 2p1/2 states. The numerical estimations of the magnitude of 
this splitting will be given later, but it is essentially more important to 
understand what is the origin of the splitting. The splitting occurs also 
for the levels of electron in the uniform magnetic field, and the magnetic 
field of response demonstrates a number of the unusual features. The 
analysis of the problem on the neutron motion in the magnetic field has 
shown that the neutron can be reflected by the magnetic field, and it can 
form the bound states in the localized magnetic field. The amplitude 
of reflection significantly depends on the incident neutron polarization. 
This is also agree qualitatively with the experimental data discussed in 
the Chapter 1. 

Before we start with the numerical estimations and comparison be- 
tween the theory and experiment, it is quite useful, at  least qualitatively, 
to answer the question: why, in spite of the close connection between 
the equation (7.3) and the Dirac equation, so drastic difference arises 
between the behavior of the particles obeying these two equations. By 
comparing these two equations we have not touched yet the equations 
for electromagnetic field, that follow from the action (7.1). The equation 
(7.4) for the four-potential of the electromagnetic field A ,  differs from 
that in the Dirac theory due to the difference in the current density four 
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vector, the time and spatial components of which are 

d - + cpo curl (GZ*) - ipo- at ( S a q )  . (9.2) 

9.1 Staticfields 
Let us write the equations for the strength of the electric and mag- 

netic fields produced by the particle in the state Q ( r , t )  = qn ( r )  x 
x exp (-iEnt/h).  In the next chapter we shall consider the problem of 
interaction of particles. Taking this in mind, it is convenient to label 
the field potentials in the following way: the scalar potential produced 
by particle a at a position of particle b is denoted as pa (rb) .  

The solutions of the steady-state equations (7.4) for the electromag- 
netic field scalar and vector potentials are given by 

ve, . e, - Gave,) - %%,A, C (r,) e,] dv,+ 

where rb, = rb - r,, and the field potentials Ab (r,) and cpb (r,) are 
produced by the charges external with respect to the considered particle. 
The obtained equations have the very simple physical interpretation. 
The first term in the equation (9.3) has the form of the scalar potential 
produced by the space charge with the charge density 

It is seen that the above equation coincides with the first term in 
the equation (7.7). The second term in the equation (9.3) has the form 
of the scalar potential produced by the space charge with the electric 
polarization vector (or dipole moment density) defined by the following 
equation 

P = -ipoGae. (9.5) 
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The first term in the equation (9.4) is the vector potential originated 
from the orbital motion of the particle. The second term in the equa* 
tion (9.4) has the form of the vector potential produced by the space 
charge with the magnetic polarization vector (or magnetization) defined 
by the following equation 

The equations (9.3), (9.4) provide the following equations for the 
strength of the electric and magnetic fields 

The physical meaning of the last equations is quite obvious, and these 
equations do not require the further discussion. 

It is seen from the equation (9.5) that, in standard representation of 
the Dirac matrices, the electric polarization vector P is non-zero only 
in those states of the particle when both spinors of the bispinor wave 
function are non-zero. The equation (9.7) demonstrates explicitly the 
significant difference between the Dirac equation and equation (7.3). 
Indeed, according to equation (9.7), the particle of zero charge go = 0 
and non-zero magnetic moment po # 0 can produce the electric field due 
to presence of non-zero electric polarization vector. 

Along with the electric (9.5) and magnetic (9.6) polarization vectors 
we can introduce the electric d and magnetic m dipole moments: 

It is seen from the definition of d and m ,  that the non-zero value of the 
electric and magnetic polarization vectors does not necessarily result in 
the non-zero value of the dipole and magnetic moments. 

9.2 Symmetric form of the filed equations 
The equations (9.3), (9.4) can be easily generalized for the case 

of the transient electromagnetic field. However, the interpret at ion of 
the equations (7.3)-(7.5) becomes more obvious if we write down the 
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equations for the electric and magnetic fields, i.e. the set of the Maxwell 
equations. It is seen from the equations (9.1), (9.2) that the charge 
and current densities consist of the two terms. The first terms in these 
equations are proportional to the charge go and do not include the spin 
operators: 

There are a number of reasons to assume, that these parts of the 
charge density and current density are associated with the electric charge 
density and electric current density. Firstly, these terms are propor- 
tional to the electric charge go, while the rest terms are proportional 
to magneton PO. Secondly, the rest terms of the equations (9.1)) (9.2) 
are proportional to the derivatives of the bilinear combinations of the 
wave functions, hence, they will not contribute to the integral charge and 
current in the steady-state case. Thirdly, these terms do not depend on 
the spin operators, while the rest Jerms depend on them. Fourthly, the 
charge and current densities defined by the equations (9.10) and (9.11), 
respectively, obey the continuity equation 

a p e  
- + div j, = 0, at 

With the help of the standard definition of the electric and magnetic 
fields 

1 a A  E = - V p ,  B = curl A, 
at 

(9.12) 

we can rewrite the equations (7.4) in the following form 

1 d 47r 
curl ( B  - 47rM) = -- (E + 47rP) + -j,, 

at C 

div (E + 47rP) = 47rpe, (9.14) 

where the vectors P and M are defined by the equations (9.5) and (9.6), 
respectively. 

To form the Maxwell set of equations, the equations (9.13), (9.14) are 
supplied by the following two equations 

div B = 0, (9.15) 

1 dB 
curl E = ---, 

at 
which follow directly from the definitions given by (9.D). 
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In the previous subsection we have shown that in the case of static 
fields the vectors P and M play the role of the electric and magnetic 
polarization vectors. It is seen from the equations (9.13), (9.14) that 
this interpretation is still true in transient case, too. Therefore we can 
introduce the electric displacement D and magnetic field strength H 
vectors 

D = E + 4 r P ,  H = B - 4 r M ,  (9.17) 

then the set of equations (9.13)-(9.16) takes the following form 

div D = 4rpe, 

div H = 47rpm, 

where 

1 aH 47r. 
curl D = - -Jm, 

at 

Pm ( r r  t) = -po div (GDP)  , 

- ic curl ( G a q )  . I (9.19) 

Thus, one can see that the use of definitions (9.17), which are similar to 
the definitions of the classical electrodynamics, results in the symmetric 
form of the Maxwell equations, where pe and j, play the role of the 
electric charge density and electric current density, and p, and j, play 
the role of the magnetic charge density and magnetic current density. 
It should be noted that the magnetic charge and current densities obey 
the continuity equation as well 

aprn 
- + div j, = 0. 
at (9.20) 

In classical electrodynamics the following equations are used for the 
induced charge and current densities 

where the vectors P, and Me are associated with the internal medium 
fields (the applied external fields break the uniform charge distribution 
of the initially disordered macroscopic medium). There is a close analogy 
between these equations and equations (9.19), which can be written in 
the following form 
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There is some difference between the electric and magnetic charge 
density, as it is seen from the equation (9.19). The magnetic charge 
density is identically equal to zero for the free particle, because the 
square modulus of the free-particle wave function does not depend on 
the coordinate. However, in the presence of the magnetic field the 
particle wave function changes, and the magnetic charge density becomes 
non-zero (see section 8.3). However, the magnetic charge, i.e. the 
spatial integral over the magnetic charge density pm (r ,  t )  dV, is still 
identically equal to zero. 

As already mentioned, when particle moves in the static magnetic 
field we can always assume that one of the spinors of the bispinor wave 
function is equal to zero. This is due to the diagonal form of the matrix X 
in the standard representation. In this case, according to definition (9.5), 
the electric polarization vector P is identically equal to zero. However, 
in the presence of the electric field, both spinors of the wave function 
become non-zero. We shall see later that it is the non-zero electric 
polarization vector that results in the appearance of the Lamb shift. 

In the section 7.3 we have shown that the operator X is the generator 
of the three-dimensional rotation transformation, as a result the opera- 
tor X is associated with the intririsic angular momentum of a particle. 
The equation (9.6) establishes the linear relation between the magnetic 
polarization vector and spin. On the other hand, the operator a is the 
generator of the four-dimensional rotation transformation, hence, the 
electric polarization vector is non-zero in a such motion of a particle, 
when not only the direction but the magnitude of the particle velocity is 
changed. The scalar wave function of the Klein-Gordon-Fock equation 
is invariant with respect to the three- and four-dimensional rotations, 
as a result the electric and magnetic polarization vectors are equal 
to zero in any state of the KGF particle. Therefore, we can assume 
that the operators of the electric and magnetic polarization vectors of 
an arbitrary spin particle are the generators of the three- and four- 
dimensional rotations of the appropriate equations. 

9.3 Lamb shift 
In this section we shall show how the Lamb shift can be interpreted. 

The solutions obtained in the section 8.2 enable us to write the explicit 
equations for the electric P and magnetic M polarization vectors for 
electron interacting with the ~ o u l o m b  field. For the convenience pur- 
poses, let us label the wave functions (8.48) in the following way 
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where ujl, is one of the spinors (8.36) and we have used the relation 
(1) d2) = - i r m  By substituting the equation (9.21) into the equa: dm 

tion (9.5), we get 

P(+-) = -ipoG(*)aq(*) = *er21"01G(k)Q(+). 
1 - c2 (9.22) 

Thus, the term in the Hamiltonian of the equation (8.35)) describing the 
interaction of the electric polarization vector with the intra-atomic field 
E, = e, (e/r2), takes the form 

Hence, at a given j ,  the energy is higher for the state with the smaller 
value of orbital angular momentum I .  Particularly, the nSlI2 level lies 
above the nPl12 level. 

The equation for the magnetic polarization vector M is 

+-I - M( - - /MI [er (1 - c2) ~ $ ~ f l r u j l r n  + e~ (1 + c2) ~ $ ~ 0 0 " j ~ r n ]  X 

x c i j lF2(-n ,  v+-, r) . (9.24) 

For example, the magnetic moments at the ISll2 and 2Pllz states are 

M ( l S l / z , m  = f 112) = 

I P O  l = F- [e, cos6 - eg sin0 - c2(er cose + es sine)] c ~ ~ ~ ~ , ~ F ~ ( - ~ ,  v+, T ) ,  
47r 

It is seen, that the z projection of the magnetic polarization vector at 
the 1SlI2 state, along with the permanent component, has the additional 

Figure 9.1. The mutual orientation of the intra-atomic electric field E = er/r3 and 
the electric polarization vector P for the n S l p  and nP1p states 
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component proportional to a2, which varies as cos (28) with the angle 8. 
In the 2Pl12 state the main component varies with the angle 8 and. 
the additional small component is permanent. The interaction of the 
magnetic polarization vector with the intra-atomic magnetic field results 
in the well known Zeeman structure of atomic levels. 

Thus, the splitting of the nSllz and nPllz states of electron in 
the Coulomb field is completely due to the interaction of the electric 
polarization vector with the intra-atomic electric field. Fig. 9.1 shows 
schematically the mutual orientation of the intra-atomic electric field 
E = er/r3 and the electric polarization vector P for the nSl12 and nPl12 
states. 

9.4 Neutron interaction with the static electric 
field 

As we have discussed in section 1.3, the interest to the experiments on 
search of the electric dipole moment of elementary particles is enhanced 
significantly in the last time. The most of the experimental researches 
are devoted to the study of mechanism based on the violation of the CP 
invariance. 

The analysis given above has shown that, on one hand, the equa- 
tion (7.3) is the CPT invariant, and, on the other hand, this equation 
predicts the appearance of the induced electric polarization vector for 
the particle interacting with the electric field. The definition of the 
electric polarization vector given by the equation (9.5) does not violate 
the P invariance, because the upper and lower spinors of the bispinor 
wave function have the opposite parity. The vector P, defined by 
equation (9.5), does not violate the T invariance, because the operator 
a is the generator of the Lorentz transformation. 

Hence, it can be anticipated that the interaction of the neutron with 
the electric field will be drastically different in the case when we accept 
the definition (9.5) and in the case when we accept the definition given 
in the section 1.3. One can see that there are a number of motivations 
to study the interaction of neutron with the electric and magnetic fields, 
because the results of this study can play the significant role both for 
the general theory of the spin-112 particles and atomic spectroscopy, 
especially for the theory of the Lamb shift. 

9.4.1 Neutron reflection by the static electric field 
Let us consider the problem on the neutron interaction with the static 

electric field of the following spatial profile E = eE (z), where e is the 
arbitrary unit vector. This problem is of the general theoretical interest, 
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because, on one hand, it enables us to reveal the mechanism of the 
neutron scattering by the electric field. On the other hand, this is an 
example of the exactly integrable scattering problem. 

As we have repeatedly mentioned, in the case of the free particle or 
particle moving in the static magnetic field, the bispinor wave function 
is really spinor wave function, because if one of the spinors is equal 
zero in the initial state, it remains zero at any other stages of the 
particle evolution. The wave function normalization condition enables 
us to define the particle and antiparticle states on the basis of sign of 
the charge: J pdV = go for particle states and J pdV = -go for the 
antiparticle states. As far as the equations for upper and lower spinors of 
the bispinor wave function are independent in the absence of the electric 
field, then the particle interaction with the static magnetic field will not 
result in the appearance of antiparticles, and vise versa. 

The situation is drastically changed when particle interacts with the 
electric field. In this case 

1 ,o (') dV = y ~ +  (r) (E - U (r)) y~ (r) dV- 
40 moc 

- 1 1 x+ (I-) (E - U (r)) x (r) dV. (9.25) 
moc2 

It is seen from the equation (7.3) that the ratio between the upper 
and lower spinors is varied with the variation of U (r). Therefore, to 
preserve the charge conservation law (9.25) the ratio between the particle 
and antiparticle currents should be different at different spatial points. 
Thus, it can be assumed that the analysis of the problem on the neutron 
scattering by the spatial inhomogeneous static electric field can give us 
the further insight into the inerpretation of the particle and antiparticle 
solutions. 

In the case of the neutral particle interacting with the electrostatic 
field E (r) ,  the equation (7.3) takes the form 

%om0 [A + K ~ ]  * (r) = i- (aE) Q (r) , 
h2 

where 

Let the spatial profile of the static electric 

(9.27) 

field be 
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The Hamiltonian of the equation (9.26) commutes with the operator 
C E  = ( n E E ) ,  where n E  = Eo/Eo is the unit vector. Hence, we can take . 
the wave function in the following form 

where the spinor cp is the eigenfunction of the equation 

and x = (nEo) cp. 
The Hamiltonian of the equation (9.26) commutes also with the 

operator of the momentum projection on the plane perpendicular to the 
z  axis, therefore we can assume Q ( z ) .  

By introducing the new variable 

and the new unknown functions 

f ( z )  = p ( z )  c o ~ h - ~ ~  ( P z )  , g - ( z )  = q ( z )  coshPik ( P z )  , 

we can transform the equations for the functions f ( z )  and g  ( z )  to the 
hypergeometric type equations 

q  ( 1  - q )  p" + ( 1  + i k )  ( 1  - 2q) p' - i k  ( 1  + i k )  p = -aq, 

q  ( 1  - q )  q'' + ( I  + i k )  ( 1  - 2q) q' - i k  ( 1  + i k )  q = ap, 
(9.29) 

The solutions of the obtained set of equations can be easily found with 
the help of the solution of the following equation 

q  ( 1  - q )  Q" + ( 1  + i k )  ( 1  - 2q) Q' - i k  ( 1  + i k )  Q + bQ = 0. (9.31) 

We require, that the solution of t6e one-dimensional scattering problem 
should have the following asymptotical form 

t . e x p ( i ~ z ) ,  z - t o o ,  

exp ( i m )  + r . exp (-im) , z  -+ -oo. 

The solution of the equation (9 .3 l ) ,  having the required asymptotical 
form, is 

1 
Q ( q )  = q - i k ~  ( 1  + (~mb - I ) ,  - ( d m  - I ) ,  1%- i k ,  7 )  , (9.33) 2 
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where F ( a ,  p, 7,  z )  is the hypergeometric function. Therefore, the un- 
known functions p ( q )  and q ( q )  can be taken as 

where A and B are the constants. The unknown parameter b of the 
function (9.33) is determined by the condition of the existence of the 
non-trivial solutions of the algebraic set of equations for the coefficients 
A and B. With the help of this condition we obtain the following two 
possible values of b: 

b1,2 = *ia. 

Thus, the general positive energy solution of the equation (9.26), satis- 
fying the boundary conditions (9.32), is 

where A l , ~  are the constants, 

and the function G ( s ,  k ,  z )  is defined by 

1 + s ,  -s,  1 - i k ,  exp ( i ~ z )  . (9.36) 
1 + exp (2pz)  

The function G ( s ,  k ,  z )  has the following asymptotical form. At z -, oo, 
the asymptotical form follows directly from the equation (9.36): 

G ( s ,  k ,  z )  I,,, = exp ( k z )  . (9.37) 

To find the asymptotical form at z + m, it is convenient to use the 
following transformation of the hypergeometric function 

r (c)  r ( C  - a - b) 
F ( a ,  b, c, z )  = F ( a , b , a + b + l - c , 1 - a ) +  r ( C  - U )  r ( C  - b) 

With the help of the last equation we get 

- - r ( 1  - i k )  I? (4) I? (1 - i k )  r ( i k )  exp + K z ) .  

r ( - i k  - s )  r (1 - i k  + s) ( i K z )  + I'(l + S )  I? ( - 3 )  

(9.38) 
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9.4.2 S y m m e t r y  propert ies of wave function 

As we have mentioned above, it is convenient to assume that the basis 
spinors are the eigenfunctions of the equation 

Hence, the bispinors, appearing in the solution (9.34), are 

The charge conjugation transformation is defined by the equa- 
tion (7.91) 

\I'c (r ,  t) = 6'9 (r, t )  = -iXcy2Q* (r, t )  . 

The solutions, charge conjugated to the two items of the general solu- 
tion (9.34), 

Et 
( r ,  t )  = \ ~ ' b ~ l ~ )  (2) exp (-i) , 

E P  

are 

It is seen that, a t  the charge conjugation, the spinor u p )  is transformed 

into the spinor . The same occurs in the case of the free particle. 
Let us assume that the coefficients A1,2 in the equation (9.34) are 

equal to Al,2 = C1 * C2, then the equation (9.34) takes the form 

W ( ~ ) G +  (s, k ,  z) w ( ~ ) G -  (s, k, z) 
\I'u (2) = c1 

aw(")G- (s, k, ~ w ( ~ ) G +  (s, k, z) 
) , (9.41) 

where 
Gk (s, k, z) = G (s, k, z) f G (s*, k, z) . (9.42) 

At the three-dimensional space inversion transformation (P3 f (r) = 
= f (-r)) the polar vector E changes its direction. It means that, at 
the three-dimensional space inversion transformation, the parameter a, 
defined by the equation (9.30), changes its sign. In its turn, it means that 
the three-dimensional space inversion results in the following replace- 
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ment s -+ s*. The latter follows from the definition of the parameter s 
(see (9.35)). Hence, in accordance with the definition (9.42), we get 

as a result the solutions, at  the coefficients C1 and C2 of the equa- 
tion (9.41), are transformed under the three-dimensional space inversion 
with the opposite signs: 

w(-")G* (s, k, -a) 
7 4  p3 . (9.43) 

C T W ( " ) G ~  (s, k ,  z) C T W ( - ~ ) G ~  (s, k, -2) 

The plane wave, associated with the incident particle, is a superposition 
of the even and odd states (with respect to the space inversion). How- 
ever, as far as the Hamiltonian of the equation (9.26) commutes with the 
relativistic parity operator, the equation (9.43) shows explicitly that the 
general solution (9.41) provides the possibility to choose appropriately 
the parity of the incident particle state. 

9.4.3 Reflection and transmission coefficients 
Let the wave function of the incident particle be 

f o ( 4  = C a, exp ( i ~ z )  , 
u=f 1 

2 where Ia+ll + la-11~ = 1. Then, the wave functions of the reflected q, 
and transmitted qt particles are 

To find the coefficients ri and ti in the equations (9.45), we should 
use the asymptotical form of th6 function G  (s, k, z) at z + ha. It is 
convenient to transform initially the function G (s, k, z) to asymptotical 
form given by the equation (9.32). Thus, according to the equations 
(9.37) and (9.38), we have for the coefficients r and t of the asymptotical 
form of the function G  (s, k, z) the following equations 

r ( 1  + s - i k )  I? (-s  - i k )  I?(&) 
r ( k , ~ )  = r (1 + S )  r ( - S )  r ( - ik )  ' 

I- (1 - ik  + S )  r (- ik  - S )  
(9.46) 

t (k, s) = r (1 - i k )  r ( - ik )  
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and, similarly, for the function G (s* , k, z): 

F (1 + s* - ik) F (-s* - ik) r(ik) 
r (k, s*) = r (1 + s*) r (-s*) r (-ik) ' 

r (1 - ik + s*) r (-ik - s*) 
t (k,  s*) = 

F (1 - ik) r (-ik) 

Hence, the asymptotical forms of the functions Gh (s, k, z) are: 

G+ (s, k, z) = 2 exp(ikz) + (r (k, s)  + r (k, s*)) exp (-ikz) , 

G- (s, k, z) = ( r  (k, s)  - r (k, s*)) exp (-ikz) . 

It can be easily seen from the last equations, that, to satisfy the initial 
state (9.44), we should assume C2 = 0 in the general solution (9.41). 
Hence, the coefficients rl,2 and tl,2 in the equation (9.45) are given by 

T (k, S) + r (k, s*) r (k ,  s) - r (k, s*) 
7-1 = 

2 , r 2  = 2 1 

t (k ,  s) - t (k, s*) 
(9.47) 

tl = 
t (k ,  s) + t (16, s*) , t2 = 2 2 

As we have discussed in the previous chapter, the equations for the 
energy reflection R and transmission T coefficients follow from the 
continuity equation 

The equations for these coefficients were given in the subsection 8.4.1. 
Using the wave functions (9.44) and (9.45), we get 

If the equations (9.46) and (9.47) are applied to the last equations, the 
reflection R and transmission T coefficients become 

2 sin2 f rs )  sin2 (rs*) R =  ln12- lr2 =I [ 
2 sin2(rs) + sinh2(rk) + sin2(rs*) + sinh2 ( r k )  

2 sinh2 (rk) sinh2 ( ~ k )  T = l t l l  -It21 = -  . 
2 sm2 (rs) + sinh2 (rk) + sin2 (TI*) + sinh2 (rk) 

(9.48) 
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It is seen, that 
R + T = l .  

The obtained equations enable us to make a number of the general 
conclusions on the dependency of the reflection and transmission coeffi- 
cients on the incident particle state: 

Figure 9.2. Energy spectra of the reflection lr1I2 (a) ,  lrzI2 (c) ,  R (e) and transniission 
1 t1I2 ( b ) ,  lt2I2 (d) ,  T ( f )  coefficients, and electric polarization vector projections P, ( g ) ,  
P, ( h )  a t  a = 2. The parameters are defined by the following equations: k by (9.27) 
and (9.30); rl,z and tl,2 by (9.47); R and T by (9.48); P,,, by (9.54) 
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(1) The equations (9.48) do not depend on the coefficients a,. Hence, 
the energy reflection and transmission coefficients do not depend on the 
polarization state of the incident particle. 

(2) It follows from the equations (9.48) that the boundary of the 
reflection region is determined by the condition k = ko = Im ( s ) .  Hence, 
for ko, we have 

(3) It follows from the last equation, that the boundary energy of 
reflection is defined by 

Thus, the boundary energy of reflection depends on the ratio of the 
energy of the electric dipole interaction poEo to the energy h2P2/(2mo) 
that determines the change in kinetic energy for the particle scattered 
by a potential barrier of the spatial width d = P-l. 

The Fig. 9.2 shows the coefficients lr112 (a), lt1I2 (b), lr212 (c), lt212 (d), 
R (e), T ( f )  as functions of the wavenumber k for a = 2. In this case, 
the boundary value ko is ko = 0.94. It is seen from the graphs that 
the drastic increase in the coefficients lriI2 and ltiI2, and the sharp drop 
in the reflection coefficient R occur when the magnitude of the wave 
vector k approaches to its boundary value k = ko. It should be noted 
that the further increase in the value of the parameter a results in more 
pronounced increase in the coefficients lriI2 and lti12 at  k = ko, and in 
more sharp drop of the reflection coefficient R. 

9.4.4 Electric a n d  magnetic polarization vectors of neutron 
scat tered by electric field 

One can see from the equation (9.51), that, in the case of the wide 
potential barrier (P + O ) ,  the boundary energy of reflection is the 
product pOEO. According to the definition of the electric polarization 
vector P, this product is the energy of the electric dipole interaction 
- J P E o  dV = -dEo of a particle with the uniform electric field. How- 
ever, it should be noted, that, in the case of the spatially inhomogeneous 
electric field, the interaction, described by - J P E d V ,  is not purely 
electric dipole interaction. Indeed, if, for example, the function P (r) 
has the maximum at some spatial point r = ro, then the expansion 
of the integral - J P E d V  around the point r- = ro includes the all 
space derivatives of the electric field strength. Thus, it should be more 
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precisely to call the above interaction by the interaction of the induced 
polarization vector of a particle with the electric field. 

Let us study the evolution of the electric and magnetic polarization 
vectors, 

P = -ipGaQ, M = p G ~ Q ,  

in the process of the neutron scattering. 
Using the wave function (9.44), we get for the electric and magnetic 

polarization vectors of the incident particle the following expressions: 

Using the wave function (9.45), we get for the electric and magnetic 
polarization vectors of the reflected particle 

For shortness, we have omitted in the equations (9.52)-(9.55) the mag- 
neton po. 

The obtained equations enable us to make a number of the general 
conclusions concerning the electric and magnetic polarization vectors of 
the reflected particle: 

(1) Independently of the polarization state of the incident particle, 
the state of the reflected particle is always characterized by the non- 
zero electric polarization vector directed along the direction of scattering 
electric field. Notice, that, as already mentioned above, the space 
inversion transformation results in the following substitution rl + rl 

and 7-2 + -r> Thus, at the space inversion transformation, the electric 
polarization vector P changes iks sign, and the magnetic polarization 
vector M remains invariable. 

(2) The projection of the magnetic polarization vector on the direction 
of the scattering electric field is equal to the product of the magnetization 
vector of the incident wave and reflection coefficient: MTz = MotR. 

(3) If the incident particle is polarized along the direction of the scat- 
tering electric field (for example a+ = 1, a- = 0 ) ,  then the projections 
of the reflected wave electric P, and magnetic M, polarization vectors 
on the plane perpendicular to the direction of-the electric field is equal 
to zero. 
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(4) If the incident particle is polarized in the plane perpendicular to 
the direction of the scattering electric field (for example a+ = a- =. 
= 1/fi, hence Mo = e,), then, along with the non-zero longitudinal 
projection of the electric polarization vector P,, there are the non- 
zero mutually perpendicular transversal projections of the vectors P, 
and M,: 

Py = (rT7-2 + TIT;), hi% = ( lr12 + 17-212). 
The Fig. 9.2 shows the components P, (curve ( g ) )  and Py (curve (f))  

as functions of the wavenumber k a t  a = 2. 
It should be mentioned in conclusion of this subsection, that the 

electric Pt and magnetic Mt polarization vectors of the transmitted wave 
are determined by the equations (9.54), (9.55), where the coefficients ri 
should be replaced by the coefficients ti. 

9.4.5 Bound states of neutron and antineutron 
in the electric field 

The equations (9.48) can be applied to almost all region of variation 
of the incoming parameters. There is only one exception, when the 
parameter sf is the positive integer Indeed, at 

the equations (9.48) take the form: 

sinh2 (.irsl') 
R =  . 

sinh (T ( k  - s")) sinh (T ( k  + sl')) ' 
(9.57) 

sinh2 ( ~ k )  
T = - ,  

sinh (n ( k  - s")) sinh (T ( k  + d l ) )  ' 

It is seen from the equations (9.57) that the sum of the reflection and 
transmission coefficients is still equal to unity, R + T  = 1. At the same 
time, the signs of the coefficients R and T  are opposite. It can be easily 
understood that the negative values of the reflection and transmission 
coefficients correspond to the appearance of the antiparticles in the 
reflected or transmitted wave. 

At 
k = ko = S" (9.58) 

the equations (9.57) have the singularity. We can also see this singularity 
in the asymptotical form of the function G (s*, k, z) a t  z -+ -m: 

- - 
r ( 1  - i k )  r ( - i k )  

(2 (s*, k, z)l,+-m r (1 - i k  + s*)  r (-ik - s*)  exp ( i ~ z )  S 
I? ( 1  - i k )  F ( i k )  

+ r ( 1  + s*)  r ( - s * )  
exp (-kz) . (9.59) 
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It can be easily seen, that if the conditions (9.56) and (9.58) hold, 
then the first item in the equation (9.59) turns to zero. To illustrate 
what happens in this case, Fig. 9.3 shows the spatial profile of the 
function IG (s*, k, z)I2 a t  n = 1 ( c ) ,  2 (f) ,  3 (i) and k = s". It is seen 
that, in this case, the above function describes the state consisting of 
the equal number of neutrons and antineutrons uniformly distributed 
in whole space with the exception of region of the non-zero electric 
field. The second row in the Fig. 9.3 shows the profile of the function 
It (k, s) G (s, k, z) - Gin, (z)12 for the same values of parameters, this 
function is the difference between the function (9.36), normalized to the 
unit current of incident particles, and the wave function of the incident 
particles Gin, (z) = (1 - tanh (pz/2)) exp ( i m )  12. Thus, the wave, 
corresponding to the solution G (s, k, z), has the maximal amplitude in 
the region of the non-zero electric field. The solution 

includes the incident wave of the following type 

i.e. the incident wave is the coherent superposition of the "pure" neutron 
and antineutron states. The upper row in fig. 9.3 shows the spatial 
profile of the function GRT (z) QRT ( z ) ,  where 

It is seen that, in the case when the conditions (9.56) and (9.58) hold, the 
coherent superposition (9.61) has the probability to decay into the neu- 
tron and antineutron propagating in the opposite directions. However, 
with the increase of n, the energy of the incident wave (9.61) is mainly 
spent to excite the density oscillakions of the neutron-antineutron pairs 
in the region of the non-zero electric field. It  is seen from the lower row 
of graphics, that in the absence of the incident wave the density of the 
neutron-antineutron pairs was minimum in the region of the non-zero 
electric field. Thus, in the specific.case of st = n and k = ko = st', the 
scattering ceases to be elastic in the general sense, because the scattering 
of the neutron results in the appearance of antineutron in the reflected 
wave. 

It should be noted that the linear independent solutions G (s, k, z) 
or G (s*, k, a)  can separately produce the coherent sup&position of the 
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type (9.61) at  any st and k # s". However, these states are not scattered 
by the electric field, because, in this case, we have 9 (2) Q (2) = 0 at 
any z. 

Notice also that the wave function (9.60) is applied only to the special 
case when st = n and s" = k. The case of st = n and k # s" is not 
required the special care, we can still use the equations obtained in the 
previous subsections. As we have mentioned above the specificity of this 
case is in the fact that the reflection and transmission coefficients are not 
restricted now by the conditions 0 5 R 5 1 and 0 5 T 5 1. If IRI > 1 
and IT( > 1 it means that the total number of scattered particle exceeds 
the number of incident particles therefore one can say that scattering 
is inelastic in this case. However - and it is imperative - the energy 
conservation law still holds because the sum of the reflection and trans- 
mission coefficients is identically equal to unity, R + T = 1, as it follows 
from the equations (9.57). In complete analogy with the case considered 
in subsection 9.4.3 the amplitudes of waves increase significantly when 
k is approached to ko = s". The above given discussion enables us now 
to explain this increase by the excitation of neutron-antineutron pairs 
accumulated in the region of the non-zero electric field. 

It should be noted finally, thd ' the  phenomena, considered here, are 
in close similarity with the phenomena occurring under the electromag- 
netic waves propagation in the spatial inhomogeneous media, such, for 
example, as the excitation of the plasma oscillations and waves. 

9.5 Neutron motion in superposition of electric 
and magnetic fields 

Let us consider the neutron motion in the superposition of the static 
electric and magnetic fields. In this case the equation (7.3) takes the 
form 

(A + K ~ )  Q (r)  = [-9 (XB) + i- 2m0p0 ( a ~ ) ]  Q ( r )  . (9.62) 
h2 

We take the wave function in the general form 

where u is the arbitrary spinor, satisfying the normalization condition 
U+U = 1, and w = a,u, here a, = (no), and n is the arbitrary unit 
vector. By substituting the equation (9.63) into the equation (9.62), we 
get 

(A + u f (r)  - a (r)  agu f (r) = -ib (r) a ~ a , u g  (r)  , 
(9.64) 

(A + K ~ )  wg (r)  - a (r) agwg (r) = -ib (r)  aECTn@ f (r)  , 
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where 

K2 = E~ - m;c4 2moIM , a ( r )  = - 2mo IPO l 
ti2 

B ( r ) ,  b ( r ) = -  
ti2 c2 ti2 E (4 I 

U B  = (nBo), U E  = (nEo), and ~ B , E  are the unit vectors of the directions 
of the electric and magnetic fields. In derivation of the equation (9.64) 
we have used the following formula 

(Ao) (Bo) = ( A B )  + i a  [AB] , 
where A and B are the arbitrary vectors. This formula yields also the 
following equalities: anan = 1, and 

( n ~ o )  (no) = ( n ~ n )  + io [ n ~ n ]  

In the case when the electric field is parallel or antiparallel to the 
magnetic field, i.e. n E  = hB, it is convenient to assume n = n B ,  then 
we get 

U E f f n  = UEUB = kl. 

Thus, in the case of the parallel or antiparallel electric and magnetic 
fields, the set of equations (9.64) takes the form 

( A  + K~ - a ( r )  U B )  u f ( r )  = ~ i b  ( r )  u g  ( r )  , 
(9.65) 

(A + tc2 - a ( r )  oB) w g  ( r )  = ~ i b  ( r )  w f ( r )  . 

Assume the spinor u is the eigenfunction of the equation 

then the spinor w = UBU is defined b y  

In the case of the perpendicular electric and magnetic fields, i.e. 
n E l n g ,  it is convenient to take the vector n in the following form 

In this case we have 
U E U ~  = iUB1  

and the set of equations (9.64) takes the form 

(A + /s2 - a ( r )  0g)lL.f  ( r )  = b ( r )  Q U g  ( r )  , 
(9.66) 

(A + K~ - a ( r )  a ~ )  w g  ( r )  = b ( r )  a ~ w f  (r) , 
where 
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9.5.1 Parallel fields 
As already mentioned, it is more realistic to assume that the electric 

and magnetic fields are non-zero in half-space than in whole space. - 
Therefore, the electric and magnetic fields are 

B ( 4  1 
{E (z)} = {BE~o} 1 + exp (-Pz) 

and the equations (9.65) at nE = ng become 

b 

1 + exp (-z) fc (2) = -i 1 + exp ( - 2 )  
gc (2) ! 

b 
go (4 = -i 

1 + exp ( - z )  1 +exp(-z) fQ (4 ) 

where we have used the dimensionless coordinate z' = pz (in the last 
equation the primes have been omitted), and 

By introducing the new variable 

( = - exp (-2) , 

the equations (9.68) can be transformed to the following form 

The general solution of the equation (9.69) is 

where 

Gl(u, z) = tl exp (ivz) F (-ik - iv, ik - iv, 1 - i2v, - exp (-2)) , 
G2(v, Z) = t2 exp (-ivz) F (-ik + iv, ik + iu, 1 + i2v, - exp (-z)) . 

and 
vl J-, v2 = JiKZGZ. (9.71) 
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It  follows from the equations (9.71) that the function k (z) is finite at  
z + oo only in the case when the following conditions hold 

By taking into account this conditions, we can write the general solution 
in the following form 

u (GI(v, 2) + G ~ ( v * ,  z)) u (GI(v, 2) - G2(v*, z)) * (z) = C1 
w (Gl(v, z) + G2(v*, z)) 

(9.72) 
where, in accordance with the equations (9.71), we have intr0duce.d thc 
following notations: v = u2, V* = V L  

The functions Gl,2 have the following asymptotical form 

exp(ikz) + rl exp (-ikz) , z + -m,  

tl exp (ivz) , a + m ,  

exp(ilcz) + 7-2 exp (-ikz) , z + -oo, 

t2 exp (-iu*z), z -+ m ,  

where 

r ( - ik  + i u * ) r ( l  - i k  + iv*)F(2ik) r(- ik + iu*)F( l  - i k  + iu*) 
r2 = t2 = 

r ( iC  + i v * ) r ( l +  ik + iv*)r(-2ik) ' r ( l  + i2u*)r(-2ik) ' 

(9.73) 
In complete analogy with the equation (9.41)' the first term in the 

solution (9.72) corresponds to the incident particle, and the second term 
corresponds to the incident antiparticle. Therefore, the wave function 
of the incident neutron is 

In accordance with the equation (9.72), the wave function of the reflected 
neutron is defined by 

-. 
The definition of the energy reflection coefficient was given in sub- 
section 9.4.3. By using the equations (9.73) for the energy reflection 
coefficient we obtain 

I 
R = - [(rl + r2)* (rl + 7 3 )  - (rl - r2)* (rl  - rd] =. 1. 

4 
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Thus, there is the total reflection of the neutron incident on the 
semi-infinite parallel electric and magnetic fields. Notice, that the total 
reflection is completely due to the electric field. Indeed, we have seen in 
the previous chapter that the neutron of the energy, above the boundary 
energy of reflection, penetrates entirely into the magnetic field. 

The characteristic length of the neutron penetration into the electric 
field is determined by the imaginary part of v .  At the condition k2 >> b 
(i.e. E2 - m;c4 >> eEOfic = epofic/d,  where cpo is the voltage between 
the condenser disks placed at the distance d one from another, and we 
have assumed, for simplicity, that the neutron magneton is equal to the 
nuclear magneton), we obtain the following formula for the penetration 
depth 

where Uo = ecpo. At the energy of the incident neutron about a few MeV 
and for the reasonable value of the voltage, the penetration depth is 
about 100 m. 

In the subsection 8.4.1 the spacial frequency of the spin precession 
in the uniform magnetic field ha's'been calculated. It follows from the 
equation (9.71) that the spacial frequency of the spin precession in 
the parallel electric and magnetic fields is determined by the following 
expression 

At k2 > b we get 

where Avo = d- - dm is the spacial frequency of the spin 
precession in the uniform magnetic field. Thus, it is seen that the 
correction to the spin precession frequency vo due to the presence of the 
non-zero parallel electric field is about 

By taking into account the equation for vo: 
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for the relative correction we get the following equation 

Thus, the above analysis enables us to make the following very impor- 
tant conclusions. Firstly, in contrast to the equations of the section 1.3, 
the obtained correction to the spin precession frequency due to  the non- 
zero parallel electric field is proportional to the square of the applied 
electric field, but not to the filed strength as it is prescribed by the 
mechanism based on the violation of CP invariance. Secondly, as well as 
the correction is proportional to the square of the applied electric field, 
then the reversion of the direction of the applied electric field does not 
result in the change of the spin precession frequency. 

9.5.2 Crossed fields 
In the case of the crossed electric and magnetic fields the equations 

for the radial wave functions (9.63) take the form of (9.66). By substi- 
tuting the equation (9.67) for the electric and magnetic fields into the 
equation (9.66) and introducing the new variable C = - exp ( - z ) ,  we 
finally get 

where we have taken into account the following relationships 

The general solution of the equations (9.76) is 

where the functions ( z )  have been defined in the previous subsection, 
and we have introduced the following notations 
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It can be easily seen that in the case a < b (i.e. Bo < Eo) the coeffi- 
cients v1,2 are the complex numbers. Hence, the equations (9.76) can be 
treated in a way similar to that used in the previous subsection. There is 
only one important difference: it follows from the above equations that 
the spin precession frequency is equal to zero. 

Therefore, let us study the case of a > b. To satisfy the boundary 
conditions at z + oo we should assume 

It should be noted, that the case of the crossed fields differs qualitatively 
from the all above considered configurations. This difference is due 
to the commutation relation for the Hamiltonian and operator of spin 
projection on the direction of the magnetic field. In previous cases this 
projection of spin was the conservative variable. As a result the spinors 
u, were the eigenfunctions of the conservative spin projection. In the 
case of the crossed fields the spin projection operator (neC) does not 
commute with the Hamiltonian of the equation (9.62), therefore the 
general solution of the equations (9.62) will be always the superposition 
of the spinors u, 

(9.78) 
where, in accordance with the equations (9.77), we have 

As far as the parameter c < 1 at a > b, hence, the first term in the 
equation (9.78) corresponds to the particle solution, because 

and the second term corresponds to the antiparticle solution, because 

The asymptotical form of the function Gl(v, z) was given in the previ- 
ous subsection, with the help of this equation we get again the equa- 
tions (9.73) for the reflection 7-l,:! and transmission tl,2 coefficients. 
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The principle difference of the wave function (9.78) from the solutions 
of other one-dimensional scattering problems is in the fact, that the inci- 
dent particle with the given projection on the direction of the magnetic 
field corresponds the wave function of the following form 

It is seen that, in contrast to the previous cases, both upper and lower 
spinors of the bispinor wave function are non-zero. Of course, we can 
always choose the wave function in the form corresponding to the "pure" 
particle state. Indeed, by assuming B, = <A, in the equation (9.78), we 
get 

Hence, the wave function qo can be interpreted as a function describing 
the superposition of the 'pure' particle and antiparticle states. 

The spacial frequency of the spin precession is defined by the expres- 
sion 

AV = Jw - J-. 
If the energy of the incident neutron exceeds significantly the boundary 
energy of reflection, we get the following formula for the precession 
frequency 

It is seen that the precession frequency is quadratically depend on the 
applied electric field strength, therefore the reversion in the direction of 
the electric field will not result in the change of the precession frequency. 

9.6 Geonium atom 
The problem on the geonium atom has been treated in the previous 

chapter. However, we have not taken into account the presence of the 
electric field of the Penning trap. In the light of the previous discussion 
it looks useful to  account it. The electrostatic potential of the Penning 
trap is described by the following equation 
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where the z axis is directed along the direction of the trap magnetic 
field. In this case the equation (7.3) takes the following form 

where Uo = etpo > 0, and po is magnitude of the electron magneton. 
Similar to the case of the neutron motion in the crossed electric and 

magnetic fields, the account of the electric field projection Ep results in 
the loss of conservation of the spin projection on the direction of the 
magnetic field. The non-zero projection Ep results in the magnetron 
motion of electron in the trap. In this case, the electron orbit takes the 
epicycle form. However, the electric field strength of the Penning trap is 
much smaller than the magnetic field strength, therefore we can neglect 
this projection of the electric field in the zero-order approximation. 
Assume additionally, that Uo << moc2, then the equation (9.81) is 
simplified significantly. Due to the symmetry of the problem, the wave 
function of the equation (9.81) is 

uufu (P, 4 e (r) = ( I) ) exP (w4 
%& (A 

where the spinors uu are the eigenfunctions of the equation a,u, = auu. 
By substituting the wave function (9.82) into the equation (9.81), for 
the radial wave functions we get the following equations 

where v = [el Bo/(2fic). The general solution of the equations (9.83) is 



where C1,2 are the normalization constants. The 
satisfying the required boundary conditions, is 
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function G, (p, z) , 

where L ; ~ )  (z) is the generalized Laguerre polynomial, Hn (z) is the 
Hermite polynomial, np and n, are the non-negative integers. The 
energy spectrum depends on the quantum numbers npl  m, a,  n,, and to 
find the explicit expression for it we should solve the following equation 

2m(n ,+ i )  + (:)'& 
+ hcd 2 ~ d ~  

By assuming, that E - moc2 << moc2, we can write the approximate 
solution of the last equation in the following form 

It is seen that the approximate solution of the equation (9.86) includes 
the two additional terms in comparison with the spectrum obtained in 
the section 8.3. However, the exact solution of the equation (9.86) will 
include the infinite series of the additional terms. The accuracy of the 
measurements of the fundamental constants in the experiments with 
the Penning trap is so high tha t i t  could be necessary to account this 
difference. 

The wave function (9.84), (9.85) differs also from the wave function 
obtained in section 8.3. The particle solution is given by the first 
term in the equation (9.84). Its upper and lower spinors are the real 
and imaginary parts of the function G (p, z), respectively. It is seen 
from the equation (9.85) that at Uo << moc2 the imaginary part of the 
function G (p, z) is small, therefore the magnitude of the upper spinor 
is always greater than the magnitude of the lower spinor. Nevertheless 
the difference between the wave function (9.84) and the wave function 
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of electron interacting with the uniform magnetic field results in the 
essential difference in the magnitude of the observable variables. Firstly, 
the non-zero value of the lower spinor results in the non-zero value of 
the electric polarization vector. Indeed, according to the definition of 
the electric polarization vector, we get 

hence, 
1 P 1 - Re (G) Im (G) . 

Secondly, the magnetic polarization vector is also changed 

hence, 
IMI - ( ~ e  ( G ) ) ~  - (1m ( G ) ) ~ .  

It is this difference in the magnitudes of the electric and magnetic 
polarization vectors, that results in the difference of the spectrum (9.87) 
from the spectrum of electron in the uniform magnetic field. 

9.7 Hyperfine structure of hydrogenic spectra: 
comparison with the experimental data 

In the previous chapter we have shown that the energy spectrum of 
electron in the Coulomb field includes the splitting of the states with the 
same value of the total angular momentum j and different values of the 
orbital angular momentum 1. This is the principle difference between the 
Dirac equation and equation (7.3). However, we have already discussed 
that the problem on the electron motion in the Coulomb field is not 
equivalent to the hydrogen atom problem, because the latter problem is 
the two-particle problem. The analysis of the different approximations 
of the two-particle problem, given in the previous chapters, has shown 
that the shift of the states with 1 = 0 exceeds the shift of the states with 
1 > 0, and the magnitude of the shift decreases with the increase of 1. 
Hence, the experimentally measured frequencies of transitions between 
the initial li = 0 and final lf > 0 states will be most strongly differ from 
those calculated for electron in the Coulomb field. On the other hand, 
the frequencies of transitions between the levels li > 0 and If > 0 may 
be much closer to the spectrum of the one-particle problem. 

The analysis of the two-particle problem for the equation (7.3) will 
be given in the next chapter. Here, we compare the spectra obtained 
from the solution of the Dirac equation and equation (7.3) for the 
problem on the electron motion in the Coulomb field. Let us denote 
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A E  = E$ - En?, where E!; is defined by the equation (8.49) and E,, is 
defined by the equation (6.132). It is convenient to express the shift A E  . 
in terms of the power series in the fine structure constant. The shifts in 
the energy of nSl12, nPl12, and nP3/2 states are given by 

where n = nr + 1 is the principle quantum number for the S states, and 
n = n, + 2 is the principle quantum number for the P states. 

It follows from the equations (9.88) that the first non-vanishing cor- 
rection in the expansions is proportional to a4(y,2 - 1). By taking 
into account the relation moc2a2 = 2 Ry, we can see that the first 
non-vanishing correction is proportional to z4a2/n3,  this is the typical 
dependency of the hyperfine shifts on the nucleus charge 2 ,  principle 
quantum number n,  and fine structure constant a. The nSllz and 
nP3p  levels move up and the nPl12 level moves down with respect to 
their position in the frames of the Dirac theory. This is in qualitative 
agreement with the experimental spectra. Notice, that in the next 
chapter, we shall see that the account for the reduced electron mass 
results in the upwards shift of all these levels. 

For the Lamb shift we obtain 

Accounting that the experimentally measured value of the electron 
magneton is satisfactory approximated by the formula ye = pe/pB M 

M (1 + a/27r), we get 
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The level shift due to the lowest order radiative corrections is given 
by PI: 

where the coefficients An, of the expansion in series on the powers 
of (Za)n Inm (Za)-' are the sums of the electron self-energy, vacuum 
polarization, and anomalous magnetic moment contributions. 

It is seen that the equation (9.89) differs from the equation (9.90) only 
in the value of the coefficients. 

Fig. 9.4, a shows the Lamb shift, calculated with the help of equa- 
tion (8.49), for the 2sl12 - 2plI2 (curve l )  and 3p312 - 3d3/2 (curve 2) 
levels, and the product AEn3 (curve 3) as functions of the principle 

Figure 9.4. (a)  The Lamb shift, calculated with the help of equation (8.49), for the 
2s1/2 - 2p112 (curve I )  and 3p3/2 - 3d3/2 (curve 2 )  levels, and the product AEn3 
(curve 3) as functions of the principle quantum number n. ( b )  The product AEn3 
as function of n 
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quantum number n. In Fig. 9.4, b the product AEn3 as function of n is 
shown in the magnified scale. It is seen that the leading term, in lowest 
order in Z a ,  in the expansions (9.88) makes the main contribution, 
because the product A E n 3  differs from unity on the value about 4 .  
for the shift of the 3p3/2 - 3d3/2 levels and about 2 .  for the shift of 
the 2sl I2  - 2plI2 levels. 

The agreement of the experimental and calculated data can be illus- 
trated with the help the results of the precision measurements [lo] of 
the frequencies of the - 8d3./2 and 12d512 - 12d312 transitions in 
hydrogen and deuterium. 

To simplify the theoretical calculations, it is convenient to rewrite the 
equation (8.49) in the following form 

By taking into account that 

for the position of the level in the frequency units we get 

(1=j3=1/2) - 2&cz2 m, - 
1  

Vnl 

+'" /r ( +  /"-) ' n+ 4) n+ 4 
(9.91) 

where we have accounted the correction associated with the finite nucleus 
mass m,. This correction results in the replacement of the electron 
mass me by the reduced mass m, = mem,/ (me + m,). The correction 
due to the finite nucleus mass has been calculated in the Chapter 3 for 
the case of the Schrodinger equation. The structure of the equation 
(8.35) is similar to the structure of the Schrodinger equation, therefore, 
it could be anticipated, that this specific correction will be the same. 
The detailed analysis of the corrections associated with nucleus motion 
will be given in the next chapter. 

Table 9.1 and Table 9.2 give the results of the experimental mea- 
surements, made by de Beauvoir, et al. [ lo] ,  for the frequencies of 
the 8(12)DJ-2SI l2  transitions in hydrogen and deuterium. These mea- 
surements enables us to determine the frequencies of the 8(12)DSl2- 
8 ( l 2 ) D S l 2  transitions. These figures are shown in bold face. The 
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Table 9.1. The frequency of 8 0 5  - 2Sl lz  transitions in hydrogen and deuterium [ lo]  
and comparison of experimental and theoretical data for 8D512 - 8D3/2 transitions 

Experiment  [ lo]  

Hydrogen, MHz Deuterium, MHz 

vo 770649000 770859000 
v(8D3/z - 2s1/2) - vo 504.4500(83) 195.7018(63) 
v(8Dsl2 - 2s1/2) - vo 561.5842(64) 252.8495(59) 
v(8Dslz - 8D3/2) 57.1342 57.1477 

Theory  

Table 9.2. The frequency of 1 2 D ~ - 2 S ~ / ~  transitions in hydrogen and deuterium [ lo]  
and comparison of experimental and theoretical data for 12D5/2 - 12D3/2 transitions 

Experiment  [lo] 

Hydrogen, MHz Deuterium, MHz 

vo 799191000 799409000 
~ ( 1 2 D 3 / 2  - 2&/z) - vo 710.4727(93) 168.0380(86) 
v(12Dslz - 251/2) - vo 727.4037(70) 184.9668(68) 
~ ( 1 2 D 5 / 2  - 1203/2)  16.931 16.9288 

Theory  

theoretical values of the transition frequencies are calculated with the 
help of the equation (9.91), where we have used the following values of 
the fundamental constants [9]: R,c = 3.289841960368. 1015 Hz, a = 
0.007297352533285885, m,/m, = 1836.152667, ye = 1.0011596521884. 
The results of the theoretical calculations are shown in the lower rows 
of the tables. 

It is seen that there is the difference between the experimentally mea- 
sured and theoretically calculated (with the help of the formula (9.91)) 
frequencies of transitions. However, the difference is about a few kHz, 
which is smaller than the uncertainty of the measurements. 



Chapter 10 

HYDROGEN ATOM 

10.1 Action principle 
The action is the additive function, therefore the action of an ensemble 

of particles is the sum of the actions (7.1) for the individual particles, 
where we should take into account that the field, that acts on each 
individual particle, is produced -by all other particles of ensemble 

+ ihv8, - S A ~  (r,) G,) (-ihvqa - %Ab (r,) q,) + ( C C 

The variation of action (10.1) with respect to * a  results in the equation, 
which is similar to the wave equation for an individual particle interact- 
ing with the external electromagnetic field: 

2 2 { ( 6  - a r )  - [(Pa - %Ab (r,)) + 
b(# a )  

+ m:c2 + 2rn,pn (ia,Eb (r,) - X , B  (r,)) q, = 0. (10.2) I1 
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The variation of action with respect to the field potentials results in the 
equations for the electromagnetic field potentials, in which the current 
density four vector is the sum of the current density four vectors of the 
individual particles: 

We have used the 
tions (10.3), (10.4): 

1 a2' Ap - -- = -471 pa (I, t ) .  
c2 at2 

a 

Lorentz gauge in derivation of the field equa- 

The components of the current density four vector, appearing in the 
equations (10.3), (10.4), are defined by the following equations 

(vG. . - G a ~ ~ a )  - c G a ~ b  (r, t )  t 
b(#a) I 

a - + ep. curl (9,~,9,) - i p a z  (9,aalya) , (10.6) 

The generalized momenta canonically conjugate to the fields A, G 
and 9 are given by the variational derivatives of the Lagrangian function 
L with respect to A, 5 and $, which we can read off from (10.1) as 

The Hamiltonian function is given by the sum of all canonical momenta, 
times the time-derivatives of the corresponding fields, minus the La- 
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grangian function 

Thus, the energy of ensemble of particles coupled by the electromagnetic 
field is given by 

b#b) 2 + 2 / %, [(-ihV - S A ~  (r,)) + mec2 i, dV,- 
2m, c I 

a , b  

To derive the equation (10.10) we have used the following vectorial 
equalities 

( ~ c p ) ~  = -cpAcp + div (cpVcp) , (10.11) 

1 a I aA 1 a2v 
- div cp- = --Vp+ -cp- div A = --(p - - -. (10.12) 
C (E) :E c at at C~ at2 

It is seen that the equation (10.10) has the structure similar to that of 
equation (4.51) for the non-relativistic spin-112 particle. The difference 
between these equations is in the additional terms in (10.10): 

The appearance of the generalized momentum lla in the equation (10.10) 
is quite natural, because the action (10.1) is the q~adrat ic  form of 
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the time derivative operator. In the steady-state case these additional 
terms are 

As the result, the equation (10.10) takes the relativistic invariant form, 
in contrast to the equation (4.51). 

10.2 Steady-state case 
The ensemble of the primary interest for us is the hydrogen atom, 

therefore, we assume that the ensemble consists of the two particles. In 
steady-state case the wave functions of particles are 

9, (r, t )  = 9, (r)  exp -2- . ( ,E:) 
According to the variational principle the energy functional has ex- 
tremum at the eigenstates of the particles of ensemble. Therefore, the 
main goal of our treatment is to find the extremal values of the energy 
functional (10.10). The energy of the ensemble is the sum of the kinetic 
energy of particles, the energy of the electromagnetic field produced by 
them, and the energy of their interaction. As we have discussed in the 
previous chapters, it is convenient to exclude the electromagnetic field 
variables from the energy functional, and then vary it with respect to 
the wave functions of particles. The field variables are excluded with 
the help of the solutions of the equations for the electromagnetic field 
potentials (10.3) and (10.4). The field energy is the sum of energies 
of the electromagnetic fields produced by each particle, and the energy 
of their interaction, which depends on the mutual position of particles. 
Notice, that the energy of the field produced by a particle is accounted 
in its rest energy, therefore for the field energy in the stead-state case 
we get 

where yb (ra) and Ab (r,) are the field potentials produced by the 
particle b = (n, e) at the position of particle a = (e, n). To derive the 
equation (10.13) we havc used thc equation (10.11) and the following 
formula 

curl A . curl A = div [A curl A] + A curl cud A. 
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By substituting the equations (10.6), (10.7) into the equation (10.13) we 
get for E f  the following equation 

2 
- A J G ~ A : Y ~  d& - - 

2mec2 
1 l n n : c n d v n +  

2m,c2 

+ I'. 1 G e z e ~ ,  ( r e )  Y e  dVe + I 3  ( )  Y d (10.14) 
2 2 

Thus, the total energy of the atom is 

E=-- 2mec2 Ee / G e ( E e - q e ~ n ) * e d V e + ~ ~  En J *n ( E n  - q n ~ e )  *n d K +  

1 
Ge (p: + m:e2) Y e  dV, + - Gn (p: + rnie2) Y n  dVn- 

2% 

The total energy of the atom is the sum of the energies of the electron 
and nucleus E = Ee + En,  therefore we can rewrite the equation (10.15) 
in the following form 
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By comparing the last equation with the equation (4.55), we can see 
that the equation (10.16) has the relativistic invariant form and include 
additional terms describing the interaction of the electron and nucleus 
electric polarization vectors with the electric field produced by the 
particle of the opposite charge 

The variation of the equation (10.16) with respect to the functions 
Ge and Gn results in the set of the equations for the wave functions 9, 
and Qn. The solution of these equations together with the equations 
for the field potentials enable us to determine the energy eigenvalues 
E$ and eigenfunctions 9gi. For example, in the limit of free particles 
Ire - rnl --+ ca, we get E, = Jh2k:c2 + m2c4. However, in the case of 
interacting particles we must take into account that the field potentials 
are the functionals of the wave functions of particles. These functionals 
are defined by the equations (9.3) and (9.4). As already mentioned, it 
is more convenient to exclude the field potentials from the functional 
(10.16) and then vary the obtained functional over the product of the 
wave functions of the electron and nucleus. By substituting the equations 
(9.3) and (9.4) into the equation (10.16), we get 

where r = Irenl, and, similar to section 4.3, vb is defined by 

The variation of the equation (10.17) with respect to the function 
GeGn results in the equation for the wave function Qe9,, the Hamilto- 
nian of which coincides with the expression in the braces of (10.17). Let 
us discuss the physical meaning of each term in the Hamiltonian. 
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(1) It is well known that the binding energy in hydrogen atom is much 
smaller than the rest energy of electron and proton. In its turn, mec2 <C 
<< m,c2. Hence, Ee << En and En = mnc2. By taking into account 
these inequalities, the first six terms of the equation (10.17), in the limit 
of the infinitely heavy nucleus, can be transformed to the following form 

Thus, the first six terms of the Hamiltonian are the kinetic energy of 
the electron and nucleus and the potential energy of their Coulomb 
interaction. In the limit of the infinitely heavy nucleus these terms 
coincide with the spin independent part of the Hamiltonian for electron 
moving in the Coulomb field. 

(2) The next two terms 

describe the interaction of the electric polarization vector of a particle 
with the electric field produced by the particle of the opposite charge. 

(3) In the section 4.3 we have already met the following t,erm 

With the help of transformation 

and gauge condition 

this term is transformed to the following form 
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where 
h1e = [renpe] , & = [rnepn] . (10.22) 

The last item in the equation (10.21) is due to the fact that the operators 
1, and 1, are the non-commutative operators (as we mentioned in the 
section 4.3). The Hamiltonian (10.21) describes the interaction of the 
orbital angular momenta of the particles. 

(4) The next two terms 

describe the spin-orbital interaction. 
(5) The term 

3(aeren) (anren) - aeanr2 
HPP = PePn (10.24) 

7-5 

and 

describe the interaction of the electric and magnetic polarization vectors 
of particles. 

It  is seen that the interactions, appearing in the Hamiltonian Hc and 
HPE, depend on the distance as l / r  and l / r2 .  The rest interactions 
depend on the distance as l/r3. In the Chapter 4 we have shown that 
the corrections, contributed by the interactions proportional to l / r3 ,  are 
about Ry . a2me/mn. 

We have not discussed the terms contributing the corrections of the 
highest order in a. In the equation (10.17) these terms are denoted 
as Hh. They are 

10.3 Integrals of motion 
By varying the equation (10.17) with respect to k, (re) k, (r,) we get 

the following equation 

(Hc + HPE + HU + His + HPP + HMM) Q e  ( r e )  Qn (rn) = 0, (10.27) 

where we have omitted Hh. 
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It is convenient to introduce the relative position radius vector r and 
the center-of-mass radius vector R: 

In this case, the orbital angular momentum operator is 

where 

The total angular momentum operator 

is the sum of the orbital momentum operator and spin 

1 
s = - ( X e + C  ) 

2 n .  

By using the definitions (10.28), we obtain 

In the section 4.3 we have shown that the total angular momentum 
operator commutes with part of the terms of the Hamiltonian of equa- 
tion (10.27). This part is Hc + Hll + Hl, + H M M .  It can be easily shown 
that the rest two terms of the Hamiltonian of equation (10.27) commute 
also with the operator J. Indeed, it was shown above that the operator 

f i  
[r P] + - X, commutes with the product a,E (r) . Hence, 

2 

[J, HPE] = 0. 

By taking into account the commutation relations for the operators C  
and a: 

[Xi, a!jl = 2ieijkak, 

we get 

Thus, the operators of the orbital moinentum L and spin S do not 
separately commute with the Hamiltonian of the equation (10.27). The 
conservative variable is the total angular momentum: 
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The Hamiltonian of the equation (10.27) depends only on the radius 
vector r = re - rn,  hence, the operator of the total momentum of atom, 
P = pe + p,, commutes with the Hamiltonian 

Hence, the atomic wave functions are the eigenfunctions of the atomic 
total momentum, total angular momentum, and its projection. 

10.4 Angular dependency of hydrogen atom wave 
functions 

In the case of the motionless atom the equation (10.27) takes the form 

where 

where we have used the definitions introduced in the section 4: 

ye(,) is the gyromagnetic ratio of the electron (nucleus), the Bohr 
magneton p~ and nuclear magneton p~ are defined by the well known 
equations: 

We have divided the Hamiltonian of the equation (10.35) into the 
four items. The Hamiltonian Hc is the operator of the kinetic energy 
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and the potential energy of the Coulomb interaction. The Hamiltonian 
H p E  describes the interaction of the electric polarization vectors of 
particles with the electric field produced by the second particle. The 
Hamiltonian H H F  describes the hyperfine interactions appropriate to the 
non-relativistic spin-112 particle. These interactions were investigated 
in the Chapter 4. The Hamiltonian H p p  describes the interaction of 
the electric polarization vectors of particles. As already mentioned, the 
first two terms in the equation (10.35) include the interaction depending 
on the distance as llr and l / r2 ,  the second two terms include the 
interaction depending on distance as l/r3. The Hamiltonian Hc does 
not depend on the spin operators. The Hamiltonian H H F  depends on 

the diagonal spin operator X, = ( ) The Hamiltonians Hp* 

and H p p  depend on the antidiagonal operator a, = (:, :). These 

specific features explain the convenience of dividing the kamilt6nian into 
the four groups. 

The wave function of the equation (10.35) is the direct product of the 
bispinor wave functions 

The Hamiltonian of the equation (10.35) depends only on the radius 
vector r, hence, in complete analogy with the equation (4.87), for the 
products of spinors we have 

( where the second order spinors are defined by the equations (4.84)- 
(4.88). 

The matrix of the space inversion transformation is S p  = XPy4 (see 
Chapter 7). Hence, the atomic wave function is transformed under space 
inversion in the following way 

(8) Thus, by taking into account the parity properties of the spinors Cljlm, 
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the general solution of equation (9.33) has the following form 

In complete analogy with the discussion given in section 8.2, the second 
linear independent solution is 

In the Chapter 4 the angular matrix elements were obtained for all 
items of the Hamiltonian H H F .  By using the equations (4.84) and (4.88), 
we can easily calculate the matrix elements of the Hamiltonian HPE. 
The non-zero matrix elements are 

fl$G-l,m (one)  flfj-,,, sin t9 d0 dip = -i 

The matrix elements (10.43) and matrix elements obtained in the Chap- 
ter 4 enable us to write down now the equations for the radial wave 
functions f (n) ( r )  and g(n) ( r ) .  

10.5 Equations for radial wave functions 
It is convenient to introduce the operator L: 

Substituting the equations (10.42) into the equation (10.35) and using 
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the angular matrix elements, we get the following equations for the radial 
wave functions 

The labeled operators L, appearing in the equation (10.44), are 

2E,En Za Z2a2 1 
L ~ = A + - -  

Efic r 

- m 2 c 4 ~ ,  + mic", - E,EnE , (10.45) 
E Ti2 c2 

where o,,b are the Pauli matrices. 
The energy parameters in the equations (10.44)-(10.48) are defined 

by the conventional equations: E = E, + En and E, = m,c2 - AEe, 
En = m,c2 - AE,, where AE, is the binding energy. In the case of the 
motionless atom, p, + p, = 0, we have AE,/AE, - me/mn << 1. It 
can be easily shown, with the help of the last relationship, that 

where m, = m,mn/ (me + m,) is the reduced electron mass. 
Let us start with the zero order approximation. In the zero order 

approximation we neglect the interactions depending on the distance 
as l / r3 .  As we have seen in the previous chapters, in the zero order 
approximation, in principle, it is possible to find the exact solution of 
the equations. The equations (10.44) are the coupled set of equations 

(2,3) (2,3). We write down for the eight radial functions f14, go , g*l , gh1 
the equations for the radial functions of the spinors wl and w2, because 
the remaining equations have the same structure. By substituting the 
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equations (10.42) into the equations (10.44) and accounting for the 
approximations (10.49), we get 

It  becomes clear, if we compare the obtained equations with the equa- 
tions (8.37), (8.38), that the solution of the above eight coupled equa- 
tions should be taken in the form 

fi (r) = foiG (v, r) , g!) (r) = g$?G (v, r) , (10.54) 

where 
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here F (p, q, z )  is the confluent hypergeometric function. The condi- 
tion of the existence of the non-trivial solutions of the set of algebraie 
equations for the constants foi, &% provides the equation for the free 
parameter v. 

10.6 Perturbationtheory 
Up to now, we have taken into account the interactions, that decrease 

with the distance not faster than l/r2. The contributions of the terms 
of the Hamiltonian, depending on the distance as l /r3,  are relatively 
small. Indeed, for the ratio of the mean value of the kinetic energy, 
(K) = ((h2/(2m,)) A), to the mean value of (HHF + HPP), we get 

Hence, to account the interactions, depending on the distance as 1/r3, 
we can use the perturbation theory. 

The general principles of constructing of the perturbation theory series 
for the equation (7.3) are the same as for any other quantum mechanical 
equation. Let we know the solution of the eigenvalue problem 

where Ho is the Hamiltonian of the equation (7.3) or the Hamiltonian 
Hc + IIpE of the equation (10.35). We would like to calculate the 
approximated wave functions and energy eigenvalues of the equation 

(Ho(E) + 6H) Q (r) = 0. (10.57) 

Let us express the wave function of the equation (10.57) in terms of the 
eigenfunctions of the equation (10.56) 

By substituting the wave function (10.58) into the equation (10.57), we 
get 

... . . - 
(10.59) 

By varying the energy functional of the equation (10.57) in the space 
of the wave functions (10.58), we can, in principle, to get the solutions 
of the equation (10.57) at any arbitrary ratio of Ho and SH.  However, 
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when the corrections are small, i.e. IE - E,I << En, then, by applying 
the normalization condition (8.20), we get 

where 6Hnm = % , 6 ~ q ,  dV. If the diagonal elements of the Hamilto- 
nian SH are only non-zero, 6H,, = 6Hn,6,,, then the corrected energy 
eigenvalue Ek is determined by 

If the non-diagonal elements of the Hamiltonian 6H are non-zero, then, 
according to (10.60), we obtain the set of the coupled equations. For 
example, if the Hamiltonian 6H couples the two neighboring levels, i.e. 
6H,,,+1 # 0, the energy distance between which is comparable with the 
mean value of 6H, then the set of equations (10.60) is 

The solutions of these equations are 

If the corrections due to the Hamiltonian 6H are small in comparison 
with the energy distance between the coupling levels, i.e. 16H,,I << 
<< I En - 1 ,  then we can use the following approximated form of the 
solutions (10.63) 

It is seen, that the corrections, due to the cross-interaction of the two 
levels, move the levels in the opposite sides. The state of the corrected 
energy E(') is the superposition of%he non-perturbed states n and n+ 1. 
According to  the equations (10.62), for the amplitude of the impurity 
state n + 1 we get 
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Thus, if the non-diagonal elements of the Hamiltonian 6H are small in 
comparison with the energy distance between the coupling levels, then 
the amplitude of the impurity state is small. 

Due to the cumbersome form of appropriate equations, it is impossible 
here to write down the corrections, associated with the Hamiltonian 
HHF + HPP. Nevertheless, the numerical calculations, based on the 
application of the above discussed algorithm, result in the hydrogenic 
spectra, which are in the reasonable good coincidence with the experi- 
mental data. 

10.7 Thecaseofj=O 
In the case of j = 0 the number of the equations (10.50)-(10.53) is 

( halved, because instead of the four linear independent spinors 0,;; we 
have only two. In this case, the equations (10.42) become 

The second linear independent solution is 

If the wave function is given by the equation (10.64), then the param: 
eter u in the equation (10.55) is 

where 

71 = -1 + Z2a2 + 1-2 0 ye--+-/,- " (: mn 

The radial wave functions (10.54), (10.55) satisfy the boundary con- 
ditions at r = 0 and r + ca, if the following condition holds 
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where n, is the non-negative integer, which is called by the radial 
quantum number. The last equation results in the following equation 
for the energy spectrum 

Hence, the electron energy spectrum, A E  = m,c2 - E, , is defined by 

The eigenfunctions, related to the eigenvalues (10.67), are 

where G (vi , r)  is defined by the equation (10.55), and 

If the wave function is given by the equation (10.65), then we again 
obtain the equation (10.67) for the energy spectrum, and explicit form 
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of the wave functions 

Similar to the solutions of the problem on the electron motion in the 
Coulomb field, the solutions (10.69)-(10.72) are twice degenerated with 
the respect to the pairs of the particles and antiparticles. 

10.8 Internalparity 
The Dirac adjoint function to the wave function (10.41) is $ = 

= (w: , - W; , -w:, w:) , then, -by taking into account the inequalities 
<1,2 1, we get q1,2 ,7 ,891 ,2 ,7 ,8  > 0 and $3,4,5,6q3,4,5,6 < 0. In the case 
of the electron motion in the Coulomb field, the solutions, corresponding 
to the electron, have been chosen on the basis of the normalization 
condition, it reads for electron solutions as > 0. The solutions 
of the two-particle problem (10.44) with $XP > 0 correspond to the 
pair of particles or antiparticles. If $q < 0, then the two-particle 
wave function is the product of the one-particle wave functions, one of 
which is particle wave function and another is antiparticle ones. The 

( transformation 'particle-antiparticle' is realized by the matrices ?r,f) and 

?g). The action of these matrices on the two-particle wave function is 
defined by 

It is seen, that there are the following relationships between the wave 
functions, corresponding to the same energy eigenvalue, 
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Thus, the matrices 7f) and 7p) transform the wave functions (10.69), 
(10.70) to the same final wave functions, however, the sign of the final 
wave functions is the same for the wave functions of the odd indexes, 
and sign is opposite for the wave functions of the even indexes. 

Let us introduce the operator of the internal parity 

This operator transforms each particle wave function into the antipar- 
ticle wave function. The action of this operator on the wave func- 
tion (10.41) is defined by 

By applying this operator to the wave functions (10.69)-(10.72), we get 

It should be noted, that the operators and yp) commute separately 
with the Hamiltonian of the two-particle problem. The operator r 5  

commutes with the two-particle Hamiltonian, too. Hence, the obtained 
symmetry properties remain invariable, even in the presence of the ex- 
ternal electromagnetic field. This is an extremely important statement. 
Indeed, it is seen from the equations (10.66), (10.67), that the energy 
spectra of the two-particle systems, having the different internal symme- 
try, are different. However, the external electromagnetic field could not 
change the internal symmetry of the two-particle system, therefore these 
two different energy spectra correspond to the two different physical 
objects. 

We have shown in the Chapter 7, that the matrix 7'5 is the matrix 
of the CPT-transformation, hence, the internal symmetry defines the 
parity with respect to the CPT-transformation. The difference in the 
internal structure of the two-particle system of the different internal 
parity can be illustrated by the @lowing way. Let us determine the 
radial projections of the electric polarization vectors 

in the states, described by the wave functions (10.69) and (10.72). They 
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are 

where e = rlr. In the two-particle states of the even internal parity the 
directions of the electric polarization vectors of the constituent particles 
coincide, and in the states of the odd internal parity the directions of 
the electric polarization vectors of the constituent particles are opposite. 

It is seen that the solutions (10.69) and (10.71) correspond to the nS 
states, and solutions (10.70) and (10.72) correspond to the nP states 
of the two-particle problem. In the nS states the vector d, is directed 
oppositely to the direction of the intra-atomic field, in the nP states it is 
directed along the intra-atomic field. In the atomic systems of the even 
internal parity the vector d, is-paral-lel to the vector d,, in the atomic 
systems of the odd internal parity the vector d, is antiparallel to the 
vector d,. In the two-particle systems, for which Ip,I >> Ipnl (like in 
hydrogen atom), the nS states move upward, and the nP states move 
downward. The difference in the value of shift of the nS states for the 
atomic systems of the different internal parity in given by 

for the nP states we have 
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where M = me +mn, n = n, + 1 is the principle quantum number for the 
n S  states, and n = n, + 2 is the principle quantum number for the n P -  
states. By taking into account, that mec2a2 = 2Ry, it can be easily seen, 
that the leading term of expansion, lowest order in a, is proportional to 
( ~ ~ a ~ m , / ( n ~ ~ ) )  Ry. 

The position of the energy levels, defined by the equation (10.68), de- 
pends on the ratio me/mn. Let us estimate the shifts of the levels (10.68) 
with respect to the Dirac's spectrum (6.133) in the limit of the infinitely 
heavy nucleus m, + oo. For the even atomic systems we get 

For the odd atomic systems we have 

Taking in mind that the nucleus magnetic moment is equal to pn = 
= ynp,v, the ratio me/mn was kept non-zero only in the terms propor- 
tional to p e f  p,. Comparing the last equations with the equations (9.88), 
we can see that the account for the nucleus spin results, in the lowest 
order approximation, in the replacement of the electron magnetic mo- 
ment by the summary magnetic moment lpel + lpnl for the even atomic 
systems, and by the difference magnetic moment [pel - lpnl for the odd 
atomic systems. 

Thus, the analysis presented here has shown that the choice between 
the two wave functions, corresponding the same energy eigenvalue, is 
determined by the internal structure of the atomic system, whether it 
consists of the two particles or particle-antiparticle pair. The choice of 
the appropriate spectral series, among two alternative, is unambiguously 
prescribed by the internal parity of the atomic system. 
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