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Preface

There are a lot of excellent books on atomic spectroscopy today, but,
hopefully, the distinctive feature of this book is its generality. We are
not involved in the discussion of some specific mechanisms of formation
of complex structure of atomic spectra, we are not trying to give an
overview of different methods and models that are used to describe the
spectra and to get a reasonable coincidence of calculated and measured
data. We have tried to discuss comprehensively the general approach
to the theory of atomic spectra, based on the use of the Lagrangian
canonical formalism. The Lagrangian formalism enables us to easily
generalize any Hamiltonian for electron motion in the external field to
the Hamiltonian of many-electron problem, as a result the specific and
common features of these two problems become more evident. The
non-relativistic or relativistic, spin or spinless particle approximations
can be used as a starting point in the general approach. All these
approximations are analyzed and compared. This generality is helpful
to keep the important points from technicalities of specific theories. The
specific examples, that are used to illustrate the general approach, are
chosen from contemporary atomic spectroscopy and light-matter inter-
action physics (trapped atom, mesoatom, high-precision measurements
of electron anomalous magnetic moment and hydrogenic spectra, electric
polarization vector of nucleons, etc.).

The book consists of two main parts. The first part deals with the
hyperfine structure associated with the finite mass of nucleus, its orbital
motion, and spin-spin interaction. The second part of the book deals
mainly with the Lamb shift. The specific feature is that the theory of
Lamb shift is based on the use of quantum mechanics. The obtained
equation for hydrogenic spectrum has a very simple and compact form,
as a result the physics of Lamb shift formation can be easily interpreted.



xii Preface

Notice, that usually the students of atomic spectroscopy theory are
not deeply familiar with the methods of quantum electrodynamics the-
ory, which is traditionally used to explain the physics of Lamb shift.
Therefore the proposed approach makes the theory accessible for a wide
range of specialists and students, who are familiar with the quantum
mechanics and classical electrodynamics.

The basic equations and principles of quantum mechanics are briefly
discussed in the book, therefore it can be used as a self-consistent
textbook providing enough material for half-year or one-year course for
graduate students: “Introduction into atomic spectroscopy”, “Hyperfine
structure of atomic spectra”, etc.
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Chapter 1

INTRODUCTION

The great number of brilliant experiments, that enable to enhance
significantly the precision of the optical spectrum measurements, has
been made in the last few decades. The information obtained from
the spectra processing reduces significantly the uncertainties of the
material constants, characterizing the material properties of the ele-
mentary particles like a charge, mass, magnitude of magnetic moment,
etc. Simultaneously the tremendous successes have been achieved in
development of non-optical methods of material constant measurements.
The results of the precision measurements provide the powerful stimulus
for researchers to verify the correctness of our description of particle
interactions with electromagnetic field. Indeed, the obtained informa-
tion enables to reduce significantly the uncertainty of the fundamental
constants, that are not only of interest for some specific fields of research,
but play the role of measure of correctness and over-all consistency of
the basic theories. The speed of light ¢ determines the ratio between
the space and temporal scales. The Planck constant /i determines the
relationships between the components of the coordinate and momentum
four-vectors. The elementary charge e is also the fundamental constant,
because, in contrast to the other material constants, it has the same value
for all elementary particles at least with the state-of-the-art accuracy.
The combination of these three fundamental constants produces the fine
structure constant o = e?/(hc), which plays the important role in the
modern theory of atomic spectra.

The achieved progress in the precision measurements of atomic spectra
stimulates the interest to the fundamentals of the quantum mechanic
theory. Indeed it is well known that the quantum mechanics itself is
originated from the problem of the explanation of the nature of spectral
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lines. The quantization rules proposed by Niels Bohr in 1913 and later
generalized by Arnold Sommerfeld have worked well in explanation of
atomic spectra. The decisive role in the formation of the particle wave
mechanics plays the research of Louis de Broglie [1]. In the famous
paper of Erwin Schrédinger [2] the mathematical basis of the quantum
mechanics was grounded. The application of Schréodinger equation to
the problem on electron motion in the Coulomb field provided the
first quantum mechanical model for the hydrogen atom. The obtained
formula for the hydrogenic spectra was in good agreement with the ex-
perimentally measured spectral lines of hydrogen atom and alkali atoms
(the Lyman, Balmer, etc. series). The presence of the doublet lines
in atomic spectra and splitting of atomic energy levels by the external
magnetic field gave birth to the idea on the intrinsic angular momentum
of electron. The magnitude of Zeeman splitting allowed then to estimate
the magnitude of the electron magnetic moment. The apparatus of
the matrix quantum mechanics for description of the intrinsic angular
momentum was developed by Wolfgang Pauli [3]. The revolutionary step
towards the development of the theory, giving the detailed description
of the atomic spectra, was made by Paul Dirac [4] who proposed the
quantum mechanical equation describing the intrinsic angular momen-
tum of electron and its magnetic moment. The magnitude of the electron
magnetic moment predicted by Dirac equation ug = efi/(2mec) was in
good agreement with the experimental data. Despite its long history
the theory of the hydrogenic spectra is still under development. The
successes of this theory and its present-day state are discussed in the
textbooks and monographes [5-8] and comprehensive review papers [9-
12].

Let us mention briefly some last achievements in the spectroscopy of
elementary particles and atoms.

1.1  Experiments with single particle in Penning
trap

The most accurate measurements of the magnitude of electron mag-
netic moment were made in experiments with the single electron placed
in the Penning trap at ultrahigh vacuum conditions and temperature
of 4° K [15, 16]. The trap is formed by the uniform magnetic field and
weak quadrupole electric fleld. The electron evolves into the circular
quantized motion in the plane perpendicular to the magnetic field. The
quadrupole electric field forms the potential well confining the electron
motion along the magnetic field direction. The configuration of the
Penning trap enables to calculate the energy spectrum of the electron
translational motion. The energy-level diagram includes the transversal
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cyclotron motion levels and longitudinal motion sublevels. The energy
distance between the longitudinal sublevels is much smaller than the
distance between the transversal levels. The electron cooling technique is
used to shrink the radius of the orbital motion. In result the total motion
occupies the very small spatial volume, where the profile of electric field
is most closely coincided with the ideal model of harmonic potential well
and the magnetic field is most uniform. In such conditions the electron
is very weakly coupled with its environment and the electron lifetime
in the trap is about ten months. Thus, following by H.G. Dehmelt,
such a system may be called a “geonium atom”. In addition to the
translational degrees of freedom the electron possesses the spin. The
spin precession around the magnetic field results in the appearance of
the spin precession frequency in the spectrum of geonium atom. The
accurate measurements of spin precession frequency enables to determine
precisely the magnitude of the electron magnetic moment.
The Hamiltonian of electron in the Penning trap is

1

H= 2me

(p—%A>2—,ucBo—|—U(p,z), (1.1)

where po is the electron magnetic moment, By is the magnetic field of
the trap, and U (p, z) is the potential well due to the quadrupole electric
field. The vector potential of the uniform magnetic field is A = [Bgr} /2,
and the Hamiltonian (1.1) becomes

e’B,

2 2
H=2—+U(p2)+——%p+ (uplz + |l o) B, (1.2)
2me, 8mec

where up is the Bohr magneton, which is the magnitude of the electron
magnetic moment in the Dirac theory,

_ lelh
T 2mec

(B (1.3)
As far as the potential well of the trap is axially symmetric then the
projections of the orbital momentum [, and spin s, = 0,/2 are the
integrals of motion. Thus the eigenfunctions of the Hamiltonian (1.2)
are simultaneously the eigenfunctions of the operators [, and ¢,. Hence,
if the electron magnetic moment coincides with the Bohr magneton,
then the energy eigenvalues depend only on the sum m + ¢, where
m is the eigenvalue of the angular momentum projection operator [,
and o = %1 is eigenvalue of the operator o,. We can see that the
energy eigenvalues of the states characterized by the quantum numbers
(m=my, ¢ =+1)and (m = mg, 0 = —1) will coincide in the case when
m1 + 1 = mg — 1. If the magnitude of the electron magnetic moment
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differs from pg, then the energy eigenvalues of the states (my, o = +1)
and (mg =my + 2, 0 = —1) will be different. The energy difference is

AE =2(|p| - pB) Bo. (1.4)

The measurements the energy difference (1.4) enable to determine the
magnitude of the electron magnetic moment.

The values reported by Van Dyck et.al. [17] for electron . and
positron p, magnetic moments are

el /B = 1.0011596521884(43),
lip| /B = 1.0011596521879(43).

To reduce the uncertainties due to environment the special trap was
constructed by Van Dyck et.al. [18]. These authors give the mean value
of the 14 runs for the electron magnetic moment 18]

|ttel /1B = 1.0011596521855(40). (1.5)

By assuming that the CPT invariance holds for the electron-positron
system the weighted mean of the data for both the electron and positron
was proposed by Mohr and Taylor [9] as single experimental value

ltep] /1B = 1.0011596521883(42).

A geonium atom can be also formed with the proton. The comparison
of the cyclotron frequency of proton and electron enables to measure
accurately the ratio of proton M, and electron m, masses. The value of
this ratio reported by Van Dyck et al. [19] is

M,/me = 1836.1526670(39). (1.6)

By placing the fully ionized carbon 2C%* in the Penning trap Farnham
et al. [20] have measured the ratio the ratio of carbon to electron mass

61,
A—/j—(mc—ﬂ) = 0.00027436518589(58).

1.2  Spectroscopy of hydrogenlike atoms

Recently there has been a drastic increase in the accuracy of mea-
surements of transition frequencies in hydrogen and hydrogenlike ions.
This progress is due to the development of the new spectroscopic meth-
ods. The interferometric methods were superseded by the absolute
frequency measurement methods. The frequency of 15 — 2S5 transition
in hydrogen was measured with the relative uncertainty of 2 - 10714
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[21]. The interferometric methods of the frequency measurements are
based on the comparison of the measured frequency with the frequency
of interferometer modes. For example the laser cavity can play the
role of the interferometer. The intermode frequency of interferometer is
inversely proportional to the distance between the interferometer mir-
rors. However, the vibrations, thermal fluctuations, and other technical
noises result in the fluctuations of the interferometer length. The various
methods applied to compensate the interferometer length fluctuations
enable to get the relative uncertainty up to 1071°-10!. In spite of the
fact that the idea of the new methods was proposed in the early works
on the laser spectroscopy they were realized only when the femtosecond
laser systems were developed. The spectrum of the femtosecond laser
pulse, of a few optical cycles temporal width, is the frequency comb
which spreads from the radio-frequency spectrum up to near ultraviolet.
The intermode frequency of the comb is stabilized by the radio-frequency
methods with the frequency of harmonics of the cesium atomic clock.
The fluctuations of the comb frequencies are traced by heterodyne
methods in the radio-frequency spectrum. As a result the measured
frequency is almost directly compared with the frequency of the cesium
atomic clock. The result of the most accurate measurements made by the
group at the Max Plank Institute fur Quantenoptik (MPQ) in Garching,
Germany [21] for the frequency of 1.5 — 25 transition in hydrogen is

V1s—-25 = 2466061413 187 103 (46) Hz. (1.7)

The frequency of some other transitions in hydrogen and deuterium
was measured. The precision of frequency measurements for transitions
including the high-lying levels is lower because the natural line-width of
the high-lying states exceeds significantly the line-width of the 25 state.
Table 1.1 shows the frequency of (25,5 — 85,8D,,12D;) transitions in
hydrogen and deuterium made by the group at the Laboratoire Kastler-
Brossel, Ecole Normale Superieure, et Universite Pierre et Marie Curie,

Table 1.1. The frequency of transitions in hydrogen and deuterium [10]

Frequency, MHz

Transition

Hydrogen Deuterium
25172 - 8812 770649350.0120(86) 770859041.2457(69)
28172 — 8D3/2 770649504.4500(83) 770859195.7018(63)
28172 — 8Ds/2 770649561.5842(64) 770859252.8495(59)
28172 ~ 12Dg;2 799191710.4727(93) 799409168.0380(86)
2812 ~ 12D5/2 799191727.4037(70) 799409184.9668(68)
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Paris, France [10]. It is seen that the accuracy of measurements is about
10 kHz.

The detailed discussion and comparison of results of different mea-
surements is given in [9, 10, 12, 14]. The integral results for low-lying
levels of hydrogen atom are combined in schematic energy-level diagram
shown in Fig. 1.1.

F=1
24 MHz
9910 MHz F =0
25— = {658 M Fe1
F =0 gp, 7 O M 50 n1p,
F=0
2466 THz
F=1
1S, /2——@:1420 MHz
F=0
8173 MHz

R Position of 18, , from Dirac theory
Figure 1.1.  Schematic energy-level diagram for low-lying hydrogen states

In the cited above researches the Doppler-free two-photon spec-
troscopy method was used. This method enables to measure the fre-
quency of the electric dipole forbidden transitions nS < n’S and
nS < n'D. This method was applied earlier to measure the frequency
of 1§ — 25 transition in muonium (pTe™ atom) [22]

V1§—28 (;ﬁe‘) = 2455529002(57) MHz
and positronium [23]
v1s—2s (eTe™) = 1233607216.4(3.2) MHz.
The adjustment of the experimental data for the transition frequencies
in hydrogenlike atoms with the data obtained by other physical methods

provides the self-consistent values of fundamental constants and material
constants of elementary particles.
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1.3 Experiments on search for electric dipole
moment of elementary particles and atoms

There is the following relation between the electron magnetic mo-
ment m and its spin o
m = {0, (1.8)

where p is magnitude of the electron magnetic moment discussed above.
The same relation holds for other spin-1/2 particles. The proportionality
of the particle magnetic moment to its spin is due to the fact that the
spin o is the intrinsic angular momentum of the particle, i.e. it is the
only preferential vector in the particle rest frame. If a particle possesses
the electric dipole moment (EDM), then the same arguments require
that the EDM should be related with the spin operator. The simplest
possible relation is

d = do. (1.9)

The vectors in both sides of the equation (1.8) have the same transfor-
mation properties. Indeed, the magnetic moment and spin are invariant
with respect to the space inversion, because both of them are axial
vectors according to their nature. Contrary the vectors in the left-hand-
side and right-hand side of the equation (1.9) differ in their transforma-
tion properties. The vector of dipole moment d changes sign at space
inversion while the spin, being the angular momentum operator, remains
invariable. Further, at the time reversal transformation the angular
momentum (defined in the classical mechanics as m [rv])) changes sign
while the dipole moment remains invariable. Thus the constant d in
equation (1.9) may be equal only zero, if the particle is described by an
equation which is invariant with respect to the space inversion and time
reversal. The equation (1.9) holds only in the case when the symmetry
with respect to the space inversion (P) and time reversal (T') is violated.
Indeed if we add the term —dE to the Hamiltonian (1.1) then the
equation for the spinor wave function ¢ = (¥1,%2) becomes P and T
non-invariant.

The violation of the space inversion symmetry in the weak interactions
[24] stimulated interest to the problem of EDM. However, the violation
the P and charge conjugation (C) symmetry in weak interactions does
not mean the violation of symmetry with respect to the combined CP
transformation. Landau [25] pointed out that for existence of the electric
dipole moment of elementary particles it is not sufficient the breakdown
of P and C symmetry in separate. The violation of the combined C'P
symmetry is required. After the discovering of the C'P violation in the
decay of K meson [26] the interests to the experiments on search of EDM
of elementary particles and atoms has significantly enhanced [27, 28].
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The leading place among the experiments on the measurements of the
electric dipole moment of the elementary particles takes the experiments
on neutron EDM. The main idea of the experiments proposed by Smith,
Purcell, and Ramsey work [29] consists in the measurement of the
neutron spin precession frequency in parallel homogeneous magnetic and
electric fields. Indeed if the equation (1.9) holds then the neutron moving
in the magnetic Bg and electric Eg fields will precess at frequency

Q4 = 2|uBo + dEo| /R, (1.10)

when the direction of electric and magnetic fields coincides. The rever-
sion of the electric field will result in the precession frequency

Q_ = 2|uBo — dEy| /. (1.11)

The measurements of the difference between the frequency (1.10)
and (1.11)
AQ=Q, — Q_ = 4dEy/k (1.12)

enable to determine the magnitude of the neutron EDM d.
The upper limit for the neutron EDM is estimated now [27, 28, 30] as

dn/e <6.3- 10726 cm.

Recently the international collaboration at Paul Scherrer Institute,
Switzerland has announced the program on the improved measurement
of the electric dipole moment of the neutron [31]. It is planned to get a
sensitivity of

dn/e~2-10728 cm.

It should be noted that the mechanism of the elementary particle
EDM based on the violation of CP and T invariance (see (1.9)) is not
the only proposed mechanism. The neutron scattering by electric field
was studied in the classical paper of Schwinger [32]. He proposed the
mechanism based on the interaction of the magnetic moment of moving
neutron with the electric field of the atom. In this case the equation for d
is dy, = (1/mc) [op], the scattering of neutron is due to the spin-orbital
interaction [32-34]. The mechanism of the induced neutron EDM, based
on the use of the interaction Hamiltonian of the type Hiy, = —agE?/2,
was considered in the series of papers [35-39]. The induced EDM is
proportional to the strength of the electric field.

The EDM of charged particles can be measured in experiments where
the neutral atom interacts with the superposition of magnetic and clec-
tric fields. However as far as the neutral atom, in contrast to charged
particle, can be infinitely long in the region of space in which the electric
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field is non-zero, it should mean that the integral electric field at each
individual charge of atom is equal to zero. It was shown by Schiff [40]
that the non-zero electric field at atomic nucleus can be compensated
by the forces of the non-electric nuclear interaction of nucleons, or by
the interaction of the nucleus magnetic moment with the gradient of
magnetic field produced by electrons of the atomic shells.

The experiments with the paramagnetic atoms give the possibility
to measure, in principle, the EDM of electron. Sandars [41, 42] has
demonstrated that when the relativistic effects are taken into account
then the ratio of the atomic EDM d4 to the electron EDM d, is about
da/de =~ Z3a?. This ratio can be quite large for suitable paramagnetic
atoms. The reported results for the experimental limit on the size of
electron EDM are [43, 44]

de/e < (6.947.4) 10728 cm.

The spin of electron shells in diamagnetic atoms is equal to zero thus
the nucleus EDM can be in principle measured. In this case the nucleus
spin is initially polarized by the optical methods and then the frequency
of atomic spin precession in the collinear magnetic and electric fields is
measured. The principle idea of the method is the same that is used to
measure the EDM of neutron. The upper limits for the atomic EDM of
19Hg [45] and 1?%Xe [46] are

d (*Hg) /e < 8.7-107* cm,
d (**Xe) /e <0.7-107%" cm.

If we assign the atomic EDM to the valent neutron in the even-odd
nucleus of 1%°Hg, then the obtained data provide the estimations for the
upper limit of the neutron EDM.

Concluding the discussion we can see that the series of recent experi-
ments bring out clearly that the behavior of elementary particles in the
processes of their interaction with the electromagnetic field does not al-
ways adequately described by the basic equations of quantum mechanics.
There are some specific features that require the further understanding.
Indeed the magnitude of the electron magnetic moment does not coincide
with the Bohr magneton, the hydrogenic spectrum differs from the spec-
trum calculated on the basis of non-relativistic and relativistic equations
of the quantum mechanics, etc. All these discrepancies have been already
explained in the modern theory, but the reasonable coincidence between
the experimental and calculated data can only be obtained if we use the
quantum field theory methods. The secondary quantization procedure
is certainly in close connection with the methods of quantum mechanics,
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nevertheless it is out of the frames of the canonical quantum mechanics.
This situation stimulates some essential questions of the fundamental
and applied manner. Firstly, whether these discrepancies indicate on
the imperfection of the basic principles of quantum mechanics, i.e. the
lack of its self-consistency, or, simply, by improving the basic equations
of quantum mechanics we can get the further insight into the nature of
these discrepancies. Secondly, the main difference and main advantage
of the quantum field theory approach is in the account for the virtual
processes. As a result the number of particles involved into the process
of some incident particle scattering does not fixed, while in the frame
of quantum mechanics theory the number of particles is fixed by the
normalization condition. Probably it gives us some indications how we
should generalize the equations of quantum mechanics. Thirdly, it is
evident that the problem of electron motion in the Coulomb field is not
equivalent to the hydrogen atom problem, because the hydrogen atom
problem is a two-body problem. The nucleus of hydrogenlike atoms has
a finite mass, most of the nuclei have the non-zero spin and magnetic
moment as well. The modern spectroscopy feels reliably the effects
associated with the finite mass, spin, and magnetic moment of nucleus,
it gives a serious motivation to develop the methods for solving of the
two-body problem. This problem is two-fold: to develop the consistent
procedure of deriving of the Hamiltonian of the two-body problem, and
to develop the adequate methods of the mathematical analysis of the
obtained equations.

I have tried in this book to present the atomic spectroscopy theory in
deductive manner by starting from the simplest models to come gradu-
ally to the most general models. The book consists of the two main parts.
The first part is devoted to the development of the hydrogenic spectrum
theory based on the use of the Schrédinger equation, Pauli equation,
Klein-Gordon-Fock equation, and Dirac equation. The comparative
analysis of the spectra obtained from the solution of the above equations
is given. Simultaneously, the method of deriving of the Hamiltonian
for many-body problem from the equations for particle motion in the
external electromagnetic field is developed. The method is based on the
use of the canonical Lagrangian formalism. As an examples illustrating
the main points I have tried to use the examples from the modern
spectroscopy and light-matter interaction physics. The second part of
the book is devoted to the development of the spin-1/2 particle theory.
The base problems are here: (1) the energy spectrum of hydrogenlike
atoms; (2) the spectrum of geonium atom; (3) the problem of electric
dipole moment of spin-1/2 particles. The close connection between all
these problems is demonstrated.



Chapter 2

SCHRODINGER EQUATION

The first quantum mechanical theory, that gave the explanation of
the discrete spectra of atomic emission, was based on the equation
proposed by Schrédinger [2] in 1927. In this chapter we discuss briefly
the basic principles and main concepts of quantum mechanics. We
start with the Schrédinger and Heisenberg equations, then we introduce
the main quantum mechanical operators, and consider the properties
of the wave functions and operators. The problem on the electron
motion in Coulomb field for Schrédinger equation is analyzed in details.
The analysis of the problem on the two oppositely charged particles
interaction enables us to introduce the reduced mass. The concept of
reduced mass plays the crucial role in the theory of atomic spectra.
Finally we consider the problem on the energy spectra of atom placed
in atomic trap and analyze the specific features of interaction of the
trapped atom with electromagnetic wave.

2.1  Schrodinger equation

To remind the basic principles of the quantum mechanics we start
here with the Schrodinger and Heisenberg equations and discuss briefly
the boundary conditions for the states of discrete and continuous energy
spectra for particle moving in attractive potential.

2.1.1  Schriédinger and Heisenberg equations

The first quantum-mechanical equation was proposed by Schrédin-
ger [2] in 1927. The Schrédinger equation is

58 — o), (2.1)
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where Hy is the Hamiltonian
p?

The first term in the Hamilton Hg is the kinetic energy, which depends on
the momentum operator p = —ihV, and the second term is the potential
energy depending on the coordinate operator r. The particle coordinate
r and momentum p operators obey the following commutation relations

[pi, 2] = —ihdij,

where 1 = 1,2, 3.
The solution of equation (2.1) for the case of free particle, i.e.
U(r)=0,is

¥ (r,t) = Z [Cx exp (ikr) + C_y exp (—ikr)] exp (-i%z)’
K

where the energy of particle Fy in the state with the momentum 7k is

h2k?
k — 2_1,;);)‘;
the constants Cyx determine the initial state of the particle and can be
determined from the initial condition

P (r,0) = Z [Ck exp (ikr) 4+ C_x exp (—ikr)].
k

Thus the state of the free particle is described by the superposition
of plain waves, and the particle energy depends quadratically on its
momentum.

The general algorithm of obtaining equation for particle interacting
with the electromagnetic field from free particle equation consists in the
use of the following replacements

L0 L0 : : q
zh& — zha —qp, —thV — —ihV — EA’ (2.3)

where ¢ is the particle charge, ¢ (r,t) and A (r,t) are the scalar and
vector potentials of the electromagnetic field, respectively. By applying
the replacements (2.3) to the Hamiltonian of free particle, we get the
following wave equation for the particle interacting with the electromag-
netic field

ih_aw(é:,t) = [i (p - %A>2 + qso} P (r,t). (24)

2m0
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The eigenfunctions of the equation (2.1) enable us to determine the
quantum mechanical average of the arbitrary functions f (r, p) of oper-
ators r and p. The quantum mechanical average are determined by

J= / 5 (e, 0) £ (e,0) 2 (x, £) V.

The quantum mechanical representation in which the operators are the
function of canonically conjugated operators r and p, while the wave
functions are time-dependent, is called by Schrédinger representation.

Along with the Schrodinger representation the Heisenberg representa-
tion is widely used in quantum mechanics. In Heisenberg representation
the operators are time-dependent. The temporal evolution of the oper-
ators is described by the Heisenberg equation

G L O
i = g L H A+ 5 (2.5)

If the equation (2.5) and Hamiltonian (2.2) are applied to the coor-
dinate operator r then we get the following equation for the particle

velocity

dr 1

—dz—zfﬁ[r,HO]:;rTo-.

It is seen that the relationship between the particle velocity v and
momentum p coincides with that in classical mechanics.

In the similar way, we obtain the expression for the velocity of a
particle interacting with the electromagnetic field

C

v=%[r,H]=%;<p~q ), (2.6)

where we have used the Hamiltonian of the equation (2.4):

H=5—(p- %A)2 + qp. (2.7)

The equation (2.6) shows that the operator p corresponds to the gener-
alized momentum in classical electrodynamics

p=mgv+ %A.
The generalized momentum plays an auxiliary role in classical and

quantum mechanics, but in both cases the observable value is the particle
velocity.
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This book is devoted to the study of energy spectra of the hydrogenlike
atoms, therefore we shall use mainly the Schrodinger representation. The
Heisenberg representation is convenient when we study the evolution of
atom driving by some external electromagnetic wave. Nevertheless the
Heisenberg representation will also widely used here, because it enables
us to study the symmetry properties of different Hamiltonians and to
define the integrals of motion. Indeed according to the equation (2.5)
the operator f(r,p) is integral of motion if it commutes with the
Hamiltonian

£, H]=0.

It is well known that the integrals of motion play an exceptional role in
the classical and quantum mechanics.

2.1.2 Continuity equation, boundary conditions,
and normalization condition

The equation for the bilinear combination of the wave function enable
us to introduce the concept of the charge density and current density of
the matter field. Multiplying both sides of equation (2.4) by complex
conjugated wave function 1* and subtracting from the obtained equation
its complex conjugated we get

4L gl (-t (- 4] )

27TLO

This equation can be written in the form

ap o
T divj=0, (2.8)

where
p(r,t)=qly(r,1),

: q x(_, q . q *
i00) = = {or (—onv - LAYy + [(-inv - 2A) v] ).
The equation (2.8) has the form of the classical continuity equation.
Hence, the function p(r,t) can be associated with the charge density of
a particle, and the function j (r,¢) plays the role of the electric current
density.

Integrating the equation (2.8) over the whole space we get

* (q/]w (r,t)lde> . / §(r,t)ds. (2.9)

S(r—o0)
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If the particle is in the bound state of some potential well then the
current density should be equal to zero at infinity. As a result we obtain
the following boundary condition at infinity

The equation (2.9) together with the boundary condition (2.10) gener-
ates the following normalization condition for the wave function

/w (r,t)]?dV = 1. (2.11)

It is seen that the condition (2.11) means that the charge associated
with the particle is always equal to the elementary charge ¢ = =£|e|.

The equations (2.1) and (2.4) are the second order differential equation
with respect of the space variables. Therefore to define unambiguously
the radial wave function we need additionally in the second boundary
condition. It is assumed usually that the wave function should be finite
everywhere. For example, if we consider the particle motion in the
Coulomb field it is assumed that the wave function should be finite at
r=0.

For the particle interacting with the attracting static electric and mag-
netic fields, the equation (2.4) together with the boundary conditions at
r — oo and r = 0 generates the eigenvalue problem

Enin (1) = | o (b~ 4A )+ U @) ua 1) (2.12)
nln 20 p ) . .
The eigenfunctions uy, (r) corresponding to the different eigenvalues Ey,
are orthogonal

/u:‘l (r)um (r)dV = dpm.

Usually, the particles, producing the external (with respect to consid-
ered particle) fields, are located in the finite spatial volume, therefore
the potentials of electromagnetic field, produced by them, tend to zero
with the increase of distance: A(r)|,_,, — 0, ¢(r)],,, — 0. Asa
result, the potential energy of a particle, interacting with the external
fields, is equal to zero at r — oco. Hence, the energy of the bound states
of particle is negative, E, < 0.

If F, > 0 it means that the kinetic energy of a particle at r —
— 00 is non-zero, hence the particle can make an infinite motion. The
spectrum of the positive energy eigenvalues is continuous. As far as
A1), — 0, ©(r)],_ o — 0 the solutions of the equation (2.12) have



18 Schrodinger equation

the following asymptotic form at r — oo

Y(r)=C m (0,),

where k = \/2moE/h, and Y}, are the spherical harmonics.

The normalization condition for the wave functions of the continuous
spectrum is also determined by the equation (2.9). The general form of
solution is

sin (k:: +6)Yl

¥ (r) = By (1) Yim (0, ) -

The spherical harmonics are normalized by the condition

471‘ }/lm (9 (p) le’m' (9 (p) dQ = §ll’5mm’

In accordance with the definition (2.8), the charge of the spherical

layer (r,r 4 dr) is
dg=q (/ |4 (r)]> 2 dQ) dr.

It is assumed that the unite charge should pass through the spherical
surface of the infinite radius in the unit time. Hence

%o [woria) & - o

. - hk
jr,t)dS=quv= CIEO-
S(r—o0)

or

As a result the normalization condition is

/ R (7) RS (r) r2 dr = 26 (k — &)

where Rgl)o) (r) is the asymptotic form of the positive energy solutions
of equation (2.12).

2.1.3 Gauge transformation

The equation (2.4) is gauge invariant. Indeed, if simultaneously with
the gauge transformation of vector and scalar potentials

A (r,8) = Afr,6) + Vx(r,0),
lax t)

7 (r8) = o lr,) - 2200,
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we make the following transformation of the wave function

' (r,t) =9 (r,t)exp [-Zh—qéx (r,t)] . (2.13)
then the Schrodinger equation (2.4)

i = H(A,0)y

becomes o
. / / !
zhﬁ—:H(A,w)w.
It is seen that the Schrodinger equation does not change its form.
The gauge transformation of the wave function (2.13) does not change
the quantum mechanical average of the operators f (r) which depend on

the coordinate operator only. At the same time, the quantum mechanical
average of the generalized momentum operator p is changed

[vrwwav = [v (p+2vx)vav # [vpuav.

This is not unexpected, because the generalized momentum operator
does not correspond to the observable value. As we have mentioned
above the observable value is particle velocity. For the quantum me-
chanical average of the particle velocity operator, v =p — %A, we have

/ vy = — / v (p—2a)yav =
= %/W (p+ %Vx— %A— -Z-Vx>¢dV = /WW/)dV

It can be easily shown also that any degrees of the velocity operator are
gauge invariant too.
Hence, the quantum mechanical averages of the arbitrary functions

of the coordinate and velocity operators, f (r, p— %A), are the gauge
invariant values.

2.2  Quantum mechanical operators

In previous section we have introduced the coordinate, momentum,
and Hamiltonian operators. The exceptional role in atomic spectroscopy
plays the parity operator and angular momentum operator. Here we dis-
cuss shortly the properties of these two additional quantum mechanical
operators. As we have already mentioned above the Hamiltonian is the
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basic operator in quantum mechanical theory. Its quantum mechanical
average is the energy of a system. The energy of an isolated system
of particles should not vary when we make the transformations of the
reference frame. The quantum mechanical operators are closely related
with the operators of the orthogonal transformations of the reference
frame.

2.2.1 Momentum operator

The energy of an isolated system of particles is invariant with respect
to the spatial translation, i.e. when the coordinates of all particles
in the system are changed in the following way: r, — rq + ér. We
can consider the infinitesimally small translation dr, because any finite
translation is a sum of the infinitesimally small translations. If we apply
this transformation to the wave function v (r1,re,...) it becomes

P (r1 +(5r,r2+5r,...):w(rl,rg,...)+5rzvaw(r1,r2,...)
a

or

Y (ry +6r,ro +6r,...) = (1+5rzva>w(r1,r2,...).

Thus the operator
T=1+6r) V,
[

is the operator the infinitesimally small spatial translation. Since the
energy of isolated system does not change under spatial translation, it
means

THy = HTY.

(;VG)H—H(;VG) =0.

As we have already mentioned, if operator commutes with the Hamil-
tonian, then the physical variable corresponding to this operator is
conservative. In classical mechanics the physical variable, which is
conservative due to the homogeneity of space, is the momentum. Hence
the operator YV, is proportional to the momentum operator. The

Hence

a
coefficient of proportionality can be found if, for example, we calculate
the quantum mechanical average of operator p = —ihAV for free particle
describing by plane wave 1y (r) = Cexp (ikr)

/ VPP dV = fik / A
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Thus, the operator
p = —ihV

is the quantum mechanical momentum operator.

2.2.2  Space inversion and parity operator

The space inversion transformation consists in the replacement r —
- —r. The operator P generating this transformation is called by the

parity operator
Py () = % ().

Let us apply the parity operator to the Hamiltonian (2.7). The gen-
eralized momentum p and vector potential A are both polar vectors,
therefore at the space inversion transformation we have Pp = —p and
PA = —A. Hence the kinetic energy remains invariable at the space
inversion. If the potential energy is invariant with respect to the space
inversion U (r) = U (—r), i.e. if the external potential is centrosymmet-
ric, then the parity operator P commutes with the Hamiltonian (2.7)

[P, H] = 0.

The commuting operators have the common set of eigenfunctions.
The eigenvalues of the parity operator can be found in the following way.
On the one hand

Py (r) = Ppy (r) = p*¢ ().
On the other hand
P2 (r) = Py (—r) = ¢ (r).

Hence

pi2 = £1.
As a result the wave functions of the particle, moving in the cen-
trosymmetrical potential ¢ (r) = ¢ (—r), either remain invariable or

change the sign under the space inversion. The state in which the wave
function does not change its sign is called by the even state, if the wave
function changes its sign under the space inversion transformation then
the corresponding state is called by the odd state.

Thus the invariance of the Hamiltonian with respect to the space
inversion transformation manifests the parity conservation law: if an
isolated ensemble of particles has a definite parity, then the parity
remains invariable in the process of ensemble evolution.

The wave functions of the even states are the scalar functions, the
wave functions of the odd states are the pseudoscalar functions.
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2.2.3  Three-dimensional rotations and angular momentum
operator

The rotation of an isolated ensemble of particles, as a whole, around an
arbitrary axis does not change the relative positions of particles, hence,
the state of the whole system should remain invariable. Let us consider
infinitesimally small rotation d¢ around the z axis. Under this rotation
the particle coordinates are transformed in the following way

o =x+0py, y=y-dpz, 2=z
The transformation of wave function is

gt N _aﬂ__ _3_1[).__
@b(lab:Z)'“d’(iE»y,z)"Ffs‘Pyax 6(1032(93.]_

Hence the operator of infinitesimally small rotation around the z axis is
0 9
R, (6p) =1+ b¢ <y% - xa—y) .

Under the rotation around the arbitrary axis d¢ the rotation operator
becomes

R(0¢) = 1 —idgl,
where the angular momentum operator 7l is defined as
hl = [rp] = —ik[rV]. (2.14)
The components of the angular momentum operator

hly = yp. — 2Py, hly =2py —TPp;, N, = TPy — YDz

obey the following commutation relations

[laa lﬁ] = ieaﬁ'yl'ya (2.15)

where «, 5,7 = z,y, 2 and eqgy is the completely antisymmetric tensor
of the third order. The elements of this tensor are equal to zero if
any two of its three indexes coincide. The non-zero elements of this
tensor correspond to the three different indexes. It is usually assumed
that ezy, = 1 and any other elements obtained by permutation of these
indexes are equal to minus unity, if the number of permutations is odd,
and unity, if the number of permutations is even.
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The commutation relations for the angular momentum operator and
operators of coordinate and generalized momentum are

la, 78] =1€apyrys o, pgl = t€agyPy- (2.16)
The operator of the angular momentum square
P=2+02+12
commutes with each of the component of operator 1. Indeed
[12,1a] =1 lg, la] + {8, la] g = —ieaplgly + i€ayplylg = 0. (2.17)

In the spherical set of coordinates the angular momentum square oper-

ator is

o | L & 10 /(:,0

I = [sin208(p2+sin989 smeae . (2.18)
It is seen that the operator (2.18) coincides with the angular part of the
Laplace operator, written in the spherical coordinates

10 7] 1

As far as operators 12 and I, commute then they have the common
set of eigenfunctions. With the help of commutation relations (2.15) it
can be easily shown that the common eigenfunctions obey the equations

Py (1) =11+ D (v), L (v) = mabym, (r), (2.20)

where [ is non-negative integer, [ = 0,1,2,..., and the z-projection of
angular momentum takes the values m = —I, -l +1,...,[. The solutions
of the equations (2.20) are the spherical harmonics

mim| o4+ 1 (I —|m|)!
Yim (9,(;0) :(_—1) 2 Zl dn §l+1m:;! l|ml

(cos @) exp (tmep) ,

(2.21)
where P/™ (cos ) is the associated Legendre polynomial.

It can be easily shown that the Hamiltonian (2.2) for the case of
particle motion in the spherically symmetric potential ¢ (r) = ¢ (r)
commutes with the angular momentum operator. Indeed the equation
for the angular momentum operator in spherical coordinates is

T 0Sin6op Y80

(2.22)
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It is seen from (2.22) that the angular momentum operator commutes
with U (r). On the other hand, as it follows from the equations (2.17)-
(2.19) the operator 1 commutes with the Laplace operator. Thus when
we deal with the eigenvalue problem on particle motion in the spherically
symmetric potential ¢ (r), we can always express the eigenfunctions in
terms of the spherical harmonics (2.21).

It is evident that the angular momentum operator is invariant with
respect of space inversion transformation, because both coordinate and
generalized momentum operators change sign under the space inversion.
Hence the eigenfunctions of the problem on the particle motion in the
spherically symmetric potential have to have the definite parity. The
parity of the different states are determined by the parity the spherical
harmonics (2.21). By applying the parity operator to the spherical
harmonics we get

PYjm (8,) = Yira (1 = 0,0+ 1) = (=1)' Vi (6, ) ,
i.e. the parity of state is defined by
P =(-1). (2.23)

The angular momentum operator in the cylindrical set of coordinates

is
.z 0 . 0 a .0
1-—- ep (l;a—(p) +e(p {—’L (Z'a—p — p'é‘;)} + (7% (—25‘;> . (224)

It is evident from this equation, that the angular momentum projection
operator [, commutes with the Hamiltonian (2.7) when U = U (p, 2)
and A = e, A (p, 2). In this case, as it follows from the equations (2.20)
and (2.21), the angular part of the wave function is given by exp (imp).
Hence the parity of eigenstates for the problem of particle motion in the
external fields of cylindric symmetry is defined by

P = (-1)™. (2.25)

2.3 Particle motion in the Coulomb field

Let us consider the problem on a particle motion in the attracting
Coulomb field. In this case the potential energy of a particle is

2
and the equation (2.12) became

2 2 2
[_5% (5@; + %% - :,7) - Zfi Ve (r) = EYp (r). (2.27)
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We have shown above, that the Hamiltonian of the equation (2.27)
commutes with the operators of parity, angular momentum square,
and projection of angular momentum. Therefore the wave function
can be expressed in terms of the eigenfunctions of the parity, angular
momentum, and projection of angular momentum operators. However,
as we have seen, the parity of states in the spherically symmetric external
field is unambiguously determined by the angular momentum, therefore
to define the particle state we can use the following quantum numbers:
energy F, angular momentum /, and projection of angular momentum m.

2.3.1 Discrete spectrum

As we have discussed above for the bound states of electron in the
Coulomb field the boundary conditions require that the wave function
should be finite at 7 = 0 and turn to zero at r — oo

V5 (1)), 00 = 0. (2.28)

The analysis, given in the previous section, has shown that in the
case of particle motion in the spherically symmetric potential the wave
function can be taken in the form

Ve (r) = R(r)Yim (0,9).

By substituting the latter equation into the equation (2.27) we get the
following equation for the radial part of the wave function

d 2d I(I+1) 2meZe*l  2mgE B
(WJVFE_ S Amie L BV R =0, (229)

Taking into account that the bound states are the states of the negative
energy, it is convenient to introduce the following notation

2m0|E|

The general solution of the equation (2.29) is

R(r) = [ClF (L+1— 7,20 +2,267) +
+ Co(26r) 2TV F (=1 =, -2, er)}rl exp (—«r), (2.30)
where F'(a, b, z) is the confluent hypergeometric function, v = Z/(kag).
Here ap is the Bohr radius
ap = 2. (2.31)

mope
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The asymptotic form of the confluent hypergeometric function F (a, b, 2)
at 2 =101is
F(a,b,|2| = 0) — 1.

Hence we should assume that Cy = 0, because the second term in
the right-hand-side of the equation (2.30) does not obey the boundary
condition at 7 = 0. The asymptotic form of confluent hypergeometric
function F (a,b,z) at z — oo is
T(b)exp(ira) _, , T( )
Flabz) = ————~ "z 4+ =
(02 = =5 —a) @’
It is seen that the second term in this equation infinitely increases when
r — 00. However, this term vanishes when the argument a of the
confluent hypergeometric function F'(a,b,z) is a non-positive integer.
Thus the solution (2.30) satisfies the boundary conditions when Cy =0
and

“bexp(z)+....

l+1—v=-n,;, (2.32)

where n, is the non-negative integer.
The latter equation yields the following equation for the energy spec-
trum of bound states
g2p2 2.4
B, = o _Zem (2.33)

QmOaBn 2h*n?

where
n=n,+0+1=1,2,3,...

Notice, that the energy spectrum (2.33), resulted from the solution of
the quantum mechanical problem on the electron motion in the Coulomb
field, coincides with the spectrum that was obtained with the help
application of the Bohr—Sommerfeld quantization rules to the classical
equations. The quantum number n, is called by the radial quantum
number. We shall see later that the radial quantum number determines
the number of nodes of the radial wave function R (r). The quantum
number [ is usually called by the azimuthal quantum number. The
quantum number n is called by the principle quantum number.

Before the quantum mechanics was completely worked out, the spec-
troscopic notations were developed to describe the different hydrogen-
like energy levels in an atom. Basically, the notation consisted of a
number (representing the value of n) followed by a letter (representing
the value of [). The letters originally described the characteristics of
the spectral lines, like “sharp”, “principal”, etc. The correspondence
between the values of [ and letters is given in Tab. 2.1.
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Table 2.1. Spectroscopic notation

l = 0 1 2 3 4 5
letter — ] P d f g h

It can be easily shown that the ground state of the hydrogenlike atom
is always the s state. Indeed, the substitution R (r) = f (r) /r transforms
the equation (2.29) to the form

(d2 L 2B

Lol D ) fi) =0

It is seen that the last equation coincides with the Schrédinger equation
for particle moving in the one-dimensional potential well of the form

B2 1(1+1)
2mg  r?

Ueg (r) =U (ry+

The second term in the right-hand-side of this equation is the energy of
centrifugal motion. This energy is definitely positive at { > 0. Hence, the
energy of fundamental states at [ > 0 is always higher than the energy
of the s state. It can also be stated that the energy of the fundamental
state for a given ! increases with the increase of [.

In the case when a is a non-positive integer, the confluent hypergeo-
metric functions F (a,b, z) can be expressed in terms of the Laguerre
polynomials: F(—n,b+1,z) = (D(b+ 1)n!/T(b+ 1+ n))L%b)(z). Hence
the radial wave function R (r) can be rewritten in the following equiva-
lent form

R (r) = Crtexp (—rnr) LZTY (260r), (2.34)
where k, = 1/nap. By using the normalization condition

00

/R?Ll(r) r2dr =1,

0

we get the following equation for the normalized wave function

Ry (r) = \/(2’{712)2?;13)7 bt (Qf-anr)lexp (—Knr) lez_lj'_l)l (26p1) =

2 | ZB—1-1) (225 Zr \ ;@) (227
=5 ___asB(n+l)! <naB> exp ~rin Ly nan (2.35)
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The explicit form of the wave functions for a number of states in
hydrogen atom is given below:

1 1s—state (n=1,1=0)

2 2s —state (n = 2,1 =0)

1 r T
Ry (7“) = Egexl) <_§71—1;> (1 - E) ;

3 2p—state (n=2,1=1)

1 T T
Rop (r) = \ 6a3 P <—"2—ag) %ag

4 3s - state (n = 3,1 = 0)

2 r T 2 T 2
foo (1) = Loy O (‘3‘3) (1”2%+§ (E) >;

5 3p-state (n=3,1=1)

2 2 T r r
Rap(r) = 51/ 305 &P (“3—> (2 B 3—> 3an’
6 3d - state (n = 3,1 = 2)

2 2 T T 2
R3d (T) = § _15a]33 exp (—%> <%) .

The graphs of the corresponding functions is shown in Fig. 2.1. By
taking into account the definition of the principle quantum number n:

n=n,+1+1, (2.36)

we can see that the number of zeros of the wave function is really
determined by the radial quantum number n,. The wave functions of
the s states are maxima at r = 0, the wave functions of states with [ > 0
turn into zero at this point.

We have mentioned above that the product R%(r) 2, proportional to
the probability for particle to be inside the spherical layer (r,r + dr),
is called by the charge density. The charge density distribution for the
above states is shown in Fig. 2.2. It is seen that the maximum of charge
density moves away from the center with the increase of the principle
quantum number n.
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2.3.2 Continuous spectrum

The continuous spectrum of the positive energy eigenvalues is
stretched from zero up to infinity. Each energy eigenvalue is infinitely
degenerated with respect to the angular momentum [, which runs all
integers from zero up to infinity, and its projection m, taking all possible
values, |m| <1, at given [.

The general solution is given by the equation (2.30), where we should
again assume the coefficient C5 equal to zero in order to satisfy the
boundary condition at r = 0:

Ry (1) = Cri(2kr)! exp (—ikr) F (l +1 + 2l +2 z2kr> (2.37)

where

k= \/ngE

h
The asymptotical form of the solution (2.37) at infinity is

T2l +2)exp (—%) sin (kr + <kZ ) In2kr — %l + 51)
Ry (r) = Ci 2 2B

ir(z+1+—lz> hr
kap
(2.38)

where § = arg' (1 + 1 — iZ/(kag)). By normalizing the wave function
in accordance with the procedure discussed in subsection 2.1.2, we get
the following equation for the normalization coefficient Cy:

Lo 2
_ 8rkZ/a
COr = \/1 —exp(— 27rZI;(kaB) F(Ql +2) I:_[ 8%+ (kaB)

2.3.3 Matrix elements of transitions

The rate of the radiative transitions between the atomic states de-
pends on the magnitude of the matrix elements of transitions

(nilima| r [nolomy) = /w:uhml (r) *¥nytym, dV. (2.39)

It is convenient to make the following transformation of the radius
vector r:

r =e;rsinfexp (ip) + e_rsinfexp (—ip) + e,r cosb,

where ex = (e; Fiey)/2. In this case the right-hand-side of the
equation (2.39) transforms into the product of integrals over the radial



32 Schrodinger equation

and angular variables. The integrals over the angular variables give us
the selection rules for the dipole allowed transitions. They are

(hi—mi+) L +my+1
(llmllcosﬁllzmg)—z\/l (211_}_1;52111_1_31) )512’11+15m2,m1,

. (g -ma+1)(la+ma+1)
<l1m1| cost [l2m2> - Z\/ (212 T+ 1) (212 T+ 3) 5ll,l2+15m1,m2,
(2.40)
(lum1| sin @ exp (i) |lama) =
(11 —m1+1)(l1 —m1+2)
2L +1) (2 +3) Oz f1-+10ma,mi -1,
(lym;]| sin @ exp (i) |lama) =
_ i\ﬁz +ma+ 1) {lz +ma +2)

(21, +1) (205 + 3) Bt o 10my mat1-

The matrix elements for the component (re-) can be easily obtained
from the last two equations in (2.40) with the help of the equality

(lymy| sin@ exp (—ip) |lama) = (lama]sin @ exp (i) [lim1)* .

Thus the selection rules for the dipole allowed transitions are:
a) linear polarized wave

Al=1—lp =211, Am=m —mg=0;
b) circular polarized wave
Alzll—lgzil, Amzml—-mzzztl.

In the last case the signs plus and minus correspond to the right and left
circular polarized waves, respectively.
The radial matrix elements are

aB 2l1+l2+2 \/(nl - ll - 1 TLg - lg - 1)'

(nllll?‘]?hl?) 11+2 12+2 n1+l1 n2+12)!

o0
li+1243 1 1 (2+1) (22 ;@L+1) [22)
X /x 1+i2 exp li—l' <;L_1_ + E)] Ln11—l1—1 (n_1> Ln22—l2——1 <n—2 dz
0
(2.41)

Particularly, for the transition 1S — nP we get

(n+ 1) 16n°(n — 1)*~°
Z n=2)! (n+1)""

(nP|7[18) = (2.42)
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Table 2.2. Radial matrix elements of transitions 1.5 — nP

n 2 3 4 5 6 7 8
é (nP|r|1S) 1.29027 0.51669 0.30458 0.2087 0.15514 0.12142 0.0985
n 9 10 11 12 13 14 15
o (nP|r|1S) 0.08205 0.06975 0.06026 0.05276 0.0467 0.04173 0.03758
n 16 17 18 19 20 21 22

EZ—(nP|r|1S) 0.03408 0.03109 0.02852 0.02628 0.02432 0.02259 0.02106
B

Table 2.2 shows the numerical values of the matrix elements 1.5 — nP
when n is varied in the range 2 < n < 22.

The equation (2.42) enables us to find the asymptotic form of the
matrix elements from the ground state to the high-lying quasiclassical
nP states. In the case when n > 1 we get from the equation (2.42) the
following result

_ag [(n+D)16n3(n—1)""2 C
(nP|r[18) = Z\ (n-2) (n+1)""3 w1 pd2 (2.43)

Thus, for these transitions, the oscillator force decreases with the in-
crease of the principle quantum number as 1/n3. In Fig. 2.3 the matrix

Figure 2.3. The magnitude of the matrix elements of nP — 18§ transitions in
hydrogen as a function of the principle quantum number n. The solid curve is the
exact function (2.42), the dashed curve is approximation (2.43). The dashed curve is
shifted down for convenience
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elements calculated on the basis of equations (2.42) and (2.43) are shown
in comparison. For the illustration purposes we assume the coefficient C
equal to C = 2, but at C' = 2.2 the two curves in Fig. 2.3 coincide almost
completely in the region n > 7. There is some discrepancy in the region
n < 7. But by comparing the equations (2.42) and (2.43) we can see
that according to equation (2.42) in the region n < 7 the decrease is
more fast, therefore in this region the higher powers of 1/n should be
included in asymptotic equation (2.43).

2.4 Hydrogen atom

The hydrogenlike atom consists of the electron and nucleus. The
atomic nucleus has the finite mass, therefore the nucleus of the hydrogen
atom is also involved into the motion. Hence, the energy spectrum must
depend on the nucleus mass. If the ratio of electron mass to nucleus
mass (in the hydrogen atom this is the ratio of electron mass to proton
mass me/mp ~ 5 - 10‘4) is taken as a smallness parameter, then the
energy spectrum of electron in the Coulomb field gives us only the zero
order approximation for the hydrogen atom spectrum. The total energy
of atom is the sum of the electron energy and nucleus energy. Similar
the total momentum, and total angular momentum of atom are the
sums of them for electron and nucleus. In the processes of absorption
or emission of photons by an atom, the conservation laws hold for whole
isolated system, therefore the motion of electron in the process of photon
absorption or emission is always accompanied by the motion of nucleus.
Therefore if we would like to increase the accuracy of calculated energy
spectra for hydrogenlike atom we should take into account the motion
of the atomic nucleus.

The account for the finite nucleus mass provides the simplest hydrogen
atom model. The further development of this model will be given in
the next chapters. Here, we start with the study of the influence of
the finiteness of the nucleus mass on the energy spectra of hydrogenlike
atoms.

2.4.1 Hamiltonian of two-particle problem

The Hamiltonian of system consisting of two charged particles with
the Coulomb interaction is

2 2
_ P, P,
Hy = e + e + It — 1o’ (2.44)

where ¢, and ¢, are the charges of particles. It is seen that the Hamil-
tonian (2.44) does not commute with momentum operators for each
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individual particle, but it commutes with the total momentum operator

P = pa + po- (2.45)
Indeed
. d 0 1
[P, Ho] = —ihgags (a—ra + 51;) = 0.

It means that the variation in the electron momentum of free atom
is always accompanied by the variation in the nucleus momentum.
However, the coordinate of the atomic center of mass does not vary,
because the total momentum is an integral of motion. Therefore it is
convenient to introduce the center-of-mass coordinate, R, and relative
position coordinate, r:

Mglq + MpTp

r=rg—r R=
a bs Mg + 1

(2.46)

Similar to the momentum operators, the operators of angular momen-
tum of each individual particle do not commute with the Hamiltonian
(2.44), but the total angular momentum operator

hL = hl, + Rly = [rapa] + [rbpb] (2'47)

commutes with the Hamiltonian (2.44). By taking into account that the
angular momentum operators 1, and 1, commute with each other and
both of them commute with the Laplace operators A, we get for the
total angular momentum operator

. 0 0 1
[La HO] = —1aGp (!:raa—ra] + [%55}) ————[I'a o] =0

Thus the total angular momentum operator L is the integral of motion,
while the angular momenta of the individual particles are not conserved.
If the transformations (2.46) are applied to the equation (2.47) we get

hL = (rp] + [RP], (2.48)
where
. 0 _ my _ Mg . 0 _
b= ""Zhla - Mg + mbpa Mg +mbpb, b= —lha_R’ ~ Pe + pu-
(2.49)

Thus the total angular momentum L is the sum of the angular momen-
tum of center of mass and angular momentum of the relative motion of
particles.
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2.4.2 Reduced electron mass

If the transformations (2.46) and (2.49) are applied to the Hamilto-
nian (2.44), we get

_ 2 Gadb 2
HO - “zmTAr + _’r— - _2(ma T mb) AR, (2'50)
where m, is the reduced electron mass, defined as
MMy
My = e (2.51)

If an atom is placed into the atomic trap, the potential of which
possesses the central symmetry, then the total angular momentum of
atom L is still the integral of motion. Indeed, if the potential energy
of a trap depends only on the magnitude of the radius vector R, i.e.
Utrap =U (R), we get

[L, U (R)] = =i ([raVa] + [ Va]) U (R) =

_ | MaTa + 0wy 10U
- 2[ mg + my R]R@R_

. 10U
—i[RR] 55 = 0.

The Hamiltonian for an atom, placed in the atomic trap, is

h2

H:HO—{—U(R)::__EQ_A _|..ga_qb__—__
2m,. T T 2(ma+mb)

Ar+U(R). (2.52)
Thus we can see that the Hamiltonian (2.52) is the sum of two terms.
One of them depends on the relative position coordinate, r, another term
depends on the center-of-mass coordinate, R. It is seen that the angular
momentum operator of the relative motion of particles [rp] and angular
momentum operator of center of mass [RP] commutes separately with
the Hamiltonian (2.52). Hence, both angular momenta are the integrals
of motion. In this case the two-particle wave function t (re,rp) is
factorized, i.e. it becomes a product of the wave functions depending on
the coordinates r and R in separate

¥ (ra, ) = f(r) g (R).
The wave functions f (r) and g (R) obey the following equations

( - %Ar + q‘:,qb)f (r)=EWf(r), (2.53a)
(“ M}E;T,,)AR + U(R))g(R) =E@g(R). (2.53b)
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It is seen that the Hamiltonian of the equation (2.53a) will completely
coincide with the Hamiltonian for the problem of electron motion in
Coulomb field, if we substitute the electron mass in equation (2.29)
by the reduced mass defined by the equation (2.51). Hence without
any additional analysis, we can easily write the equation for the energy
spectrum of the hydrogenlike atom, when ¢, = —|e| and g, = Z |e]

Z2et momy,
2K n® my, +me’

EY = - (2.54)

where me is the electron mass, and m,, is the nucleus mass.

2.4.3 Atom in trap

In the case of the free atom (U(R) = 0) the solutions of the equa-
tion (2.53b) are the plain waves ¥ (R) = Ckexp (KR). To find the
wave function ¢ (R) in the case of trapped atom, we need in the profile
of the potential well of atomic trap. In the vicinity of its bottom, the
potential energy of the atomic trap can be approximated by the parabolic
potential well:

U(R)=U(0)+aR?

By accounting the spherical symmetry of the problem, the wave function
of the equation (2.53b) can be taken in the following form

g (R) = g (R) Yim (Or, ¢R)

where the radial wave function g (R) obeys the following equation

d? 24 OME  I(l+1 M2
i’+—ﬁ+< e (R2 )_(T) R2>gz=0, (2.55)

dR?  RdR
M =mg+my, QF=2a/M.

The solutions of the equation (2.55) are again the confluent hypergeo-
metric functions. By taking into account the boundary conditions that

were discussed in the previous section, for eigenfunctions of the equation
(2.53b) we get

2ﬂ1+3/2 !
Engrlm (R) =4 m+711—};2)[}/lm ((9}{, (PR) X

2
x Rlexp (- ?%)Lgfgl/% (BRY), (2.56)
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where § = MQ/h, and ng is the non-negative integer. The spectrum of
the energy eigenvalues is defined by

By =1 (2np + 1+ g) . (2.57)

Similarly to the electron motion in the Coulomb field, the spectrum
(2.57) is degenerated with respect to the combination of the quantum
numbers ng and [. In this case, the combination is the sum of doubled
radial quantum number and orbital quantum number, p = 2ng + 1.

2.4.4  Interaction of trapped atom with electromagnetic

field
Let us consider the interaction of the trapped atom with the elec-
tromagnetic field. For the hydrogenlike atom, we have ¢, = — |e| and

@ = Z le|, and the Hamiltonian of the problem can be written in the
form

=5 (pe— A ()" + (pb——A<rb>)2+U<r>+U<R>:
2mr % ( a) T —A (rb)> p+U(r)+
+ (A (ra) — ZA(rp) )P+ U (R) +

2(ma +mb) M
G5 A2 a4 A2
+ ‘2-0—2 <m—aA (!‘a) + }—n—;A (I'b)> . (258)

The characteristic spatial width of the potential well of atomic trap is
significantly greater than the Bohr radius, i.e. v/Bag < 1, and we can
use the following expansions

A(ra) =A(R) + @ (V) A (R) +
(2.59)
A () =A(R) - ( VIAR)+.

The leading term of both expansions is
A (rop) = A(R),
Hence, the Hamiltonian (2.58) takes the form

=2 +U( )4 1l (ma +%)A(R)p+

2

+U(R)+ el (1—Z)A(R)P+% (miJ% A2(R).
’ (2.60)
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The last term in (2.60) is usually omitted, because its mean value over
the period of optical oscillations does not depend on the coordinate.
Therefore, for the hydrogen atom (when Z = 1), we get

h? le
S A4+ U(r)+

H=-— ’A(R)p—%ARJrU(R). (2.61)

mye
By comparing the equations (2.60) and (2.61) we can see that in hydro-
gen atom, in contrast to the hydrogenlike ions, the transitions between
the trap levels without change in the intra-atomic electron state are
prohibited. However it should be noted that the energy distance between
the states of atom in the atomic trap A2 is usually much smaller than
the energy distance between the different electron states in atom 7 <
& B, — Ep,. Therefore, if the frequency of electromagnetic wave is
close to the frequency of the intra-atomic electron transitions wpy, =
= (En — Ep) /h = w and at the same time < w, then the probability
of the above mentioned transitions is very low for ions too.

As already mentioned, the angular momenta #l; = [rp] and #ly =
= [RP] are both the integrals of motion. As a result the wave function
of the trapped atom can be written as the following product

?f) (ra,, Ty, t) = fml1m1 (I‘) gnglzmz (R) €xXp I:_Z El -7: E2 t] )
where the values of E; 9 are defined by the equations (2.54) and (2.57),
respectively:

Z%e4m 3
F=————+———" - E :hQ<2n +1 +—).
YT TR b+ 1) 2 2Tty
The probability amplitude for the transition between the trapped
hydrogen atom states of energy E = Ej + Eg and E' = E| + E} is
defined, in the frame of the first order approximation, by the following
equation
lel

OE'E (t) = pro— <n’1l'1m'1| P ]nlllml) X

t
X /<n’2l’2m’2| A (R, t) [nalama) exp [iE—;—Et’] dt'. (2.62)
0

It is convenient to express the matrix elements of the momentum oper-
ator in terms of the matrix elements of the coordinate operator. The
commutator of the Hamiltonian (2.53a) and operator r is
ih

p-
r

m

[Hot,x] = —



40 Schrédinger equation
Hence
<’rLlll,17TLl1| Hglr - I‘H01 |n1l1m1) = (Ell - El) <n'1 Ilmlll r |n1l1m1> =

_ _ﬂ T
= T <n111m1}P|n111m1>-

Now, we can use the matrix elements of the coordinate operator, that
were calculated in the previous section.
Let atom interact with the plain wave

A (R,t) = Apsin (wt — kR).

To calculate the matrix elements (nblimf| A (R)|naloms) we shall use
the following expansion of plain wave onto the spherical harmonics

o0

exp(ikZ) =Z (20 + 1) Py (cos8) ji(kr),

1=0

where j; () is the spherical Bessel functions. We have assumed that the
wave vector k of incident wave is directed along the z axis of the given
reference frame. Thus, the required matrix elements are

(n5lymy| Py (cos 8) ji(kr) [nalama) =
= /lemg (8,¢) P, (cos8) Yiym, (6, ¢) sin 6 df dpx
x / Rt exp (—BR?) L, (l2+1/ 2 (6R?) L=+ (BR?) ji(kR)R? dR
(2.63)
The first integral in (2.63) results in the following selection rules
=lo+1, mh=ma.

To calculate the second integral in (2.63) we can use the following
formula

/ma_l exp (—pz?)J,(cz) dz =
0

¢ T{a+v)/2) a+v e
p(a+u)/2 2U+IF(I/+1)F 2 Ut 1a 4_P )

where F(a,b, 2) is the confluent hypergeometric function.



Hydrogen atom 41
As an example for the matrix elements of the transition between the
initial state ng = 0, la = 0, m2 = 0 and final state ny = n, 15 =1, my =0

we get

(nl0) exp(ik Z)|000) =

_m 1\ nl(n+1+1/2)! k2 g2\ 2

n (_Um ) 2
xn;)(n_m)s(z+m+1/2)!L££L+1/z (E)' (2.64)

In particular

1{000] exp(ik Z)|000)|? = exp (-k—2> ,

20
1(010] exp(ik Z)|000)|* = ’;—;exp (-%) ,
L2 " (2.65)
[(100] exp(ik Z)|000)|* = 5 <§ﬁ> exp (—55> :

|(110] exp(ik2) 000)” = - <%>3exp (_i> .

The interpretation of the obtained equations becomes more obvious,
if we substitute the parameter 3 in the last equations by its explicit
expression: \

k2 __ (hk)* 1 _E

5 = oM RO - R (2.66)
Let atom be initially in the ground trap state. In the process of
photon absorption the atom should accept the recoil momentum hk and,
hence, the recoil energy E = h%k%/(2M). Thus we can see from the
equations (2.65) that the probability of atom transition from the ground
to excited trap state, in the process of photon absorption, depends on
the ratio of the recoil energy to the energy difference between the trap
states.

Notice that the process of the emission or absorption of photons by
the trapped atom is similar to the process of emission or absorption of
gamma photons by nuclei in crystals (Mossbauer effect). In the latter
case the probability of the recoilless emission depends on the ratio of the
recoil energy to the phonon energy.

The time integration in the equation (2.62) results in the energy
conservation law

Ej 4+ Ey = E1 + Ea + hw.
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Thus the equations (2.62)-(2.64) determine completely the selection
rules and the probabilities of the radiative transitions for the trapped
hydrogen atom. In contrast to hydrogen atom, the hydrogenlike ions
(Z > 1) can make the transitions between the atomic trap levels without
change in the intra-atomic electron state. This type of transitions is
described by the two last terms of the Hamiltonian (2.60).



Chapter 3

VARIATIONAL PRINCIPLE

FOR SCHRODINGER EQUATION:
ORBITAL INTERACTION

IN HYDROGENLIKE ATOMS

Here we start with the application of the canonical Lagrangian formal-
ism to the problem of the many-particle system, in which the particles
are coupled by the electromagnetic field. The Lagrangian L is the space
integral of the local functions of the electromagnetic and material fields
and their space and time derivatives. The field equations are determined
from the principle that the action [ Ldt should be stationary when the
fields are varied. The variational derivative of the Lagrangian is the
‘'momentum’ conjugate to that field. We explore the various invariance
and conservation laws. The Hamiltonian function is the sum of all
canonical momenta times the time derivatives of the corresponding fields,
minus the Lagrangian. The Hamiltonian function provides us with the
energy functional for the hydrogen atom, the variation of which yields
the equation for the hydrogen atom wave function. The hydrogen atom
spectrum is determined by the solution of this equation.

3.1 Particle wave fields

In the frame of quantum mechanics it is assumed that the micropar-
ticles are the point particles, but the probability amplitudes for them
to be in definite point in space at definite moment of time obey the
wave equations. The wave equations reflect the presence of the wave
properties in the behavior of microparticles. The matter fields, as well
as the electromagnetic field, are characterized by their amplitudes at
each spatial point at any moment of time, therefore they are equivalent
to the mechanical systems that have the infinite number of degrees of
freedom. In the frame of the field theory formalism the wave function
¥ (r,t) plays the role of the coordinate of the matter field.



44 Variational principle for Schrédinger equation

3.1.1 Lagrange function

The Lagrange function of the point particle depends in classical me-
chanics on the coordinate, velocity, and time. Similarly, the Lagrange
function of the matter field depends on the wave function, its space and
time derivatives, and time

L (4, V,d.t),

where 9 = O /0t. The appearance of the space derivative, in addition
to time derivative, is quite understandable, because the wave function
is the continuous function of coordinates. It is this feature that reflects
the infinite number of degrees of freedom of the matter fields.

By integrating the Lagrange function over the space and time, we get

the action
Sz//L(¢,V¢,¢,t) dv dt.

The matter field equations are generated by the principle of the least
action

oL o (oL\ o (oL
53:// [%_E(%>_E<%)}a¢dmzo, (3.1)

where ¢y = 010/014. As well as the variation d¢ is arbitrary, then the
equation (3.1) is equivalent to the following differential equation

oL oL o ( oL
& 0z, (a(aw/aza)) "ot (a(&p/aﬂ) =0 (3:2)

The last equation is called by the Euler-Lagrange equation. In general
case, the wave function is a complex function, therefore the matter field
is really the two-component field

¥ (r,t) = Yi(r,t) + ia(r, t).

Hence, the Lagrange function is the function of the two real wave fields
in general case. Of course, instead of real and imaginary parts of the
wave function, we can use the functions 9 (r,¢) and ¢* (r,t) as the field
coordinates:

L (zp, V¢,¢,1/)*,V¢*,¢*,t) .

The action should be independently varied over the functions ¥ and *.
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3.1.2 Hamiltonian function

The generalized momentum, canonically conjugated to the field coor-
dinate 1, is defined by
)
s

With the help of this definition we can introduce the Hamiltonian
function

H=m—1L, (3.3)

which enables us to introduce the Hamilton equations for field

oy _ 0H i( oH )

9t om CICLIGED

on _ _[om_ o ( oH

at O Oza \O(OY/0za) )|’
The Hamilton equations are convenient when we make the secondary
quantization. In this case we should substitute the classic Poisson

brackets by the quantum Poisson brackets.
Let the Lagrange function be

(3.4)

_ 2
L = il — é%w*w — U (r, £) . (3.5)
The variation of action with respect to the wave function ¢* results
in?% Y+ ——Aw Usp = 0. (3.6)

The obtained equation coincides with the Schrédinger equation (2.1)
with the Hamiltonian (2.2).

The variation of action with respect to the wave function 9 results in
the following equation

I

2 * *

It is seen that the obtained equation is complex conjugate of the equa-
tion (3.6).

For the Lagrange function (3.5) the generalized momentum canoni-
cally conjugated to v is

oL
H*.
=op W
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The Lagrange function (3.5) does not include the derivative ¢*, therefore
the generalized momentum conjugated to the field coordinate ¥* is
identically equal to zero.

Thus we can see that the principle of the least action enables us
to derive the Schrédinger equation from the Lagrange function (3.5).
Therefore the equation (3.5) is equivalent, in certain sense, to the equa-
tion (3.6).

It should be noted that there is a qualitative difference in transfor-
mation properties of the Lagrange function given by equation (3.5) and
the Lagrange function for a classical particle. In classical mechanics, the
Lagrange function depends only on the square of the particle momentum
both in relativistic and non-relativistic cases. The motivations for this
are twofold. Firstly, the Lagrange function of free particle can not
depend on the coordinate and time, this is due to homogeneity of space
and time. Secondly, it can not depend on the direction of particle
propagation, this is due to the isotropy of the space. In contrast to this
the Lagrange function (3.5) depends on the product of field coordinate
1* and generalized momentum %*. As a result the Lagrange function
(3.5) is not invariant with respect to transformation t — —t. If we
substitute the product ¥*y by the term proportional to ¥*1, which is
invariant with respect to the time reversal, then the resultant equation
for particle will be the differential equation of the second order with
respect to the time derivative. It means that the Lagrange function in
the form of (3.5) selects one of the two possible solutions of the second
order differential equation. Let us try to answer the question which of
the two solutions should be selected. Notice that the Lagrange function
(3.5), and hence the action, is not self-conjugate. As a result the selected
solution could not be the real function of time. The wave function
should definitely be the complex function of time. Only in this case the
Lagrange function is invariant with respect to combined transformation
including the time reversal and complex conjugation. To satisfy this
requirement the Lagrange function (3.5) is taken in such a form that the
generalized momentum conjugated to the field coordinate 9* is equal
to zero. As a result the Lagrange function (3.5) selects from the two
possible solutions those which corresponds to the desired relationship
between the particle energy and momentum: the particle energy should
increase with the increase of its momentum, in complete analogy with
the classical mechanics.

It should be noted, that the Lagrange function does not correspond
to some observable, therefore it needs not to be a hermitian function. It
should only provide us the correct equations of motion. Contrary, the
Hamiltonian function corresponds to the observable, because the volume
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integral of the Hamiltonian function is the energy. By substituting the
equation (3.5) into the equation (3.3) we get the following equation for
the Hamiltonian function

2 N *
H = 5 ViV + 4" U4,

It is seen that the Hamiltonian function is hermitian. The energy of a
particle is

_—,/¢* (r,t) [-%A+U]¢(r,t)dV=/w* (r,t) Ho (r, 1) dV.

We can see that, in accordance with the general definitions of the
quantum mechanics, the energy is the quantum mechanical average of
the Hamiltonian operator Hy. We have used the hat symbol in the last
equation to distinguish the Hamiltonian function from the Hamiltonian
operator.

3.1.3  Action for particle interacting with electromagnetic
field
The action for a particle interacting with the electromagnetic field
depends on the particle variables and potentials of the electromagnetic
field. The Lagrange function of the free electromagnetic field is

_ 1 p2_p2
Lf—g;(E - B?), (3.7)
where the strength of the electric E and magnetic B fields is defined by

the well known equations

E:—l%f;-—v B =cul A. (3.8)

The action for the particle interacting with the electromagnetic field
can be obtained from the action of free particle with the help of standard
replacement of the four-momentum operator by the generalized four-

momentum operator
¢ ¢ ¢’ ¢ ot ¢ ot q

In result we get the following equation for action of the particle inter-
acting with the electromagnetic field

_ 1 1aA )
—§//[ T +V<ﬂ) — (curl A) ]dth+

0 ) st tac
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The Euler-Lagrange equation, when S is varied with respect to ¥*, is

% = Ay - L (pA+ AP U+ 5L A% 4 apb. (310)
It is seen that the obtained equation coincides with the equation (2.4).
The variation of S with respect to 1 results in the equation complex
conjugated to (3.10).

Variation of action (3.9) with respect to A and ¢ results in the fol-
lowing equations for vector and scalar potentials of the electromagnetic
field

1 0’°A

iy + curlcurl A + V —47rj,
10 ..
Ap+ P divA = —4nwp,

where the charge p and current j density are defined by the equa-
tion (2.8).
If we shall use the Lorentz gauge

18p
P +divA =0

then the electromagnetic field equations become

1 &%A _ 471'j
Y =YV R

] 832; ¢ (3.11)
2oz - i

It should be noted that, in the frames of the probability interpretation of
the wave function, the particle is the point particle and the particle wave
field is the field of amplitude of probability for particle to be at given
point in space at given moment of time. Therefore the vector and scalar
potentials in the equation (3.10) are the potentials that are produced
by the external particles. The potentials of the electromagnetic field
produced by particle itself are determined by the solution of equations
(3.11). The electromagnetic field produced by a particle exists in the area
outside of the particle localization point. It is seen from the equations
(3.11), that the velocity of electromagnetic wave propagation is equal to
the light velocity. The velocity of particle propagation is always smaller
that the light velocity, therefore one can say that the particle has no
opportunity to interact with its own field.
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3.2 Symmetry properties with respect
to orthogonal transformations

The symmetry properties of solutions of the eigenvalue problem for
equation (2.12) are completely determined by the symmetry properties
of the physical system under consideration. For example, if we study
the motion of a particle in the external field of the axial symmetry, then
the admitted solutions should reflect this symmetry, i.e. the rotation
of the coordinate frame around the symmetry axes should not affect on
the quantum mechanical averages of the observable variables. Another
example is an isolated ensemble of the interacting particles. It is well
known that an isolated ensemble of interacting particles possesses sym-
metry with respect to rotation of ensemble, as a whole, around any axis;
the particle permutations should not change the energy of ensemble if the
particles in ensemble are identical, and so on. Hence, it is very usefull to
examine the symmetry and invariance properties of the equations. This
analysis gives us information on the properties of the admitted solutions.

3.2.1 Orthogonal transformations

The basic quantum mechanical operators are the generators of orthog-
onal transformations such as the spatial translation, three-dimensional
rotation, space inversion, etc. The energy of an isolated ensemble of par-
ticles is invariant with respect to these transformations, therefore these
operators commute with the Hamiltonian and, hence, the observable
corresponding to these operators are conservative.

The transformations of translation, rotation, and inversion can be
considered in the alternative way. For example, the rotation can be
considered as rotation of some object at the fixed position of the reference
frame, or as rotation of the reference frame at the fixed position of
the object. These two transformations are close connected with each
other, because in both cases we transform the particle coordinate. The
orthogonal transformations can be represented in the following general
form

T; = aiTj + as, (3.12)

where the matrices a;; satisfy the condition ajjaj, = d;x. The trans-
formations (3.12) include the spatial translations, three-dimensional
rotations, and space inversion.

The transformations of the particle coordinates with respect to the
given reference frame and transformations of the reference frame at a
given position of particle are mutually reciprocal one to another. Indeed
the spatial translation of the particle results in the following transfor-
mation of its coordinates r' = r +a. On the other hand, the translation
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of the reference frame at the same vector a results in the following
transformation of the particle coordinates r' = r —a. Nevertheless, these
two transformations are really not absolutely equivalent.

In general case, the equations for a particle moving in some external
fields are not possessed by the translational invariance. By moving the
particle alone we change the magnitude of forces that act on the particle
from the particles producing these external fields. The transformations
of the reference frame mean always that the coordinates of the considered
particle and coordinates of the particles, producing the external fields,
are simultaneously changed. The translational invariance is the property
appropriate to an isolated ensemble of particles only. The presence of
the external particles, having the fixed positions, means that the whole
system is not isolated.

The second difference is in the fact that the equations for interacting
particles, along with the particle equations, should include the equation
for the fields realizing the interaction. The symmetry properties of the
equations for the fields with respect to transformations (3.12) could not
coincide with the symmetry properties of the particle wave equations.
Therefore the symmetry properties of the equation for single particle can
be significantly different from the symmetry properties of equations for
an ensemble of interacting particles.

Let us consider the spatial transformations. By applying the trans-
formation (3.12) to the Schrédinger equation (3.10) for particle a we get

m@_*bag_):[ L (p;-qu;,(r;))2+qawz(r;)] v (v, (3.13)

2my

where Ap (rq) and ¢, (r,) are the potentials of the electromagnetic field
produced by the particle b in the spatial position of the particle a. In
accordance with the equations (3.11) these potentials obey the following
equations

2 .
(A’ - C%%) Ay (v t) = _an { - @_b[%* (r',) - V' (¢, 1) —

c 21y

2
— V't (r’, t) -y (r’, t) ] — TZ_:cwll’* (r', t) Al (r', t) A (r’, t)}, (3.14a)

1 82 *
(&= 25 ) b (0 = ~tmasti” (.06 (70). (3aa)

2
Notice that the d’Alamber operator A — %8—2 is invariant with

respect to any transformation prescribed by equation (3.12). Hence the
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variations of the field potentials can only be due to the variations in the
right-hand-sides of the equations (3.14).

The invariance of the equation with respect to the orthogonal trans-
formations (3.12) means, that there are such operators T', defined by

Y () =TOy(), ¢ (@) =TWe@), 4()=T4 ),

which transform the equations in the primed reference frame into the
equation in the initial unprimed reference frame. The operators T, real-
izing the above transformations, are the generators of the corresponding
transformations.

Under the spatial transformations (3.12), the momentum operator is
transformed in the following way

Pi = ai;.
Let us initially consider the infinitesimal transformations when the ma-
trix a;; is infinitesimally close to the identity matrix:
aij = 0y + €5 (3.15)

where €;; is the matrix of the infinitesimal transformation. As far

as matrix a;; is unitary matrix, then the matrix g;; is antisymmetric.
Indeed

Qi Qg = 5jk + €+ €5+ ... = 0jk-
At the infinitesimal transformation (3.15), the momentum operator is
transformed in the following way
pi = (0 + €55) Py,

therefore it is convenient to write the primed vector potential A’ (r') in
the following form

A: (1") = (6ij + Eij) Aj (I‘/) + 8 A; (I‘) . (3.16)

The first term in the last equation is due to the vectorial nature of A,
the second term is due to the variation of A in result of the infinitesimal
transformation of the radius vector r.

By substituting the equation (3.16) into the equation (4.13a), we get

(A - c%%;) [a:Ab; (r) + 6 Ay (r)] =

z_‘%“ [aijjbj (r) + 0jps (r) — 7738% (r) 0Auty (r)|, (3.17)
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where &j, (r) is the variation of the current density j,(r) associated
with the transformation of the wave function due to the infinitesimal
transformation of the radius vector r

W (1) =9 (x) + 09 ().

The first terms in the both sides of the equation (3.17) are mutually
canceled, because they coincide with the equation in the initial non-
primed reference frame. The residual terms establish the connection
between the variation of vector potential and variation of the wave
function, where both of them are due to the infinitesimal transformation
of the radius vector r.

The similar relation can be easily obtained for scalar potential ¢ (r, t),
but this relation is evident because both ¢ (r,t) and wave function are
scalar functions. Notice that under the infinitesimal transformation the
charge density is transformed in the following way

00 =00 (045 () (4 () 59 00) =1, 0p 0.)
3.18
By substituting the transformation (3.16) into the equation (3.13), we
get

j -

T 2m,

[(p - %Ab (ra))2 - 296g (p - %Ab (ra)> OA, (ra)] +
+ o (b (ra) + by (ra)) = H + 6H. (3.19)

Hence, the variations of Hamiltonian are completely due to the infinites-
imal transformation of the radius vector r and they are not associated
with the vectorial manner of the generalized momentum operator.

Thus the relativistic invariant form of the electromagnetic field equa-
tions and the quadratic dependency of the Hamiltonian on the general-
ized momentum operator exclude the variations of Hamiltonian associ-
ated with the vectorial manner of the appropriate variables and remain
only the variations that are due to the infinitesimal transformation of
the radius vector r.

3.2.2  Space inversion

The matrix a;; of the space inversion transformation is

-1 0 0
ai’=10 -1 0
0 0 -1
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The space inversion transformation is the discrete transformation. The
space inversion transformation of the wave function is given by

¥ (') = ¥ (=r) = Py (r). (3.20)
Hence, the operator, P, of the space inversion transformation is defined
by
P (r) = (-1).

The eigenvalues of the operator P are determined by the solutions of the
following equation

Py (r) = p(r). (3.21)
As we have shown in the previous chapter, the eigenvalues are
A==+l

Thus, the space inversion transformation shows us that the eigenfunc-
tions of the Schrodinger equation can be scalar or pseudoscalar functions.
As well as Pp = —p and Py’ = 1*1), then it follows from the
equations (3.14a), (3.14b) that under space inversion transformation the
electromagnetic field potentials are transformed in the following way

A ()= A (1) =—A®), ¢ ) =¢ (1) =)
Hence, by applying operator P! to the equations (3.13), (3.14) we
transform these equation to their initial unprimed form.

Thus, the coupled set of equations (3.13), (3.14) is invariant with
respect to the space inversion transformation.

3.2.3 Spatial translation

Let us consider now the spatial translation transformation. At the
infinitesimal translation of reference frame, da, the particle coordinates
are transformed in the following way

r =r - da.
By applying this transformation to the wave function we get
P () =¢(r—da) =19 (r)-0aVy(r) = (1 -0aV)y(r). (3.22)

Therefore, the operator of the infinitesimal spatial translation is defined
by

Tsa =1 — 6aV. (3.23)
In the case of the spatial translation transformation, the matrix &;; is
eij = 0, hence, in accordance with the equations (3.17)-(3.19), we get

H' =TpH, A'(r)=TuA(), ¢()=Tap(r).
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According to the definition of the operator of the infinitesimal spatial
translation (see (3.23)), we have

T () 8" () = T () Tl (')
Notice, that the equation (3.18) is the particular case of this general
relationship. It can be easily seen, that if we apply the operator Té"al to
both sides of the equations (3.13), (3.14) we transform them into their
initial unprimed form. Thus, the coupled set of equations (3.13), (3.14)

is invariant with respect to spatial translation transformation and the
operator of this transformation is defined by the equation (3.23).

3.2.4 Three-dimensional rotations

The matrix a;; describing the rotation by the angle ¢ around the z-
axis is

cos sin 0

a(R) = —sin(p cos(p 0
ij o 12 ¥

0 0 1

The matrix a{® is the matrix of continuous transformation because it
depends on the rotation angle ¢, which can be varied continuously.

At the infinitesimal rotation of reference frame around the z-axis, the
particle coordinates are transformed in the following way

=xz+8py, Yy =y-dpz, 2=z

Hence, the matrix ¢;; of the infinitesimal three dimensional rotation is

0 dp O
Eij = —5(p 0 0
0 0 0

At the infinitesimal rotation of reference frame around an arbitrary
axis the particle coordinates are transformed as

r =r - [dpr]. (3.24)

Hence, the transformation of the wave function at the infinitesimal three-
dimensional rotations is defined by

P (r') =4 (r) = o[ V] (r) = (1~ S [r V]) ¥ (r)
Thus, the operator of the infinitesimal three dimensional rotation is

Th=1-0¢[rV]=1—1idel (3.25)
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Hence, we get
P =p—[dop], A'(r)=TrA(r)-[0eA(r)], ¢ (r)=Tre(r).

By substituting the last equations into the equations (3.13), (3.14) and
taking into account that the terms proportional to £;; are mutually
canceled (see eq. (3.17)), we obtain finally

in?T00) — 7 fr (1),

2
(A L9 )TRA )

2o

2
(A 19 )TRgo = —4nTgp.

T

Thus, by applying operator Tp ! to both sides of the last equations we
transform them into the initial unprimed form.

3.2.5  Transformations including time axis

The Schrodinger equation is non-relativistic equation, therefore the
orthogonal transformations (3.12) do not concern the time axis in this
case. Nevertheless it is useful to discuss some transformations including
the time axis.

Time shift

The time shift transformation
t=t+4dt
is similar to the spatial translation transformation, and, as a result, it

can be analyzed in completely similar way. At the infinitesimal time
shift, the wave function is transformed in the following way

Y () =0+t =y (1) + 6200 = (1 +(5t%> "oy
Hence, the operator of the infinitesimal time shift is defined by
9
T(St - 1 + 5t5¥

Hence, if we apply the operator Tj; ! to both sides of the equations (3.13),
(3.14) we transform them to the initial unprimed form.
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Time reversal

There is a significant difference between the time reversal transfor-
mation and other transformations (the spatial translation, three dimen-
sional rotations, etc.). Indeed, the orthogonal transformations discussed
above are the transformations of the reference frame, which mean that, if
the observer O sees a system in a state 1, then the equivalent observer O,
who looks at the same system, will observe it in a different state 1/,
but the two observers must find the same quantum averages. When we
change sign of time in classical equations of motion, then the particle
velocity change sign. The symmetry of classical equations with respect
to time reversal means that we are interested in the conditions, at which
a particle will be involved into the motion reversed in time. Here, we
analyze the time reversal invariance of the Schrédinger equation.

So, at the time reversal transformation we change the sign of time,
t — —t. It is seen that at the time reversal transformation the left-
hand-side of the equation (3.10) changes sign. However if we make
the time reversal and complex conjugation simultaneously, then the
equation (3.10) becomes

Rt {% (mv ~IA, —t))2 +qp(r, —t)] o (r,—t).

ot
(3.26)
It is seen that with the help of transformations

W (I‘, tl) = w* (I', _t) - '(,b (I‘, t) )
A'(r,t)=A(r,—t) > —A(r,1), (3.27)
¢ (r,t) = ¢ (r,—t) = o(r,1)

we return the equations (3.13), (3.14) to their initial unprimed form.
The transformations (3.27) can be easily interpreted. Indeed in the
classical electrodynamics the particle will make motion reversed in time,
only in the case when the electric field remains invariable, E (—t) =
= E(t), while the magnetic field changes sign, B(~t) = ~B (). By
taking into account the definition of the electric and magnetic filed
vectors (3.8) we can see that at transformations (3.27) the electric field
is the even function of time and the magnetic field is the odd function

of time. Thus the time-reversed motion of particle is described by the
wave function ¢* (r, —t).

Charge conjugation

We have seen that under the transformations (3.27) the particle makes
the time-reversed motion. But in the previous subsection we have
assumed that the charges of the particles remain invariable. If we assume
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now that charges of the particles change their signs g, 5 — —¢a, then the
equations (3.13), (3.14) can again be transformed to the initial unprimed
form. In this case we should make the following transformation

¢I (I‘, t/) = w* (I‘, _t) - lb (I‘, t) )
Al (r,t) = A(r,—t) - A(r,t), (3.28)
o' (r,1') = @ (r,—t) = —p(r,t).
It is seen that these transformations are again in agreement with the
properties of the classical equations of motion.

The opposite parity of the vector and scalar potentials with respect to
the time reversal transformation follows from the relativistic invariant
Lorentz gauge condition

13y . .

T +div A =0,
therefore there is no necessity to consider the transformations differing
from (3.27), (3.28), because any other transformations will result in

the violation of the Lorentz gauge that we have used in deriving of
equations (3.11).

3.3 Many-electron atom
3.3.1  Action principle for many-electron atom

The discussion given in the previous section has shown us that the
equations for an ensemble of particles interacting via the electromagnetic
field are invariant with respect of spatial translation, time shift and
three dimensional rotations. It means that for the whole isolated system
including both particles and electromagnetic field the conservation laws
associated with the above mentioned transformations hold. Here, the
detailed analysis of the equations for an ensemble of particles coupled
by the electromagnetic field is presented.

The action for the ensemble of particles coupled by the electromag-
netic field is

2
S = 51;/ [(%%—‘:‘ + ch) — (curl A)Q]dth-l—
+ Z/ [ﬂff (271% D2 (I‘i)%)—
i frem)

(mw;‘ DY (ri)w;‘> <-ihvwi—% YA (ri)'gbi)]dVi dt.
i(#) §(#)

1
2mi
(3.29)
It is seen that the action is additive.
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The variation of action (3.29) with respect to ¢} and electromagnetic
field potentials results in the following equations

o [ (b2 T ) Fae] e G0

2mi

J(#0)
1 0°A 47
a5 =S Y, (3.30b)
1 8%
Ap— 252 = —47 Z pi (r,t), (3.30c)

where

. i ih * *
5 028) = S (700 (1) 1 0,0) =97 5,0) Vit ()=
LS ) A G (D | (331)

3(#4)
Pi (I', t) =4q Iw’b (I', t)|2 . (331b)
As well as the electromagnetic field equations are linear, then the

field potentials are the sums of potentials associated with the individual
particles of ensemble

A(r,t)= ZAi (r,t), o(r,t)= Z% (r,t).

In particular, if the ensemble of particles interacts with the electromag-
netic fields produced by some external particles (usually they are at
infinitely large distance from the considered ensemble), then the integral
field is the sum of the external field and fields produced by the particles
of the considered ensemble

A(r,t) = Aoy (r,t) + Z Ai(r,t), ©(r,t) = exs (r,t) + Z @i (r,1).

Following the general formalism, discussed above, we introduce the
generalized momenta of electromagnetic and matter fields

9L 1 [10A L,
H—a—A——Llﬂ_c(z—g'*'ng), Wl—aj;—lhwi

(3

and the Hamiltonian function

H:HA+ZM1];¢—L.
13
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The space-integral of the Hamiltonian function is the energy of the
system

E= é%/ Liz (873’%)2 + (curl A)? = (V)?

+ Z /wf [27:7 (P—%AJ’ (ri))2+Qi‘Pj (ri)} W dV;. (3.32)

z?]
(i#7)

dvV+

Let us use the following transformations
(Vo) = —pAp +div (pV ),

—d1v< BA) _10A 8 10Ag

82<,0
ot s Vet ‘patd VA= 2

Wé?“a
where the Lorentz gauge was used. By applying these transformations
to the equation (3.32) we obtain

:_/ (E2 + H?)dV + /m [ - "'A (rl))2]widvi.

(@#3)

1
T2

(3.33)

Thus, the energy of an ensemble of particles coupled by the electromag-
netic field is the sum of the electromagnetic field energy and kinetic
energy of particles. It should be reminded here, that the operator
(pi — (gi/c) A (r3)) /m; = v; is the operator of i-th particle velocity.
In the absence of the external fields the first term in the right-hand-
side of equation (3.33) is the energy of the electromagnetic field produced
by the particle of the ensemble. This energy depends on the relative
positions of the particles of ensemble. For example if the ensemble
consists of two oppositely charged particles the energy of electromagnetic
field is equal to zero when the positions of the particles coincide. If the
particles are far away from each other then the energy of the integral
electromagnetic field is not equal to zero. The energy of the integral field
increases with the increase of distance between the particles, because the
integral field produced by the two oppositely charged particles is non-
zero in a volume with the radius comparable with the distance between
the particles. The steady states of an ensemble of particles correspond
to the local or global minima of the energy functional (3.33) in the
space of the particle wave functions ¥;. When the interacting particles
approach to each other then the potential energy of their interaction is
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transformed into the kinetic energy of their motion. Hence the kinetic
energy increases. In the steady states the optimal ratio between the
potential and kinetic energy is realized. Thus the wave functions of the
steady states of an ensemble of particles can be determined from the
minima of the energy functional given by the equation (3.33).

3.3.2 Hydrogen atom

Let the considered ensemble of particles be the ensemble of the two
oppositely charged particles. This ensemble is equivalent to the hydro-
genlike atom. In the hydrogenlike atom one of the particles is electron,
another is nucleus. As we have mentioned above we can find the wave
functions of the steady states of this system by calculating the minima of
the energy functional given by the equation (3.33). The global minimum
of this functional is realized in the ground state of the system. The
subsequent steady states realize the local minima, therefore we can find
them by varying the energy functional under the additional condition of
the orthonormalization of any new wave function with the wave functions
of all previous steady states.

The energy given by (3.33) is functional of the electromagnetic field
potentials and particle wave functions. On the other hand the electro-
magnetic field potentials are in their turn the functionals of the particle
wave functions. Therefore it is convenient to exclude the electromagnetic
field potentials from the equation (3.33) and vary the functional with
respect to the particle wave functions only. The strength of the static
electric and magnetic fields is given by

E=~-Vp, B=culA.
Therefore with the help of the vectorial transformations
(Ve)? = —pAp +div (pVe),
(curl A)? = div[A curl A] + A curl curl A,

we get the following equation for the electromagnetic field energy

1
T 8rm

Ey (E* +H*)dV = —§17_r / (pAp+ AAA)dV =

1 1 .
= §/<ppdV+2—C/A_]dV, (3.34)
where we have used the Lorentz gauge, which, in the static case, is

div A =0.
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We have already mentioned that, in the frames of the probability
interpretation of the wave function, the elementary particles are the
point particles and the wave function ¢ (r,t) determines the amplitude
for particle to be at the moment of time ¢ in the spatial point r, therefore
the particle could not interact with its own field. Hence, in the case of
the hydrogen atom, the equation (3.34) reads

By =1 / on (re) pe (re) dVe + / e (tn) pr (rr) dVut
+ '2_6 /An (re)je (re) ave + 3 /Ae (rn)jn (rn) dVa,

where p, and j, are defined by the equations (3.31a) and (3.31b) respec-
tively; @p (ro) and Ay (re) are the potentials produced by the particle
b= (n,e) at the position of the particle a = (e,n).

By substituting the last equation into the equation (3.33) we get

* p2 1

= /we <27ri + 'Q’QeSon (re)> e dVe+
«f P2 1

+ /wn (221 + 5(171‘106 (rn)> U dVy —

n (re) pewe aVe—

/ YnAe (rn) PntPn Vi, (3.35)

2mc

where e = e (re) is the electron wave function in the hydrogenlike
atom, and ¥, = v, (ry) is the nucleus wave function. In derivation
of the equation (3.35) we have used the Lorentz gauge condition. It is
helpful to rewrite its again here

diva Ay (re) = 0. (3.36)
The solutions of the static field equations (3.30b) and (3.30c) are

ov(ra) = [ LT gy Ay (r) =1 [ el gy

|rg — 1) lra — 1)

These equations enable us to exclude the field potentials from the equa-
tion (3.35). By substituting in the latter equations the equations (3.31a)
and (3.31b) we get

op (ra) = / g (r |1,Z)b (rp) dVj, (3.37a)

Ap(rg) = & [ Yivobe gy (3.37b)

|ra ~ 1|
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where

= (= Zaa ) - Bismmlu Lo wa)

my |ty — sl

The last term in the equation (3.38) arises from the transformation of
the expression (py)* ¥ — ¥*py to the form ¥*py.

By substituting the equations (3.37a), (3.37b) into the equation (3.35)
and using the wave function normalization condition we get

* 1%k hz h2 eyn
B= [viun] - e gt K

21y, Ten

- e ( By, o ) }wed}n Ve dV,. (3.39)

The terms in the braces of the equation (3.39) have the following
physical meaning.

The first three terms in equation (3.39) are exactly coincide with the
hydrogen atom Hamiltonian (2.44), that we have used in the previous
chapter: \ \

Ho = —_Z%Ae - Qf;_nAn + L (3.40)

To clarify the nature of the last term in the equation (3.39) it is
convenient to use the following transformations. Firstly, the products
vaPs can be identically transformed to the following form

1 2
VnPe = P’ {[renvn] [renpe] + (renvn> (I’enpe) ‘|‘ (renve) + } )

en n

1 ih h2
VePn = 7'_:21; {[renve] [renpn] + (renve) (renpn) - :n—e (renvn) + S
(3.41)

Secondly, by substituting the equation (3.37b) into the Lorentz gauge
condition (3.36) we get

dive Ap (rg) = =2 / wbr“”v"‘”" vy = (3.42)

Notice here that in the previous chapter we have shown that the eigen-
functions of the Hamiltonian (3.40) have the form ¥ (r) = fi, (r,6) x
exp (img), where the functions fi, (r,8) can always be chosen as the
real functions. Hence, we have

iim = 2 () — 97 = e, L Vi ()P

and the condition (3.42) certainly holds.
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Thus if the transformations (3.41) and (3.42) are applied to the last
term in the equation (3.39) it finally becomes

2 a—
H” _ geqnht . L1, + ane 1, (343)

2memy,C T

en

where
hle = [renpe] , By = [rnepn] . (3.44)

It should be noted that the last term in the equation (3.43) is due to the
fact that the operators 1, and 1, are the noncommuting operators.
Thus we can see that the last term in the right-hand-side of the
equation (3.39) is responsible for the orbital interaction in the hydrogen
atom or the interaction of the electron and nucleus currents. This
interaction can be more precisely defined in the following way: the
magnetic field, resulted from the orbital motion of nucleus, acts on the
electron, moving in its orbit in hydrogen atom, and vise versa.

3.3.3 Integrals of motion

As we have mentioned above the wave functions of the steady states
can be determined with the help of variational principle

5 / Gt (H — E) pepn dVe dVy = 0,

where
H = Hy + Hy. (3.45)

By wvarying the energy functional with respect to the function
U (re,r) = e (re) ¥n (ry), we get the following wave equation

HV = EV. (3.46)

It is convenient to introduce the center-of-mass reference frame

R = MeTe + Mply

I =Teg—TIyp, e+ m
€ n

The momentum operators, associated with the radius vectors r and R,
are the relative motion momentum operator p and center-of-mass motion
momentum operator P, respectively. They are

gD e
P= 8r*Mpe Mpm

.. O
P:_Zhﬁ:pe‘l‘pm
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where M = m, + my,. The equation for the Hamiltonian Hg in the
center-of-mass reference frame becomes

2 2
Ho=———A, - 2 Ap+ Sl (3.47)

where m, = memy /M is the reduced mass.

It is seen from the equations (3.47) and (3.43) that the Hamilto-
nian (3.45) depends only on the radius vector re,. Hence, the Hamilto-
nian (3.45) commutes with the operator of the total momentum

[P,Ho+ Hy) = 0. (3.48)
The total angular momentum operator is defined as
RL = [repe] + [rnpn] = [rp] + [RP]. (3.49)

The orbital interaction Hamiltonian Hy, defined by the equation (3.43),
depends on the angular momentum operators hl, and hl, (see (3.44)).
Let us introduce the new auxiliary operators

hll = [rp] , hlg = [RP] y hlg = II‘P] . (350)

These operators enable us to rewrite the angular momentum operators
for electron and nucleus in the following form

le=l+73ls, L=k -3l
The commutation relations for operators L and 1; are
[La,lig] - ieag,yli,y. (3.51)
Hence
[Laa leln] = [Laa leﬂ] lnﬁ + leﬂ [Low lnﬁ] =
= i€apyleplny — t€aypleylns = 0. (3.52)

The Laplace operators A, and Apg of the Hamiltonian Hy can be written
in the following form

10 [0\ 1p 10 (90 1y

It can be easily shown with the help of calculations similarly to (3.52)
that the total angular momentum operator L commutes with the oper-
ators 12 and 13.
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Thus, we can see, the total angular momentum operator L commutes
with the Hamiltonian (3.45)

[L,Hy+ Hy) = 0. (3.53)

Hence, the total angular momentum of the hydrogen atom is the integral
of motion. This is in complete agreement with the general consideration
given in previous section, where we have shown that the equations for
an isolated ensemble of particles are invariant with respect to the three
dimensional rotations of the reference frame.

3.3.4  Energy level shift due to orbital interaction
in hydrogenlike atoms

We have shown that the Hamiltonian (3.45)commutes with the total
momentum and total angular momentum operators, therefore we can
take the eigenvalues of momentum operator P, angular momentum [ and
its projection m as the quantum numbers characterizing the state of the
hydrogen atom. If the atom is motionless then the total momentum is
equal to zero, P = 0. In this case the quantum mechanical average of
the operator 13 is equal to zero and we can use the following replacement

Ll + 1l — 1 — 212,

Notice here again, that minus unity in the left-hand-side is due to the fact
that 1. and 1, are non-commuting operators. The total angular momen-
tum is the sum of the electron and nucleus angular momenta, or the sum
of the relative motion and center-of-mass motion angular momenta. In
motionless atom the total angular momentum is the angular momentum
of the relative motion only. Of course, this operator commutes with
itself. Thus for the case of motionless atom the equation (3.46) becomes

(_ N Ei:%) Y(r)=Ey(r).  (354)

2m,. T MeMpC™ T

It is seen that the spherical harmonics are the solutions of the angular
part of this equation. Hence, we have

% () = £ (r) Yim (6,).

and for radial part of the wave function we get the following equation

&ef  2df 2m.E | 2m.Ze*1  1(1+1)  2Ze1(1+1)
W+Fd_r+<h2 e e w0

(3.55)
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It is convenient to introduce the dimensionless coordinate z and en-
ergy E”:
2
r=_, E= _hE_Q’
ap 2mrag
where ag = h?/(m,e?). By substituting these transformations into the
equation (3.55) we get

d2f  2.df ;270 1(l+1) omy L(L+1)\ ,
d_ﬁ+5%+<E+7" —— +2Za"r—=—— | [ =0, (3.56)

where « is the fine structure constant

62

As far as the relative energy of the orbital interaction is proportional
to a®me/my, we can consider it as a correction to the energy of Coulomb
interaction of particles. According to perturbation theory methods the
first order correction to the energy of steady states is determined by

(3.57)

AESlZn = /w;lmHllwnlde- (358)
To make the numerical estimations we need in the following integrals
o0
/T—13Rfﬂ(r)'r2 dr
0

where R,; are the radial wave functions for the problem of electron
motion in Coulomb field. These functions were calculated in the previous
chapter. By substituting R, given by (2.30) into the above integrals
we get

o
3
1p2on2g (22} 1
/T3Rnl(r)r dr = (naB> P (3.59)
0

By substituting the equation (3.59) into the equation (3.58) we obtain
the following equation for the magnitude of the energy shift

47%** m
AEW = 22 T .
where the Rydberg constant Ry is defined by
4
Ry="0°_ (3.61)

2h?
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It is useful to make the following remark concerning the for-
mula (3.60). We can see from the equation (3.59) that the diagonal
matrix elements (3.59) are divergent at [ = 0. On the other hand the
energy shift (3.60) is not. This is due to the fact that the energy of
orbital interaction is proportional to [ (I + 1), and this product, being
in the numerator of the equation (3.60), cancels the same product in
the denominator of this equation. On the first glans, it is looks like
that including of the case of | = 0 into the general formula (3.59) is
an artificial trick, but we should remember that the quantum number [
determines the angular momentum of the relative motion of particles.
If the angular momentum of relative motion of particles is equal to
zero it does not necessary mean that the particles are immovable. As
we have mentioned above, the origin of the orbital interaction is in the
interaction of the currents due to the motion of particles. Hence if the
particles are not motionless then the currents are non-zero.

Thus the energy level shift due to the orbital interaction (i.e. the inter-
action of particle currents via the magnetic field) is about AE ~ 1078 Ry
for the ground state and decreases with the increase of the principle
quantum number n. According to equation (3.60) the scaling law for
this correction is

Z4%?  me
nd@l+ 1) my’

The Fig. 3.1 shows the diagram of 25, 2P and 35, 3P, 3D energy levels
in hydrogen atom. We can see that the account for the orbital interaction

AEgll) ~

38,3P, 3D T —{— 3 *3}) """ * 3D

457 THz

25, 2P

Figure 3.1. The hydrogen level shifts due to the orbital interaction
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removes the degeneracy of the nL energy states and as a result the
frequencies of nL «» n/L’ transitions are changed. But the comparison
of the Fig. 3.1 and Fig. 1.1 shows that the calculated spectrum is not
yet coincide with the results of the experimental measurements, the
experimentally measured spectra show that there is a splitting of the
energy levels in addition to their shift with respect to the Bohr formula.
The further progress in the description of the hydrogen spectrum was
achieved when the idea on the electron spin was implemented into the
theory.



Chapter 4

PAULI EQUATION

The series of experiments made in 1921-1925 years gave basis to
assume [47-49] that the electron possesses the inner angular momentum
of h/2 and magnetic moment of u = ehi/(2moc). The operator of the
electron inner angular momentum, or spin, can be introduced in the
way similar to the angular momentum associated with the translational
motion of particle.

4.1 Spin

It has been shown in the previous chapters that the angular momen-
tum operator [rp] is the generator of the group of three dimensional
rotations. The angular momentum [ and its projection m determine the
angular dependency of the particle wave function and the transforma-
tion properties of wave function with respect to the three dimensional
rotations. The angular momentum of an isolated system of particles
is the integral of motion, and it does not depend on the choice of the
reference frame. However, the projection of the angular momentum m is
conservative, only in the case, when we rotate the reference frame around
the axis of the system rotation. If we decline the z-axis of the reference
frame from the axis of particle rotation then the projection of the angular
momentum on the new axis z’ ceases to be the conservative value. Hence,
in this case, the wave function becomes a superposition of the wave
functions with all possible projections of the angular momentum onto
the z’-axis of the new reference frame. As far as the angular momentum
conserves, then the wave function of particle with the definite angular
momentum and its projection, v, becomes a superposition of 21 + 1
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components with the different projections m’ in the new reference frame

Yim =Y (I | U|lm) gy
m/

Thus, under the three-dimensional rotations, the 2/ + 1 wave functions
Yym are expressed in terms of 2] + 1 wave functions s, therefore
these functions form the irreducible representation of the rotation group.
Hence, the angular momentum [ defines unambiguously the classification
of the particle states with respect to the three-dimensional rotation
transformation.

4.1.1  Spin operator

It is clear from the preceding discussion, that if the particle possesses
the inner angular momentum s then to describe the inner degrees of
freedom we can introduce the multi-component wave function % (r, o)
which depends on the quantum number o having (2s+ 1) possible
values. The angular momentum operator acts on the space coordinates
of the particle wave function, therefore, in this case, the rotations of the
particle and the rotations of the reference frame are equivalent transfor-
mations. The spin operator s = (sz, sy, $,) acts on the spin variable of
the wave function ¢ therefore the form of this operator are exclusively
determined by transformation the reference frame rotation. Indeed, we
can always assume that the particle is at the origin of the reference frame,
hence its coordinates remain invariable. However, the equivalence of the
rotations of particle and reference frame for the translational degrees of
freedom results in the coincidence of the commutation relations for the
spin operator with commutations relations for the angular momentum
operator

(Sz, 8y = 1Sz, [Sy,8:] =18z, [z, 82) = 18y (4.1)
These commutations relations can be obtained directly. Indeed it can be
easily shown that the successive infinitesimal rotations of the reference
frame, initially around the x and y axes and then around the same axes
but in the inverted sequence, are equivalent to the rotation around the
z-axis by the angle equal to the product of the rotation angles around
the z and y axes.

The similarity in the commutation relations results in the similar
properties of the spin and angular momentum operators. The spin
square operator

s’ =52+ sg + 82 (4.2)
commutes with any spin projection operators. Hence the spin square
operator can have the common set of eigenfunctions with the spin
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projection operator. The joint eigenfunctions of the operators s and s,
obey the following equations

S2Ugy = 8 (s+ 1) usg, SzUse = OUgg, (4.3)

where s =0, 1/2, 1, 3/2, 2,...and 0 = —s,—s+ 1,...,s.

The total angular momentum is the sum of the orbital angular mo-
mentum and spin

j=1+s. (4.4)

As far as operators 1 and s are applied to the different arguments of
wave function then they are commuting operators. The total angular
momentum operator j obeys the same commutation relations as oper-
ators 1 and s, because, as we have mentioned, the equations (4.1) are
the general form of the commutation relations for arbitrary angular
momentum operator.

4.1.2  Pauli matrix and spinors

The wave function of spin-1/2 particle is two-component, as well as
(2s+1) = 2. It is convenient to take it in the form of the two-row
column, called by spinor,

¢1/2 (r)

r)= . 4.5
P (1) (d)_l/z(r) (4.5)
Hence the spin projection operators are proportional to the Pauli ma-

trices o = (03,0y,0;)

1
s = 50’, (46)

Op = <(1) (1)) oy = (S BZ> oy = (é _01>. (4.7)

The Pauli matrices o, possess the following properties

where

U%:agzagzl,

OyOy =10;, 0y0, =10z, 0,04 = i0y, (4.8)
[0a, 08] = 2i0y,

in the last equation the indexes (a,(,v) are (z,y, 2) or any sequence
of them obtained by the even number of permutations of the indexes
(x,y,2). The eigenfunctions of the operator o, corresponding to its
eigenvalues ¢ = £1 are

o, (é) = (+1) @ o, (2) = (~1) (‘f) (4.9)
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The equations (4.8) enable to derive the following identity
(cA) (6B) = AB + ic[AB]. (4.10)

The components of the spinor wave function (4.5) are transformed at
the reference frame rotations in the following way

YL = ayr +ba, Yo = cyfr + difo,

(ii) =U GE) = (Z Z) (ﬁ;) : (4.11)

The elements of the rotation matrix U are in general case complex and
depend on the angles of the reference frame rotation. As far as the
matrix U defines the transformation rules for the particle wave functions,
the elements of this matrix should satisfy the definite requirements.

Firstly, the matrix U should be the unitary matrix, because, in
accordance with the probabilistic interpretation of the wave function,
the bilinear combination

vt =7 ) (1) = i+ vis

or

defines the probability for particle to be at specific spatial point. This
probability should not depend on the reference frame

P ()Y (£) =9 () UTU (r).
Hence
Utu =1
or
Ut=u"L (4.12)

Secondly, the matrix U should be unimodal. This is a general condition
for any matrix of rotations. It means

ad —be = 1. (4.13)

When the condition (4.13) holds the wave function normalization con-
dition does not depend on the rotations of the reference frame

[er @y a = [sr@vmav -1

Under the condition (4.13) the matrix U~! is
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By equating it to the conjugated matrix U™
a*
Ut = <b* d*) s
a=d*, b=-—c" (4.14)
It is seen that if the conditions (4.13) and (4.14) hold, then the four com-
plex parameters a, b, ¢, d are the functions of the three real parameters.
These three parameters are the three rotation angles that determine the
reference frame rotation unambiguously.
Let us make an infinitesimally small rotation d¢ around the z-axis.
The rotation matrix of this transformation is 1 + idps,. The 2z projec-

tion of spin under this rotation remains invariable therefore the wave
function 1 (o) takes the form 1 (o) + 6¢ (o), where

5 (0) = idps: (o) = io9) (o) .
Hence for the finite rotation angle ¢ we get

¥’ (o) =1 (o) exp (iop). (4.15)
If the rotation angle is equal to ¢ = 2w, then the wave function
components are multiplied by factor of exp (i270) = (—1)2” which is the
same for each component ¢ at any spin s. For the spin-1/2 particle this
factor is equal to —1. Thus the 27-rotation brings the particle into the
initial state at integer spin s and changes the sign of the particle wave
function at half-integer spin.
It should be noted that, if the condition (4.13) holds, then the follow-
ing bilinear combination is invariant

Y1y — ot = (ad — be) (Y12 — Yapr) = (Y192 — thae1),
this bilinear combination corresponds to the zero spin particle consisting

of the two spin-1/2 particles. On the other hand, the condition (4.12)
yields the following transformation

UL+ 5Ty = Pin + B3t
By comparing the last two transformations we can see that the compo-
nents ¥ and 3 are transformed as 1, and —, respectively. The same

result follows from the transformation (4.11) directly. Indeed according
to (4.11) we get

2 =aps+b(—9]), P17 =c(—¢3) +dyi.
This property of the spinor wave function is directly related to the

symmetry of the wave equation with respect to the time reversal trans-
formation.

we get
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4.1.3 Hamiltonian of Pauli equation

In classical electrodynamics both angular momentum and magnetic
moment of the particle are described by the axial vectors. The angular
momentum operator in quantum mechanics is also the axial vector,
therefore the spin particle possessing the inner angular momentum will
possesses the inner magnetic moment

p= —gs. (4.16)

Thus the Hamiltonian for the spin particle interacting with the electro-
magnetic field is
H———i-( —EA)2+e —uB (4.17)
- 2m0 p c SO wi, .
where
B =cul A.

The product of the two axial vectors p and B is invariant with respect
to the space inversion transformation. Thus the Hamiltonian (4.17) for
the particle moving in the spherically symmetrical potential, ¢ (r) =
= ¢ (1), is invariant with respect to the space inversion transformation.
As we have shown in the previous chapters, it means that the parity
operator, P, commutes with the Hamiltonian (4.17).

The total angular momentum of a spin particle is the sum of the
orbital momentum and spin

Bj = hl+ hs = [rp] + 2o (4.18)

The magnetic dipole interaction breaks the spherical symmetry of the
Hamiltonian, but if the magnetic field is the axially symmetric then the
total angular momentum projection onto the symmetry axis remains
conservative. The vector potential of the uniform magnetic field is given

by

A() = % [BQT‘] .
By substituting this expression into the Hamiltonian (4.17), we get
H= Ll +U(r)+ —ﬁBo[rp] + < [Bor]* + |—le—hBos. (4.19)
2mg 2mge 8mgc? mgc

By taking into account the definition [rp] = Al, the last equation can be
rewritten in the following form

62

H=Hy+pg(1+2s)Bg + [Bor)?, (4.20)

8mgc?
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where Hy is the Hamiltonian defined by the equation (2.2) and ug is the
Bohr magneton:

_ lelh
= Imoe”

KB (4.21)
By assuming that the z-axis is directed along the magnetic field direc-
tion By = e,By we can see that the z projection of the total angular
momentum 5
. 1

z% + 502

commutes with the term of the Hamiltonian (4.20) proportional to the
magnetic field

Je=l+ 8, =~

[jz>lz + 237,] = [jzajz] + i [UZa Uz] =0.
The rest of the terms of Hamiltonian (4.20) do not depend on the spin
operator and, hence, commute with the operator o,. The operator [,
commutes with Hy and with the last term in the Hamiltonian (4.20),
because this term does not depend on z coordinate. Thus, the Hamil-
tonian (4.20) commutes with the z projection of the total angular
momentum operator.

We have seen that the time reversal invariance of the Schrédinger
equation relates with the transformation ¢* (—t) — 4 (¢). But the mag-
netic moment projection, as well as the angular momentum projection,
changes sign at the time reversal transformation, therefore the wave
function of spin-1/2 particle should be transformed in accordance with
the following rules: *(1/2) — ¥ (-1/2) and ¥* (-1/2) — —y(1/2).
These rules are agree with the spinor wave function transformations
considered in the previous subsection.

Thus, we have seen that the Hamiltonian (4.17) for the particle
interacting with superposition of the Coulomb field (as a special case of
the spherically symmetric potential ¢ (r) = ¢ (r)) and axially symmetric
magnetic field commutes with the parity operator and z projection of
the total angular momentum operator. Therefore the energy, F, parity,
p, and total angular momentum projection, M = m + o /2, are the
set of quantum numbers characterizing the eigenstates of this problem.

4.2 Geonium atom

The problem on the particle motion in uniform magnetic field provides
the simplest model of the geonium atom. This model describes the
cyclotron motion of a particle in the Penning trap and precession of its
spin.
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4.2.1 Electron motion in homogeneous magnetic field

Let us consider the problem on the electron motion in the homo-
geneous magnetic field. By using the Hamiltonian (4.19) we get the
following eigenvalue problem
e’ B2

Smo 62

R . o) 2 _
"%A - ZNBBO% + p* +usBoo, | ¥ (r) = EY(r). (4.22)

Recalling that the operators [, and o, commute separately with the
Hamiltonian (4.22) it is convenient to take the wave function in the
following form

¥ (r) = uo exp (imep + ik;z) fo (p) , (4.23)
where the spinors u, are the eigenfunctions of operator o;:
O g = Olg.

By substituting the wave function (4.23) into the equation (4.22) we get
the following equation for the radial wave function f (p)

&fy | 1dfs
dp* T oa T
2m0E 5 el Bo _m @)2 2\ _
+( e K- G mto) =T (m 2\ fo=0. (4.24)
By introducing the new variable
_lelBo 2 2
T R P T

and the new unknown function R (z)

fo(z) = ™2 exp (—%) Rs ()

we can transform the equation (4.24) to the equation for the confluent
hypergeometric functions

xR”+(m+1—x)R’—(T2il—u)R=o, (4.25)
where
ke 2moE 9 el Bo
V= 2le| By ( 12 k2 he (m+o)).

By using the solutions of equation (4.25), the solution of the equa-
tion (4.24) can be chosen in the following form

fp=C (np2)m/2 exp ( - %I)Q)F (%1— —v,m+ 1, np2> . (4.26)
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The solution (4.26) satisfies the boundary condition at p — oo and it is
not divergent at p — 0 if the following condition holds

m; L, =-n, (4.27)

where n is the non-negative integer, and m is arbitrary positive integer
or negative integer obeying the condition

|m] < mn. (4.28)

The condition (4.27) results in the following equation for the energy
spectrum

_ 1+0 hzkg .
Eymk, =2uBo (n +m+ —2—) + ome

R
s, (429)

= ‘Z,UIBB()(n“‘ M+ %) +

where M = m+0/2 is the 2z projection of the total angular momentum.
It follows from the equation (4.29) that the states with the same mag-
nitude of sum n + M are degenerated.

The eigenfunction (4.23) is the product of the eigenfunctions of the
angular momentum and spin. The operator of the total angular momen-
tum projection, j, is also integral of motion. The eigenfunctions of the
this operator

Jzum = Mupy
are the following spinors
ap = exp (imy) (4.30)
exp(i{m+ 1))/’ '
Indeed,

Iz <expe(};IZr(;T01)) w)) - (m - %) (expe(}?zf(ﬁ-ﬁ)) w)) '

Hence, the superpositions of the eigenfunctions (4.23), corresponding
the same energy eigenvalue, produce the eigenfunctions of the operator
of total angular momentum projection.

As already mentioned, at the non-negative integer n, the confluent
hypergeometric functions are coupled with the Laguerre polynomials,
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therefore the normalized wave functions can be written in the following
form

K

wnmokz ( ) = ‘ITLW

(—1)" ug LI (kp?) (an)m/Q X
2
X eXp ( - %) exp (imp + ik.z), (4.31)

where L the spatial size of the region available for electron motion along
the direction of the applied magnetic field.
The explicit form of the normalized radial wave function

2kn!

e U (s8%) ()™ e (= )

for a number of the lower eigenstates is given below :

fam (p) =

1n:0,m:0 .
fOO(P)=\/ﬁeXp(—'f§_);
2 n:l,m:]_
2
fur o) = mp (sp? = 2) exp (= 5-);
3 n:l,m:()

flo(p) :\/ﬂ(ﬁpz—l)exp(— ﬂ);

4dn=1m=-1

2

fio1(p) = V2kpexp ( — n—pz).

The spatial profiles of these functions are shown in the Fig. 4.1. The
Fig. 4.2 shows the energy level diagram. As far as the magnitude of the
possible negative projection of the orbital momentum is limited by the
condition (4.28), it is natural to assume that at a given n the projection
of the total orbital momentum lies into the interval —n —1/2 < M <
<n+1/2.

The energy of the state, with the largest negative projection of the
total angular momentum M = —n — 1/2, is equal to zero and the
eigenfunctions of these states are

fa—n = \/E (kp?)" "2 exp ( - ’fgﬁ) (4.32)
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Figure 4.1. The radial wave functions of the geonium atom: (a¢) n = 0, m = 0;
Bn=1,m=4{)n=1,m==-1;(d)n=1,m=0
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Figure 4.2. 'The energy level diagram of the geonium atom

According to the equation (4.20) the total magnetic moment is
m = —up (14 2s). (4.33)

In the state of the smallest energy the projection of the total magnetic
moment is

my=ug(n+1).

Thus in the state of the smallest energy the magnetic moment is directed
along the applied magnetic field.
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The state of the largest energy at a given n is the state with M =n +
+ 1/2. The energy of this state is

Ep M=nt1/2 = 2u8Bo(2n + 1) = hwy (2n + 1),

where wy = |e] By/(moc) is the cyclotron resonance frequency. In
this state the total magnetic moment is directed toward the applied
magnetic field.

4.2.2  Strength of induced magnetic field

The orbital motion of electron results in the appearance of the induced
magnetic field of response. It will be shown in chapter 6, that, for the
case of the Pauli equation, the charge p(r,t) and current j(r,t) density
are defined by

p(r,t) = eyt (r, t)w(r t),
J() = 22 (Tt gt V) — £ gAY + e (yhoy).
By substxtutmg the wave function (5.29)7 for the current density we get
43/2 n! oM 2\ 1 (M=1/2) (.. 2
<L =1 ) e (k) L (")
« L%MH/Z) (lip2) ’

J= —eppupc

where we have agsumed that k, = 0. It is seen from the last equation
that the current density is equal to zero in the states of the smallest
energy M = —n — 1/2.

In order to calculate the magnetic field of response we can use the
Maxwell equation

curl B = 4%_]

By using the above equation for the current density we obtain

. 4np3 n! _ (m) 2 _
B, = I it / (m+z)z™ Lexp (—x) (Ln (ac)) dx
4.‘-’1?/13 Tl' . 2 2 2
0L ) (kp*)™ exp (—rp?) (Lgm) (kp )) . (4.34)
Particularly, for the states of m = —n we have

1 %1 9
B=-e,By(l+0)— — T (kp%)" exp (—kp?) .

mo



Hydrogen atom 81

Tt is seen that the magnetic field of response is equal to zero in the states
of the smallest energy M = —n — 1/2. This is quite natural, because, as
we have mentioned above, the electron current density is zero in these
states.

p/po p/Po
0 1 2 3 4 1 2 3 4
L | | 1 1 S| s | L 1 L 1 o |
B, 0] B, 7]
—0.25 —0.5-
—0.50 ~1.01
~0.75 1 ~1.57
] (@) } (o)
-1.00- —2.0-
p/po p/po
1 2 3 4 1 2 3 4
" 1 A i 1 1 Y J i I L L 1 i i J
B 7 B, 0]
0.5 —0.57]
T 1.0
~1.01 .
] ~1.5
~1.5 () —20- (@
—2.0- —2.5-

Figure 4.3. The spatial profile of the induced magnetic field produced by particle in
the state: (a) n=0,m=0;(b)n=1,m=1(c)n=1,m=-1;(d)n=1,m=0

Fig. 4.3 shows the spatial profiles of the magnetic field for a number
of eigenstates. It is seen that the induced magnetic field is directed
opposite to the direction of the inducing magnetic field. It means
that in the frames of theory based on the Pauli equation the electron
response is diamagnetic. This is in complete agreement with the classical
electromagnetic induction law, i.e. the induced currents tend to decrease
the magnetic flux of the inducing magnetic field.

4.3 Hydrogen atom

4.3.1  Action for ensemble of non-relativistic spin-1/2
particles

There are the two moments only, that distinguish the Pauli equation
from the Schrédinger equation. Firstly, the wave function of the Pauli
equation is the spinor. Secondly, the Hamiltonian of the Pauli equation
includes the interaction of the electron inner magnetic moment with the
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magnetic field. Therefore, the action for an ensemble of the spin-1/2
particles coupled by the electromagnetic field can be written in the form

= %/ [(i%‘? +V<p) — (curl A)Q] dv dt +
+ ) /{ij(ihf{;ﬁi — qip; (ri)¢i) -
W)
— 5 (0V0F — LA () ur) (~inVas - LA () i) +

+ 4w Bj (ri) wi] dVidt (4.35)

The variation of this action with respect to ¢;" and the field potentials
results in the following equations

(2

. 2
i a;: — Z [571)1_ (pi — gclAj (I‘i,t)> + qipj (ria ) wB (r“ )] Vi,
J

)
(4.36a)
1 8°A dr .
i
1 0
- ?Eg = —47 Zpl (I‘, t)a (4360)
i

where

08 = [0 (0 (= 9 ()= & S A () )+
i 3(#4) :
<thz/)+(rt ZA (r,t) ] (r ))wi(r,t)]+

+ ¢ curl (¢ (r,t)w;eh; (r, 1)), (4.37a)

pi (r,t) = g (v, t) i (r,t). (4.37b)

Since the field equations (4.36b), (4.36¢) are linear equations, then the
field potentials are the sums of potentials produced by the individual
particles

A(r,t)= ZAi (r,t), @(r,t)= Z(p,- (r,1).
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Particularly if an ensemble of particles interacts with some external fields
(usually produced by the external macroscopic bodies), then the integral
field is the sum of the fields produced by the individual particles and
external field

A(r,t) = Aext (r,8) + ZAi (r,t),

(4.38)
P(1,0) = o (1,1) + Y 1,).

The generalized momenta canonically conjugate to the electromagnetic
and matter fields are defined by

8L 1 [10A A
—a—A—m(caﬁW)’ TS o

The Hamiltonian function is
H= HA—I—ZTFH,/.% — L.
i

The space-integral of the Hamiltonian function is the energy of a system

E= 8% / [-32-(%—‘;‘)2 + (curl A)? — (W)Q] dv+
+ z /1/)z+ [%z- (Pi - %A]’ (ri))2 + qipj (ri) — w;B; (i) | ¥i dV;
ij

(i#7) (4.39)
where the electromagnetic field potentials obey the equations (4.36b),
(4.36¢).

The energy of electromagnetic field is defined as

_ _ 1 2 | B2
Ef_/Hde—"&{/(E +B?) dvV,
where the electric and magnetic fields are
1A
E= T Ve, B=curl A.

By substituting the latter equalities into H, we can transform it to the
following form

1 11 /6A\?
Hy = = (E2 + B2) = S_w{—ci (5{> + (curl A)? — (VQO)2}+

1 /10A
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In the previous chapter we have already used the following vectorial
equalities

(V)? = —pAgp + div (pVy),

1. OA 10A 0 _10A 1 0%
2 div <(’D~67> T Vet (patdWA TR E

With the help of these equalities and equation (4.36¢) the field energy
becomes

Ef = 8L7T/(E2 _+_B2) dV — Z q,-/lbj_ (I‘i) Pj (I‘i) Py (I‘i) dV;.
1,9
(i#4)

By substituting this equation into the equation (4.39), we finally get

1 2 2
E=_ [ (E*+B?) dv+

: 2
+ Z /1/):_ {57171 (pi - %Aj (I‘z)) — ;B (I‘i)] P dVj. (4.40)
i,
(i#7)

Thus, the energy of an isolated system of particles is the sum of the
energy of electromagnetic field, produced by these particles, the integral
kinetic energy of their motion, and the integral energy of interaction of
the particle magnetic moments with the magnetic field of a system.

It should be noted that equation (4.40) is gauge invariant. Indeed
under the simultaneous transformation of the wave functions

¥; (r,t) = i (r,t) exp {é Z gix; (r, t)] (4.41a)
J
and electromagnetic field potentials
Al (r,t)=A(r,t)+ ZV)@ (r,t)

@' (r,t) = @ (r,t) — %Z 8Xia(:,t)

1

(4.41b)

the equation (4.40) remains invariable.



Hydrogen atom 85

4.3.2  Orbital, spin-orbital, and spin-spin interactions

Let us consider the interaction of the two spin-1/2 particles. This
problem enables us to model the hydrogen atom again, and, as a result,
to clarify the new features of the hydrogenic spectra associated with
the spin of electron and nucleus and originated from the interaction of
spins with the intra-atomic magnetic field. The general formalism of
the analysis of the two-particle problem was developed in the previous
chapter. According to this formalism, the wave functions of the steady
states of a system are determined by the variation of the energy func-
tional (4.40). The global minimum gives us the wave function of the
ground state, the subsequent steady states realize the local minima of
the energy functional (4.40).

The energy given by (4.40) is functional of the particle wave functions
and potentials of the electromagnetic field. On the other hand, the
potentials of electromagnetic field are the functionals of the particle wave
functions. Therefore we can vary the energy functional over the particle
wave functions allowing for the constraint equations. Or, we can exclude
the electromagnetic field potentials from the equation (4.40) (retaining
only those part of the field energy that depends on the relative position
of particles) and vary the energy functional with respect to the particle
wave functions alone.

In steady state case the equations relating the electric and magnetic
fields with the field potentials are

E=-Vy, B=culA.
By using now the vectorial equalities
(Ve)? = —pAp + div (pVy),

(curl A)? = div[A curl A] + A curl curl A,

we get the following equation for the field energy depending on the
relative position of particles

1 1
Ef=_— (E2+B2)dvz—gr-/(goAcerAAA)dV:

. .

Notice that in the latter equation we have used the Lorentz gauge
condition. In steady-state case this condition is

divA = 0.
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Taking into account that the particle could not interact with its own
electromagnetic field for the hydrogen atom we should write

By =3 [on ) pe e aVet 3 [[velon) pn () aVict
+2_C/An (re)je (re) d‘/e+§/Ae (rn>.]n (rn) dVy,

where p, and j, are defined by the equations (4.37a), (4.37b), ¢ (rq)
and Ay (r,) are the potentials produced by the particle b = (n,e) at the
position of the particle a = (e, n).

By substituting the equation (4.42) into the equation (4.40) we get

2 2
:/"/’: PE +EQe<Pn(re) Pe d‘/e“i‘/?/)j[ Pn +%Qn¢e(rn))¢ndvn_
Zme /"ﬁ:A (re) Pethe dVe — Qn /'(/J:A (rn) Pntn dVi—
‘§/¢e u‘e n re)d)edVe_E/wnUn e rn)d)nan (443)

where 1), = e (re) is electron wave function of the hydrogen atom,
and v, = ¥, (ry,) is the nucleus wave function. Deriving of the equa-
tion (4.43) we have again used the Lorentz gauge condition

divy Ay (rg) =0. (4.44)

In steady-state case the equations (4.36b), (4.36¢) have the following
integral solutions

ovleo) = [ 2L a,
Ao =1 [ 2 ay,
By substituting here the equations (4.37a), (4.37b) we get
b (00) = [ () 2 () W (4.452)
Ap(ra) = & [0 gy —c‘“l (m) gy (qasp)
¢ | |ra—ry g — 1

— Qb/dfb rabvb d)b dV +/w;—3rab (p'bra;)) _ubrgbwb d‘/b7
Tab
(4.45¢)
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where

ifi|ry
2

1 - 1
== <pb LA,y - Pl nlg, ) S (a6)

lra — 1o

Notice, that the last term in the equation (4.46) is appeared due to the
use of the following transformation in the equations (4.45b), (4.45¢):
with the help of integration by parts the expression (py))* ¢ — ¥ py
can be easily transformed to the following one, ¥+ pi.

By substituting the equations (4.45a)—(4.45¢) into the equation (4.43)
we get

h? R e
E:/wmg{—m Ao — 5—Ap 4 22

e n Ten

Jeldn Pe Pn Qe Wp[TenPe]  Gn M [TnePn)
2 V= +Vp——) = — 3 T 3 -
2C°Ten Me My MeC Ton MpC Ton

_ 2
_ 3(perm) (p,nrsen) Kelly,Ten } we/(/)n dVVe an (447)

Ten

where 1.1, is the direct product of the electron and nucleus spinor
wave functions. The equation (4.47) is the desired form of the energy
functional which is the functional of the particle wave functions only,
and the potentials of the electromagnetic field were excluded with the
help of the electromagnetic field equations.

Let us dwell on the physical meaning of the different terms in the
equation (4.47).

(1) The sum of the first three terms coincides with equation for the
Hamiltonian of the two spinless particles with the Coulomb interaction
between them
h? h? deldn

Ae — —A, + . (4.48)

Hy=——
0 2me 2my, Ten

The eigenvalues and eigenfunctions of the Hamiltonian (4.48) have been
found in the Chapter 3.

(2) The forth term in (4.47) we have already met in the Chapter 3.
With the help of the vectorial transformations

en n 2m"

1 ih h?
VpPe = —5— {[renvn] [renpe] + (renvn) (renpe) + T;_ (renve) + } y

1 iR h2
VePn = —5— {[renve] [renpn] + (renve) (renpn) - :r_L (renvn) +

Ten 2mMe

(4.49)
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and the use of the Lorentz gauge condition (4.44)
divg Ay (rg) = -2 / Y ravey ra Vil gy g, (4.50)

this term can be transformed to the following form

2 _
H” = Gegnlt 5 Ll, + })’nle 1’ (451)

2MeMyC r

EN

where
hle = [renpe} ,  hly = [rnepn] . (452)

The Hamiltonian (4.51) describes the interaction of the electron and
nucleus orbital currents in the hydrogen atom. It should be noted again
that the last term in the equation (4.51) is due to the fact that the
operators 1. and 1, are the non-commuting operators.

(3) The next two terms in (4.47) are new ones and they describe the
spin-orbital interaction: the nucleus magnetic moment interacts with the
magnetic field resulted from the orbital motion of electron (i.e. electron
orbital current), and vise versa

Hy, = —def ke guhpeln (4.53)

MeC Tgn MnC Tgn

(4) The last term in (4.47) is also new one and it describes the
spin-spin interaction: the electron magnetic moment interacts with the
magnetic field produced by the nucleus magnetic moment, and vise versa

- 2
Hys = _3(Heren) (p'nrsen) BelnTen . (454)
TE’n,
Thus, one can see that the account for the electron spin results in
appearance of the new mechanisms of particle interaction. Undoubtedly,

these new interactions affect on the structure of the hydrogenic spectra.

4.3.3 Integrals of motion for hydrogen atom

The variation of the functional (4.47) with respect to the two-particle
wave function ¥ (re,ry) = e (re) ¥y (ry) results in the following wave
equation

(Ho+ Hy+ His+ Hss) ¥ = EV. (4.55)

As we have discussed earlier, to characterize completely the eiegen-
states of the equation (4.55) we should find the operators commuting
with the Hamiltonian of this equation. In the previous chapter it was
shown, from the first principles, that the total angular momentum of an
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isolated ensemble of spinless particle is the integral of motion. Let us
verify whether it is true for an ensemble of spin-1/2 particles. The total
angular momentum of ensemble of particles possessing spin,

J=L+8, (4.56)
is the sum of total angular momentum of the orbital motion of particles

AL = [repe] + [rnpn]
and the total spin
S =8¢ + sp. (4.57)

In analysis of the hydrogen atom problem it is convenient to use the
center-of-mass reference frame

Mele + Myl
r=r,— Iy, R=¢¢’"mnn

M
and 5 5
p= ——zhg, P= —zha—R.

There are the following relationships between the momentum and angu-
lar momentum operators in the center-of-mass and laboratory reference

frames
My m

P=—Pe— 5+Pn, P =Pe+Pn,
M= M (4.58)
AL = [repe] + [rapn] = [rp] + [RP].

In the previous chapter we have shown that the commutation relations
for the operator L and operators 1, ,, defined by (4.52), are:

[Lq, leg] = iCagley, [La, lng] = i€aBylny- (4.59)

We have also shown that the operator of the total angular momentum of
orbital motion L commutes with the Hamiltonian Hj. Hence the total
angular momentum operator J commutes with Hy too.

It can be easily shown, with the help of the commutation rela-
tions (4.59) and commutation relations for spin operators, that the oper-

ator J commutes with the Hamiltonian of spin-orbital interaction, H,.
Indeed

[Jas legsng] = [Las leg) Sng + leg [Sas Sng] =
= ~i€aygleySng + t€apylegsny = 0. (4.60)
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The spin operator S commutes with the last term in the Hamiltonian of
spin-spin interaction, given by equation (4.54). One can see

[Saa Seﬁsnﬁ] = [Saa Seﬁ] Sng t Ses [Saa Snﬂ] =
= —i€ay3SeySng + 1€aBySepsny = 0. (4.61)

However, the operator S does not commute with the first term of the
Hamiltonian (4.54)

(S, (ser) (snr)] = i [rse] (rsp) + i (rse) [rsy] . (4.62)

On the other hand, the commutator of the operator L with the same
term is

[L, (ser) (u0)] = i [sex] (Sur) + i (Ser) [sar] (4.63)

Hence, the total angular momentum operator J commutes with the
Hamiltonian of spin-spin interaction, Hg,.

Thus, the operator of the total angular momentum of the orbital
motion L and operator of the total spin S do not separately commute
with the Hamiltonian of the equation (4.55). The integral of motion of
the equation (4.55) is the total angular momentum J:

[‘]a (HO + Hll + Hls + Hss)] =0. (464)

As far as the Hamiltonian of the equation (4.55) depends only on the
radius vector r = r, — 1y, it is evidently, that the operator of the total
momentum P = p, + py is the integral of motion

[P7 (HO + Hy + Hls + Hss)] =0. (465)

Thus, the eigenfunctions of the equation (4.55) can be expressed in
terms of the eigenfunctions of operators of the total momentum , total
angular momentum, and projection of total angular momentum.

4.3.4  Angular dependency of hydrogenic wave functions

Let us consider the motionless hydrogen atom, P = 0. In this case
the Hamiltonian H of the equation (4.55) is slightly simplified

2 Ze*  dupp Ny
H=— A—== — r3N12—|~ 3 (Ve

2m, r

Se + 'YTLSn) I+
4 en
+ - HBHTIXV T (3(sce) (sne) — Sesp), (4.66)
where

e = %Se = —2%[BSe, M, = 'M_Sn‘sn = 2VnliNSn, (4.67)
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Ye(n) is the gyromagnetic ratio for the magnetic moment of electron
(nucleus). The Bohr magneton pp and nuclear magneton py are defined
by the well known equations:

___th _ le| A _ anh _Z|6|ﬁ
HB = 2mec  2mec’ N= 2Mmpe  2mpc’ (4.68)
The wave function ¥ (r.,ry,) of the equation
HU = EV (4.69)

is the second rank spinor

v (re, rn) = e (re) Yn (rn) =9 (ra Se, Sn) ) (4~70)
i.e. the four row column. It is well known that the products of the
two spinors are decompose into the two irreducible representations cor-
responding to the spin zero particle and spin one particle, respectively.
If we use the products of eigenfunctions of operators o p).:

Uzlj:> = il:}:>7

where |+) is the two row columns

#=(). FP=(9):

as the basis two-body wave functions, then the wave functions for these
two representations can be written in the following form. The wave
function of spin zero particle is

0
X0 = (= ) =55 | Ly |- @
0

The rest three linear independent wave functions describe the spin one
particle and correspond to three different projection of the total spin

1
X =), [+, =

(= e lan}

A = 2 ()0 120 1= ) = . @A)

Sl
OO

—_ o oo
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As it was shown in the previous chapters the eigenfunctions of the
angular momentum operator, associated with the translational degrees
of freedom, are the spherical harmonics. The angular dependency of the
atomic wave functions, ¥ (re,ry,), is determined by the rule of angular
momenta coupling. For the spinless particle the angular wave function
is the product of spherical harmonic and second rank spinor (4.71)

QD = Vi (8, 0) X0 (4.73)

For the spin one particle the angular wave functions, ol l) > are the series

of products of the eigenfunctions of orbital momentum Yim, and spin
momentum X( ). The coefficients of series are the 3 — j symbols

Qgiml = (-1 Y (

mi,m2

j
h >Ylm1 0, 0)x45)-

(4.74)
At a given value of [ there are the three solutions differing in the value
of the total angular momentum j

my M2

(s=1) _Jl+m)(l+m+1)
QJ =l+1,l,m — 2(l+1)(2l+1) Ylm 1X1

(I+m+1)(1—m+1) W, [l—m+D)(—m) M
+\/ (+1)@2+1) YimXo +\/ 20+ 1) (2 +1) Yim41X21s

S

(s=1) __ l+m)(l-m+1) (1)
Lt = \/ wuEn et

L+ H{-
o)+ (D, 8 (i

+___m____
1(l+1)

Q=1 _ \/(l—m+1) (-my

j=l—-1,l,m — 21 (2l i 1) Im—1X1 —
(t=m) (1 +m) N (+m)(+m+1) 1
[(20+1) Yimxo + A2 +1) Yim+1X-1

The eigenfunctions (4.73) and (4.75) are normalized by the condition

/ QL) | sinddf dp = 6501 S Bssr-
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Thus, at given values of the total angular momentum j and its
projection m the general solution of the equation (4.69) has the form

+1
U (1) = F () QL (0,0)+ Y g (N, (6,0), (4.76)

og=-—1
where
1 _ Jtm=1)(+m) (1)

n U+m0—m53 m+¢0—mw—m—n

. (1)
j -1 X P hmXeh
1 F+m)[F-m+1) 1
Qg:l)-‘—j,m =7 2 (j+1) Yj,m-—lxg )+
_m vy M G+m+1)(G—m), (1)
VS \/ Gy mrXen (477
(1) _ JU=-m+ D[ -m+2), (1)
QJ',l=j+1,m - \/ 2+ 1) (27 +3) Yjt1m-1X1

_JU=m+)(G+m+1) (1)
\/ Gin@ire  Jrimet

Gtm+D)+m+2),, W
* \/ 2+ 1)(25+3) Yjt1m+1xi-

By substituting the expression (4.76) into the equation (4.69) and then
integrating over the angular variables we can obtain the equations for
the radial wave functions f(r) and g (r). To do this we need to
know the matrix elements of Hamiltonians of spin-orbital and spin-spin
interactions.

Notice finally that the case of the zero value of the total angular
momentum, j = 0, is the special case, because, in this case, the two of
the three linear independent solutions (4.77) are equal to zero. Indeed,
at s = 1 the state with j = 0 can be obtained only if [ = 1. The non-zero
solution is

1
Q(()ll)o =7 (Yl,—1x§1) - YloX(()l) + Yux(_l%) :

Hence the case of zero value of the total angular momentum should be

considered separately.
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4.3.5  Angular matrix elements of Hamiltonian
of spin-orbital and spin-spin interactions

By applying operators se ] to the wave functions (4.73) and (4.77),
we get

(0l ) = VG DA () Q0 = —TGF DY
(oel) ©2 Jl—Jm VJ 3+1Q31m ]l~Jm7
1 0 1
(onl) QY = VTG + DO, -8

() ) =G -1 (4.78)
(o) QA y = G = DO, s
(@) = +2)0l)
0el) 41 iiim J Jl=j+1m
1 1
(onl) le)_g-{—lm -(+2) 51) j+1,m’

These equations enable us to determine easily the angular matrix
elements for the Hamiltonian of the spin-orbital interaction. It is seen
that the spin-orbital interaction couples only the states with the zero
projection of the total angular momentum, m = 0.

Particularly, for the diagonal elements of the spin-orbital interaction
Hamiltonian we have

(s =0|Hypls =0) =0,

(j)l:j“:l,m,S:llHSpUal:j_lamys: 1> =
2HBN«N

('Ye+'7n) (-1,

. : . . 2
<]’l:-]7m78=1’H5P1J712J>m7521> M(7€+7n)

<j,l:j+1,m,$:lleplj,l=j+1,m,3= 1) =

2
= ”f“N (Ye +7n) ( +2).

To calculate the energy shifts due to the spin-orbital interaction exactly
we should solve the equations for radial wave functions. However, in
the frame of the perturbation theory methods, the first order corrections
to the energy eigenvalues are determined by the quantum mechanical
averages of the interaction Hamiltonian, i.e. we should average the



Hydrogen atom 95

function 1/r® with the wave functions of Hamiltonian Ho. The ra-
dial wave functions of Hamiltonian Hy depend solely on the quantum
number I, therefore the obtained equations enable us to estimate the
relative shifts of the different states with the same [, at least in the first
order approximation. It is seen from the obtained equations that in the
hydrogen atom, where the magnetic moments of electron and nucleus
have the opposite signs, the spin-orbital interaction makes energetically
more favorable the states with the smallest value of j at a given [ > 0.
The spin-orbital interaction tends to decrease the magnitude of the
atomic magnetic moment and the value of the total angular momentum.

Before calculating the matrix elements of the Hamiltonian of spin-spin
interaction, it is convenient to express it in terms of the total spin. It
can be done in the following way. The total spin square is

82 =2 4 s2 + 2(sesp) = % + 2(SeSn) ,

hence
=5 (#-)

By using the properties of the Pauli matrices we can write

(Se)2 = (see)2 + (sne)2 + 2(sce) (spe) = = + 2(sce) (spe),

DO =

hence
1 1

(se0) (sn€) = 5 [(Se)Q - 5] .

Finally, for the Hamiltonian of spin-spin interaction we get

2 e in
Hy, = A0 (?,(Se)2 - 82) . (4.79)

r

It follows directly from the obtained equation that the energy of spin-
spin interaction is equal to zero in spin zero state Q9. For the spin one
states we have M @ @
2
S = s(s+ 1) Q=205 . (4.80)
By applying the operator (Se) to the wave functions (4.72) we get

. 14

(Se) xgl) = —i4/ ?ﬂ (megl) - Y1,+1X§)1)> )
. /4

(Se) X(()l) = —14/ _35 (Y1,—1X§1) - Y1,+1X(_1%) ,

. |4
(Se) x(_li =~y % (Yl,—lX(()l) - YlOX(_l%) ,
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where Yim (0, ¢) is the spherical harmonics. By using the obtained
equations and the matrix elements for spherical harmonics

B bl L\ (L I
(llmllYlmllz’l’nﬂ:(_l)mll L1+l +! (-—717,1 m 71’?2) (Ol 0 5)

y \/(21 +1) (20 +1) (2 +1)

47

we get the following equations for the angular matrix elements of the
first term in Hamiltonian (4.79)

2 (1) i _d+l
/Qj AN 1m(Se) Qj,l::j—l,m sinfdfdy = 51

/le)—]m( ) Q(l)_]ms1n6d9dgo_—_1,

(H+ __J
/QJ l_J+1m(Se) JL)—3+1msm9d9d<P =577 (4.81)
1 1 JU+1
/Q;',l):jﬂ,m (Se) Q; l)_] 1m sinfdé dp = T ),
/lel)f] m Qg l)—] 1,m Sing df dp = 0.

It is seen that the spin-spin interaction couples only the states with the
non-zero value of the total spin projection. The sum of the diagonal
elements of (4.81) is equal to 2. Hence, accounting the equation (4.80),
we can see that the sum of the diagonal elements of the Hamiltonian
of spin-spin interaction 3(Se)? — 82 is equal to zero. Besides, it follows
directly from the definition of this operator.

With the help of the equations (4.81) we obtain the following form of
the diagonal matrix elements of Hamiltonian of spin-spin interaction

Q.UBNN'VE'YTL ]_1
rd 27+ 1’

<j7l:j_'17m|Hsslj,l:j—lam> = -

m) = SUBHUNYeTn
r3 ’

<.73l ‘]amles UJ ‘*.77

. . : : 2UBUNYe Y T+ 2
= 1 = 1 =— —.

(.] .7+ :m[HSS‘]vl .7+ 7m> rs 2]+1
Reminding the remarks, made with respect to the spin-orbital interac-
tion, we can make some preliminary conclusions on the influence of the
spin-spin interaction onto the hydrogen energy spectrum. It is seen from
the above equations that the spin-spin interaction makes energetically



Hydrogen atom 97

more favorable the states with the smallest j at a given{ > 0. The energy
of spin-spin interaction is equal to zero in the antisymmetric state with
the oppositely directed spins, and it is positive in the symmetric state
with the oppositely directed spins. The spin-spin interaction tends to
decrease the atomic magnetic moment and the total angular momentum
of atom.

As we have mentioned above, the case of j = 0 requires the special
consideration. In this special case for spin-orbital interaction we have

(@) =0, (o)) =0,
1
(o) Qfth = 29018 (ond) Q8 = 2001,

One can see that these equations follow directly from the appropriate
equations (4.78). In this special case, the non-zero matrix element of
spin-spin interaction Hamiltonian is

(010| (3(Se)2 - 52) 010) = —1. (4.82)

It is seen that this matrix element does not follow from the equa-
tions (4.81), because the equations (4.81) were obtained under assump-
tion 7 > 0.

4.3.6  Equations for radial wave functions
Let us introduce the dimensionless energy E’ and coordinate z:

K E' r
E= 2m,.a%’ r= ag’
raB B
where the Bohr radius is )
k
agp = .
mye?

In dimensionless units the equation (4.69) becomes

v 24 ;27 12

W*rd'ﬁ(E T e

270? My

2 M
where « is the fine structure constant.

One can see from the equation (4.83), that the energy of orbital,

spin-orbital, and spin-spin interactions is smaller than the energy of the

Coulomb interaction in the ratio

(12 — esel = usal — 20 (3(Se)2 - s2)) =0, (4.83)

m —
o ~3.1078,
My
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when the distance between the electron and nucleus is about the Bohr
radius, ¢ ~ 1. However, the energy of these hyperfine interactions
increases at © — O faster then the potential energy of Coulomb inter-
action or centrifugal energy. As a result the hyperfine interactions can,
in principle, change the electron-nucleus interaction at small distances.

Now, the equations (4.78) and (4.81) enable us to get the equations
for radial wave functions. By substituting the wave function (4.76) into
the equation (4.83) and then averaging over the angular variables we
obtain the equations for the functions f (z) and g, (). We have already
mentioned that the spin-orbital interaction couples the states with zero
projection of the total spin, and spin-spin interaction couples the states
with the non-zero projection of the total spin. Thus it is evident that the
set of the four equations is decomposed into the two sets of the coupled
equations:

for zero spin projection

d*f 2d ) 22 il
dJ;+__i+<E _J_(%L))f:

= ﬁ[QJ(J‘I'lf VIiG+1) (v vngo}

(4.84)

d’g0 ngo r 22§ +1) _
e  \FrTT T )e"
= _1% [(2](J+ 1)+'7’e+7n‘7&7n)g0“ vj(j‘}‘l)(’)/e_')’n)f}

and non-zero spin projection

d2g1 2 dg1 n 2Z jG-1
Htrat(F -1 )a =
=—£[(2j(j—1)—(v + ) (G — 1) + e L——l—)gl—

23 e n e n2j+1

Gl
- 378711—]@(‘;_1],

% + 1
(4.85)
g, 2d ) 2 G+1DG+2)
dmz p (E + - —I———'—> _
:-ﬂg (2(J+1 (J+2)+(%+%)(J+2)+7”"2 +1)g b

— 3% G+ ]

2+1g
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where

— 7,2
B=Za o (4.86)

Notice, that the equations (4.84) and (4.85) have been used to derive
the last equations.

4.3.7 Influence of orbital, spin-orbital, and spin-spin
interactions on the energy spectrum of hydrogen
atom

The obtained equations for radial wave functions are identical each
other and they differ only in the magnitude of the incoming coeflicients.
However, as well as the analytical solutions of equations of this type are
not known we shall use the perturbation theory to analyze the structure
of the energy spectrum. The basis for applicability of the perturbation
theory methods is in the smallness of the parameter 3 defined by the
equation (4.86). The equations of the zero-order approximation are given
by the left-hand-sides of the equations (4.84), (4.85). These equations
depend solely on the quantum number [, therefore to systematize the
levels of the corrected spectrum we can use the notations similar to the
spectroscopic notations. The level with the principal quantum number
n, total angular momentum j, orbital angular momentum L = [, and
spin s is designated as

nZs ;. (4.87)

The capital L shows the orbital angular momentum of atom, i.e. the
sum of the electron and nucleus angular momenta, but not the orbital
angular momentum of electron alone. It should be also noted that the
total angular momentum j in (4.87) is referred to J = je + j, while it
is often referred to the total angular momentum of electron, which is
Je =le + se.

As we have shown above the only operator J is integral of motion
in general case, while the total orbital angular momentum L is not.
But in zero order approximation, when the hyperfine interactions are
neglected, the orbital angular momentum is integral of motion too. It
gives a basis to introduce the notations (4.87) and explains the reason
why these notations are widely used in spectroscopy.

To facilitate reading, the Table 4.1 gives the correspondence between
the states (4.87) and states of different j and s.

One can see from the table that the S-state splits into the two
sublevels, 1Sy and 38, the all other states split into the four sublevels,
1L, 3L51,3L;, 3Lj41.

The equations (4.84), (4.85) show that, in terms of Table 4.1, the
spin-orbital interaction results in the coupling of n'L; and n’3L; states,
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Table 4.1. Energy states of hydrogen atom

J
s=10 s=1
i=0 1Ss 5Py
j=1 P 851, %P, 2Dy
j=2 D, 5Py, °D2, *Fy
j=3 1R D3, *F3, *Gs

and spin-spin interaction couples the states n®(L — 1), and n'3(L + 1),
where n and n' are the principal quantum numbers. It is also seen from
the equations (4.84), (4.85) that, if the principle quantum numbers n
and n’ do not coincide, then the energy shift, due to the coupling of the
unperturbed states, is the correction of the second order on the smallness
parameter 8. Indeed, in the frame of the perturbation theory methods
the energies of the coupled states are given by

E(12) _ E, + FE. +AE, + AE,,
- 2

n — L’/ n_AEn’ 2
j:\/(E E +2AE )+ (ABw)?, (489)

+

where AE,, and AE,,, are the partial shifts and coupling coefficients (i.e.
the diagonal and non-diagonal elements of the Hamiltonian of hyperfine
interactions), respectively. At |E, — Ey| > AE,m/ the contribution
of the non-diagonal element is about (AEy,)? / (En — Ey) and we can
neglect them. At n = n', the contribution of the non-diagonal elements
becomes significant.

The radial wave functions of the equations (4.84), (4.85) in zero order
approximation were calculated in Chapter 3 and Chapter 4. With the
help of these wave functions, at n = n’, for matrix elements of 1/z3 we
get the following formulas

oo

12 2, _ (22N} 1
/ﬁRnl(w)x de = ( n) RSN CTEE

0

[ SR @R do = () oot DO L (4 g
0

x n/ 2n20+1)(20+2)(20+3)

o0

/—15 2 (2) Ry 142(x)2? dz = 0.
0
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Thus, the spin-orbital coupling of singlet and triplet states with the
same | results in the corrections of the first order. The spin-spin coupling
of the states [ = 7 — 1 and I’ = j + 1 contributes only into the second
order corrections.

Consider firstly the equations (4.84) corresponding to the states of
m = 0. At j = 0, the coupling coefficient is equal to zero, therefore the
energy shifts are

3
AE (n'Sp) = —g (2—5-) Ry,
(4.90)

2Z\3 44 2(%¢ + Yn eTn
AE(TL:;P()):—,@(F) 4+ 2(y "‘22 )+ ey Ry.

At j > 0 the levels become coupled. The partial shifts and coupling
coefficient in this case are

1y af2Z2Y* 1
AE (nlJ;) = 'B(_n_> TSI
3y 222\ 25+ )+ Y+ =Y
AE () = ﬁ(n) o@D v (49

17 oy m37.) = (g)i’; Ye — Tn
AE (n Jjeon J]) 8 w) g \/ml_)Ry,
where the symbol L has been substituted by symbol J because at m =0
we have [ = j. By substituting these equations into the equation (4.88)
we can easily get the corrected energy for the corresponding states.
For the states with m # 0, hence j > 0, in accordance with the
equations (4.85) and (4.89), we get for partial shifts

_ 223 2j (2-7 + 1) - (2] + 1) ('Ye +7n) + YeVn
AB(m* (T -1);) = -8 (=) T Ry,

(4.92)
AE(n(J + 1) =

_ 2Z\*20+ D)2+ D+ 2+ 1) (e + W) + e
=—6(7) G0+ 1) (2 +3) Ry

The coupling coefficient for this case is exactly equal to zero due to the
last integral in (4.89).

In accordance with the discussion given above, the equations (4.90)
and (4.92) are directly defined the first order corrections to the shifts
of the corresponding energy states. The energies of the coupled levels
nlJ; «» n3J; are determined by the solutions of the equation (4.88),
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where the diagonal and non-diagonal elements of the Hamiltonian of hy-
perfine interactions are given by equation (4.91). It should be reminded
that the Rydberg constant Ry has been defined above as

mpe*

=S

(4.93)
therefore in final calculations it should be replaced by Ry-(me+my)/mp.

The energy level diagram including 15, 25, and 2P states of hydrogen
atom is shown in Fig. 4.4. By comparing the Fig. 4.4 and Fig. 1.1,
one can see that the equation (4.83) yields the results for the singlet
and triplet sublevels of S state that are qualitatively agree with the

23P,
2%
19 MHz © 1
21p,
25 __233, 2P (a)
(——21S
51 MHz
2466 THz

1S

410 MHz

S 1130

Figure 4.4. The Pauli equation corrections to the hydrogen atom spectrum: (a) 18,
285, 2P states; (b) 25, 2P (magnified)

experimental data. However, the numerical values of shifts differ from
experimentally measured ones. The relative shifts of the states 23P,
and 2'P; with respect to state 2P of electron in Coulomb field are
qualitatively agree with the experimental data, but their numerical
values are again differ from the experimentally measured frequencies.
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The shifts of states 23 Py and 23 P; differ from the experimental data not
only in the numerical values but even in the direction of shift.

Thus, we can see that the incorporation of the idea on spin of elec-
tron has given significant improvements into the theory of hydrogenic
spectra. The results of calculations are qualitatively agree with the
results of the experimental measurements, but the numerical values of
the transition frequencies remain still different from the experimental
data. The further improvements in the theory were achieved with the
help of relativistic equations of quantum mechanics.



Chapter 5

RELATIVISTIC EQUATION
FOR SPIN ZERO PARTICLE

The first quantum relativistic equation was proposed by Klein, Fock,
and Gordon [50-52] in 1926. It is well known now that this equation
corresponds to the spin zero particle. This equation enables us to
calculate the energy spectrum of the hydrogenic system consisting of the
two spin zero particles. There are a lot of the nuclei of zero spin. Hence,
if we substitute the electron in the hydrogen-like ion by the spin zero
particle, we get a system describing by the Klein-Gordon-Fock equation.
The most famous system of this type is the mesoatom, when the electron
is substituted by the y~ meson.

5.1 Klein—Gordon—Fock equation

The Klein—-Gordon-Fock equation, or relativistic Schrodinger equa-
tion, for the case of a free particle is
h2 9%
0_2_8_1‘;2_ = (th - M2C2) w, (51)
where M is the mass of a particle. It is seen that this equation has the
relativistic invariant form, but it becomes more evident if we introduce
the four dimensional radius vector

z, = (r,ict) (5.2)
and four-dimensional momentum operator
_ RN _ (. _hoN _ .0

If we apply the transformations (5.2) and (5.3) to the equation (5.1), it
becomes

(Pupu + M?c*) 9 = 0. (5.4)
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We use here and shall use further, the generally accepted convention
that the double-recurring index means summation over this index.

It can be easily shown that the equation (5.1) results in the following
continuity equation

Op e
o +div j =0, (5.5)
where . oo oy
1 " B
p(e.8) = oy (55~ ), (5.6
. ih * *
§lrt) = =5 [V — (V) 9. (5.7)
The equation (5.5) can be also written in the relativistic invariant form
9 _
61"‘ — Y (58>

where j,, = (j, icp).

One can see from the equation (5.6) that the time-component of
the current density four-vector is not the certainly positively defined
variable. Indeed the equation (5.1) is the second order differential
equation with respect to the time derivative, therefore to determine
unambiguously the initial state of the particle we should assign the
initial values both the wave function 9 (r,0) and its first time-derivative
0 (r,0) /0t. Hence, if there are no any restrictions for these initial
values then the initial value of p (r, 0) can be arbitrary, i.e. positive, neg-
ative, or zero. On the other hand, in accordance with the equation (5.6)
the time-component of the current density plays the role of the density of
probability for particle to be at a specific spatial point at a given moment
of time. Therefore, in the frames of the probabilistic interpretation of
the wave function, it must be positively defined. We have seen that this
requirement holds for the probability density of Schrodinger equation.
It is the uncertainty of the sign of p(r,t) that stimulated Paul Dirac
to look for another quantum relativistic equation. It was assumed for
a long time that the equation (5.1) was not applicable to describe any
elementary particles, until it was not recognized the correctness of this
equation for the case of the spin zero particles.

It becomes much easier to interpret the equation (5.1), if we introduce
the electric charge and current density

igh + 0 "
o) = it (w50 = G, (5.9

e (0,8) = =2 vy — (vy7) ], (5.9b)



Interaction of zero spin particle with electromagnetic field 107

where ¢ is the elementary charge. In this case, by adjusting the sign
of the time derivative 01/0t and sign of charge, we can always satisfy
the condition that the probability density, o5 / (£1q]), is the positive
defined value.

By concluding the introductory remarks, we can notice the following.
The second order (with respect to the time derivative) differential equa-
tion has the two linear independent solutions. For example, the general
solution of equation (5.1) for the case of free particle includes the two
time-dependent functions

¥ (r,t) =Y {Crexp[—i (Bt —pr) /h] + Crexp i (Bt — pr) /A]},

(5.10)
where

p2c? + M2t (5.11)
The substitution of the equation (5.10) into (5.6) yields

p(r,8) = = ([, 0 = ool O) = 5 (IG12 = [CaP)

Thus, the probability densities, p1 2 (r,t), corresponding to the two linear
independent solutions, have the opposite signs

pr2(r,t) = i% [z (r)]?.

It is seen that, if the time-dependent solutions are the complex functions,
then the sign of probability density does not vary in time, and only in
the case, when the time-dependent solution is a real function of time,
the probability density could change the sign in the process of system
evolution.

5.2  Interaction of zero spin particle
with electromagnetic field

Whether the particle possesses the non-zero charge or not, we can
understand only by studying (or observing) the process of the particle
interaction with electromagnetic field. As we have discussed above,
the general algorithm of obtaining the equations for particle interacting
with the electromagnetic field from the free-particle equations consists
in the replacement of the four-dimensional momentum operator by the
generalized four-dimensional momentum operator

0 _ 24, (5.12)

0x, ¢

Py — —ih
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By applying the replacement (5.12) to the equation (5.1), we get

1 0 2 e )2 2.2

= (zha—&p) Y= [(p—ZA> +M c]w. (5.13)
The covariant form of the equation (5.13) is

_in2 ¢ _in 9 _e 22| 4 —
[( th)mu cA“> ( m@xu cA“) +M c}w_o. (5.14)

The covariant form demonstrates evidently, that the equation (5.14) is
invariant with respect to the gauge transformation of the electromagnetic
field potentials

Ox

Oz,

and wave function
¥ (0,8) = ¥ () exp [1ox (1))

Notice that the gauge transformation coincides with the gauge transfor-
mation for Schrédinger equation (see (2.13)).

If we compare the equation (5.13) with the Schrddinger equation,
then we can see that the symmetry properties of equation (5.13) with
respect to the orthogonal transformations of reference frame will be
different of those for Schrodinger equation only in the case when the
transformation includes the time axis. The equation (5.13) can be
written in the relativistic invariant form (5.14), therefore its invariance
with respect of Lorentz transformation is evident. Hence we really need
not in the analysis of the symmetry properties of Klein—-Gordon-Fock
equation. There is only one moment worthy of attention. The orthogonal
transformations are given by

Z‘L frng auuxu (515)
where matrix a,, obeys the condition
Auy Gy = Oy (5.16)

The transformations (5.15), (5.16) remain invariable the spacetime in-
terval, and they describe the Lorentz transformation, three-dimensional
rotations, and space inversion. By applying transformations (5.15),
(5.16) to the equation (5.14) we can see that the wave function is
transformed in the following way

Y (z) - ¢ (') = W (z), (5.17)
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where
Al = 1.
Particularly, at the space inversion transformation
r'=-r, t'=t
for the parameter A we have
A =1,

because the twice repeated space inversion transformation is the identical
transformation.
Hence, the wave function is even (at Ay = +1)

’d} (—I', t) = ¢ (ra t) ’
or odd {at Ao = —1)

T/) (—I‘,t) = _w (I‘, t) g
Thus, the wave function of the Klein—-Gordon-Fock equation is either
scalar or pseudoscalar function. As it follows from the discussion given

in the beginning of the previous chapter the scalar and pseudoscalar
wave functions describe the spinless particles.

5.3 Mesoatom

Let us consider the problem on zero spin particle motion in Coulomb
field. The problem on the pion motion in the field of the heavy nuclei is
an practical example. The bound state of pion and nucleus is mesoatom.

In the attracting Coulomb field the potential energy is

Ur)=ep(r)=—

The substitution of equation (5.18) into the equation (5.13) results

Ze?
mt

(5.18)

M3c* —E*  92EZe?1  Z%* 1
A - 2P fc 1 R 2 P (r)=0. (5.19)

By taking into account that the equation (5.19) is spherically symmetric
we can express the wave function in terms of the spherical harmonics

P(r) = R (r) Yim (6, ¢) -
Due to orthogonality of spherical harmonics we get for the radial wave
functions the following equation
d_2+gi_ L1+1)— 2% N 2EZal
dr? T dr r? he

K2R (r)=0, (5.20)
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where o = e2/(he) is the fine structure constant, and

M2t — B2

he

The equation (5.20) is quite similar to the equation for radial functions
(see (2.29)), that was obtained from the Schrédinger equation for elec-
tron moving in the Coulomb field. Therefore the solutions of the equa-
tion (5.20) are again expressed in terms of the confluent hypergeometric
functions

K =

(5.21)

FEZa
khe’

R(r)=Cirfexp(—kr) F (s +1- 2(s+1) ,Q,W) +

~(s+1) oxp (— _g EZa
+ Cor exp ( m‘)F( §=—— 23,257“) (5.22)
where

5= \/(l +1/2)% = 2202 - 1/2. (5.23)

In the considered case, the boundary conditions for the eigenvalue prob-
lem are the same as for the problem of electron motion in Coulomb
field. The wave function should be finite at r = 0 and it should tend
to zero at r — oo. The second term in (5.22) is divergent at 7 — 0,
therefore C3 = 0. Similar to solution (2.30) of equation (2.29) the first
term in (5.22) tends to zero at infinity, r — oo, when the first argument
of the confluent hypergeometric function obeys the condition

EZa

s+1- rkhe

= —n,, (5.24)

where n, is the non-negative integer. This condition yields the equation
for the energy spectrum of the bound states. Notice, that, in analogy
with the solution of the Schrédinger equation, it is convenient to intro-
duce the principle quantum number

n=n,+1+1,
then the energy spectrum takes the form

Mc(n+6)

V(n+8)% + 2202

5= s—1=1/(1+1/2) — 2202 = (1 +1/2).

It is seen that the energy spectrum of the particle obeying the Klein—
Gordon-Fock equation, in contrast to the energy spectrum of particle

Ep = (5.25)

where
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obeying the Schrodinger equation, includes the fine structure. Indeed
the spectrum (5.25) depends on the two quantum numbers: principle
quantum number n and angular momentum [. The energy distance
between the levels with the same n and different [ can be easily estimated
in the case when Za <« 1. In this case we have

Z2a2
G =1/(+1/2)* - Z2a2 - (1 +1/2) = —— 2= .
=127 - 2 ()~ - T
By expanding (5.25) in the series on Za, we get
7’o* 7%t n 3
— 201 _ — =
En = Me [1 S <l+1/2 4) +} (5.26)

If mass M coincides with electron mass then the first term in the
expansion (5.26) is equal to
2 4 2
0 2 ~ Z moe _ Z
Thus the first term in the expansion (5.26) coincides with the Bohr
formula (2.33). The second term of expansion depends on the principle
quantum number n and angular momentum [. Let us take, for example,

states with I = 1 and [ = 0 and the same n. For energy distance between
them we have

4.4, 2 4 2
AEno_AEnl:Zamoc ( 2)_4Za

2—- =) =="—-Ry.
2n3 3 3 nd v
It is natural to compare energy of this splitting with the energy shift
due to the hyperfine interactions. For example the energy shift of nlS,
states due to the hyperfine interactions is (see equation (4.90))

_ 4Z%*  m,

1 —
AFE (n S()) = 3 e + ma Ry.
One can see that the energy distance between the states with different [

exceeds the energy of hyperfine splitting approximately in the ratio

AFn — AEy M
AE (nlSo) Me

For the hydrogen atom this ratio is m,/m. ~ 1836. Fig. 5.1 shows
in comparison the normalized energy spectra of the hydrogen atom
(AEseh/(mec?a?)) and mesoatom (AEkagr/(Mc?a?)).
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0.19 Hydrogen Mesoatom AE/(mcat), x1072
AE/(mPo?) - —T 0.40
/(mee) =0 =1 I=2 —_"l0
0 r —0.40
R ——— e e ~0.80
-0.14
e ned 1.0
———— 8 0
—0.21 --1.0
-2.0
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-0
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’ —-4.0
~5.0
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Figure 5.1. The normalized energy spectra of hydrogen and mesoatom. The sublevels
of the mesoatom spectrum at the principle quantum number n = 2, 3, 4, 5 are shown
in the magnified scale (right column)

The energy spectrum (5.26) does not coincide with the hydrogenic
energy spectrum calculated by Sommerfeld [53] on the basis of Bohr
quantization rules

272’ Z*a* (1 3
AE,; = —20¢ 1 S —1 5.27
" Tk ) { S (Ikl A([kl + "r))} (527)
where k = — (I + 1) ,1. The Sommerfeld spectrum coincides much better

with the experimentally measured spectra than the spectrum (5.26). It
was a serious basis to hesitate in the adequateness of the Klein—Gordon—
Fock equation for description of electron. In the next chapter we shall see
that the Dirac equation yielded the equation for hydrogenic spectrum,
which is much closer to the experimentally measured spectra.

5.4 Wave functions

The normalized radial wave functions are

B k) (n =1 1) 146 B
Rnl (T) - \/2(71 _I_ (5[) (TL + l + 26[)' (2’€an) exp( K"I’Ll,r) X
x LAY (9r), (5.28)
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where

A 1
Kpl = —

WM+ 6)? + 2202

In analogy with the Bohr radius we have introduced in (5.29) the radius
of orbit for 7- meson atom:

(5.29)

hZ
Me*’
The radial wave functions given by equation (5.28) tends to zero at
7 — 0, when { > 0. In the case of [ = 0, the wave functions is singular

at r = 0, because
1 1
— i 7222
do 2 Z20 5

is negative. However at Za « 1 the singularity is weak and the
difference between the wave functions (5.28) and non-relativistic wave

ay = (5.30)

2.57
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Figure 5.2. The radial wave functions of the KGF equation (solid lines) and
Schrodinger equation (dashed lines) for the state of n = 1 and [ = 0 at different
nucleus charge Z =1 (a), 20 (b), 30 (c)
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functions (2.35) is small. For the nuclei with the high value of charge
(Za — 1/2) the singularity increases and the difference between the
relativistic and non-relativistic wave functions becomes more significant.
It follows from the equation (5.30) that the radius of orbit in 7~ -meson
atom is smaller than the radius of orbit in hydrogen atom in the ratio
of electron mass to meson mass. Hence, the 7~ meson is much closer to
the nucleus than electron in hydrogen atom. As a result the difference
between the Coulomb potential and potential produced by the highly
charged nucleus, having the finite size, becomes more significant. The
substitution of Coulomb potential by some more realistic intra-atomic
potential removes the problem of singularity of the wave function. It
should be noted that the charge density, defined by ¢q(r) = R2(r)r?,
has no singularities at any .

The Fig. 5.2 shows in comparison the wave functions (5.28) and non-
relativistic wave functions (2.35) for the state of n =1 and I =0 at a
different charge of nucleus Z = 1 (a), 20 (b), 30 (c¢). The dimensionless
coordinate is normalized to ap; for m-meson atom and ap for hydrogen
atom. It is seen from the figure that the difference in the profiles of wave
functions becomes visible only at Z = 30.

Table 5.1. The normalized radial matrix elements of transitions 15 — n P for mesoatom

n 2 3 4 5 6 7 8
ai (nP|r|15) 1.29015 0.51666 0.30457 0.20869 0.15513 0.12141 0.09849
M

n 9 10 11 12 13 14 15
EZ—— {nP|r]1S) 0.08204 0.06974 0.06026 0.05276 0.0467 0.04172 0.03758
M

n 16 17 18 19 20 21 22
a—Z— (nPir|15) 0.03408 0.03109 0.02851 0.02628 0.02432 0.02259 0.02106
M

The matrix elements of transitions 15 — nP (i.e. transitions between
the statesn; =1, 1 =0andng=mn, lp=1)

(nP|r|]18) = / Rnp (r)Ryis (r) r dr.
0

are given in Table 5.1. By comparing the data of Tabl. 3.1 and Tabl. 5.1
we can see that the difference in the magnitude of normalized matrix
elements is about 10~* for the lower states and tends to zero with the
increase of the principle quantum number for the final state.



Chapter 6

DIRAC EQUATION

The intrinsic angular momentum or particle spin was introduced in
the Chapter 4 on the basis of analogy between the spin and angular
momentum associated with the translational degrees of freedom. As far
as the wave function of the particle with the angular momentum ! has the
(214 1) components, corresponding to the different values of the angular
momentum projections — < m < [, then the wave function of the
particle of spin s should have the (2s + 1) components. This number of
components realizes the irreducible representation of the group of three-
dimensional rotations. However, this analogy becomes incomplete when
we turn to the equations of the relativistic theory. Indeed, the group of
three-dimensional rotations is really a subgroup of the four-dimensional
transformations. In classical physics, the rotations of the reference frame
and the rotations of particle are equivalent transformations. In quantum
mechanics, the elementary particle is a point object therefore the spin of
the particle is completely associated with the rotations of the reference
frame. Hence, the structure of the wave function should be adjusted
with the group of the four-dimensional rotations. As a result, the wave
function of the spin-1/2 particle became the four-component function or
bispinor.

6.1 Dirac matrices

The Klein—-Gordon-Fock equation has the relativistic invariant form.
At the same time we have mentioned in Chapter 5 that the time com-
ponent of the current density four-vector is not the certainly positively
defined value. If we impose constraint on the structure of the particle
many-component wave function, by demanding that the time component
of the current density four-vector should be the bilinear combination of
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the wave function components of the following type
Y Wit
u

it results unambiguously that the equation for the wave function should
be the differential equation of the first order with respect to the time
derivative. To satisfy this condition we should factorize the differential
operator of the Klein-Gordon-Fock equation. The required factorization
can be made in the following way

1 52 m%c2 10 impce 10 mpc
L a ( 0 fav+p )( 9 oy - )
(6.1)
The self-conjugated matrices a and 3 realizing the required factorization
should obey the following conditions

i + aja; = 285, af+PBa; =0, B*=1. (6.2)

It was shown by Paul Dirac that the matrices a and [ satisfying the all
required conditions should be the four-dimensional matrices. One of the
possible representations of the matrices a; and 3 is

=G o) 5= %) ©3)

where o is two-dimensional Pauli matrices introduced and discussed in
the Chapter 4.

Thus, the Hamiltonian of the Klein—Gordon-Fock equation which is
the differential operator of the second order with respect to the time
derivative is factorized in the product of the two differential operators
of the first order with respect to the time derivative. Notice that if the
wave function is a solution of the first order differential equation then it
should be the solution of the second order differential equation too. By
using the identical transformation

moc

10 WA .
8t+oc p+if—— hc(—zha-kc(ap)ntﬂmoc),

the factorized equation can be written in the following form

L OV )

zh—a? = (cap + frmoc®) V. (6.4)
The Hamiltonian of the Dirac equation (6.4) is

Hp = c(ap) + Bmoc®. (6.5)
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The Hamiltonian (6.5) includes the four-dimensional matrices, hence the
wave function of the equation (6.4) should be the four row column.

It can be easily shown that the Dirac equation (6.4) results in the
following continuity equation

dp .
5 T divj =0, (6.6)

where
p=e¥T¥, j=ecltal. (6.7)

The second possible equation, resulted from the factorization (6.1), is
., 0¥
zhﬁ = — (c(ap) + Bmoc®) . (6.8)

It is seen that this equation differs from the equation (6.4) only in the
sign of the time derivative. As far as the charge density is the time
component of the current density four-vector then we get the following
equation for the current density four-vector of the particle obeying the
equation (6.8)

p=—e¥ TV j=ecl'tal (6.9)

By comparing the equations (6.7) and (6.9) we can see that the equations
(6.4) and (6.8) correspond to the oppositely charged particles.

Let us write the four-component wave function ¥ of the equation (6.4)
in the form of the bispinor wave function

U= (‘)‘Z) : (6.10)

where ¢ = (g;) and y = ;; are the three-dimensional spinors. By

applying the transformation (6.10) to the equation (6.3) we get for the
spinors ¢ and y the following coupled set of equations

iiig—f = copx + Mmoc?y, (6.11a)
ih% = copp — moc?x. (6.11b)

By applying the Hermitian conjugation to the equation (6.11a) we get
+
ih% = cpxto — mocpT.

It is seen that the spinor x obeys the equation which is quite similar
to the equation for the Hermitian conjugate spinor . Thus it should
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be anticipated that the transformation properties of the spinor x with
respect to the orthogonal transformations will coincide with the trans-
formation properties of the spinor ¢ and differ from the transformation
properties of the spinor ¢.

Let us turn again to the properties of the three-dimensional spinors.
In the Chapter 4 we have shown that the matrix of the three-dimensional

rotations U = gi Z should be the unimodal and unitary matrix.

The conditions of the unimodality and unitarity of the transformation
matrix leave only the three real independent parameters from the eight
possible ones. There are only three rotation angles that are required
to specify unambiguously the three-dimensional rotations. But if we
need in the invariance with respect to the four-dimensional rotations
we should reject one of the two above mentioned conditions which are
applied to the transformation matrix. Earlier we have already mentioned
that the unimodality condition ad — bc = 1 is the common property of
any arbitrary rotations. This condition holds for the three-dimensional
rotations and for the Lorentz transformation as well. The unitarity
condition applied to the transformation matrix U means that the bilinear
combination ¥ty = ¢pTUTUY = 1+ is a scalar. However, this
bilinear combination is the time component of the current density four-
vector. Hence it could not be the scalar in the extended group of
four-dimensional rotations. The condition of the unimodality imposes
only two constraints on the eight real parameters of the transformation
matrix U. The left six parameters assign the six rotation angles in the
four-dimensional reference frame. It is seen from the equations (4.11)-
(4.14) that the transformation properties of the spinors and Hermitian
conjugate spinors are not identical. It is this property that provides the
linear independency of the spinors of the bispinor wave function (6.10).

6.2  Covariant form of the Dirac equation

Before turn to the study of the transformation properties of the Dirac
equation (6.4) it is convenient to transform it to the symmetric form.
Indeed the time and space derivatives in the equation (6.4) are not
symmetric, the space derivative is multiplied by the spin operator and
the time derivative is multiplied by constant. If we multiply the both
sides of the equation (6.4) by the matrix 8 then the equation becomes
symmetric, because the term, defining the rest energy of electron, takes
the pure scalar form. However, it is more convenient to introduce the
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following matrices

Y= —ifa=1 <g _Oc) , =P (6.12)

It is seen from the equations (6.12) that the matrices 7, (¢ = 1,2, 3,4) are
the self-conjugated matrices and they obey the following commutation
relations
YuYvo + Vo Vu = 26;“/- (613)
By multiplying both sides of the equation (6.4) by the factor —if/c,
we get
(Yupyu — imoc) ¥ = 0. (6.14)

As in Chapter 5 we have used here the following notations for the four-
vector of coordinate z,, = (r,ict) and the four-momentum operator

L 0
Pu = "’h’%'

The equation for the Dirac adjoint wave function

U= Uhy, (6.15)
is _

W (Yupyu + imoc) = 0. (6.16)
It is seen from the definition of Dirac adjoint function (6.15) that ¥ is
a row vector, but not a column as ¥. Hence the Dirac adjoint wave
function ¥ is multiplied by the spin matrices v, from the left, as a result
the differential operators, acting on the Dirac adjoint function, are on
the right side of it.

There is additional convenience to introduce the matrices -y, and the
Dirac adjoint function ¥ because the continuity equation takes the clear
relativistic invariant form )

Y _ g
dz,, ’

where the current density four-vector j, is
ju = (,icp) = (ec¥*all,ice¥ W) = ieclr, V. (6.17)

It should be noted that the equations (6.12) give the standard rep-
resentation of the matrices v,. In principle, the matrices v, are the
arbitrary four by four matrices. Indeed with the help of the unitary
transformation of the wave function, ¥y = U, the equation (6.12) can
be transformed to the following form

(%SU)pu — imoc) Uy =0,
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where the commutation relations for matrices %(LU) = U~,U™! coincide
with that given by equations (6.13)

YA + AP = U (v + 1) U™ = 26

To obtain the equation for the particle interacting with the elec-
tromagnetic field we can use the standard replacement of the four-
momentum p, by the generalized four-momentum

pu — —ihV, — =4y, (6.18)
where A4, = (A,4yp) is the four vector of field, the spatial component
of which is the vector potential A (r,t) and the time component is the
scalar potential ¢ (r,t) of the electromagnetic field.

6.3 Symmetry properties of the Dirac equation
with respect to the orthogonal
transformations

In the relativistic case, the orthogonal transformations are the trans-
formations of the coordinate four-vector z,, = (r,ict):

:z:fu = QuuTy + ay, (6.19)
where the transformation matrix a,, obeys the condition
G lpur = dux- (620)

The transformations (6.19), (6.20) remain invariable the spacetime in-
terval Az, = xa, — T1y, since

/ /
Aa;quu = oAz, Azy = Az, Az,

The transformations (6.19), (6.20) include the discrete (space inversion
and time-reversal) and continuous (spacetime translations, three- and
four-dimensional rotations) transformations.

Notice, that the components of the matrix v, are the numbers, which
remain invariable under the coordinate transformations (6.19), (6.20),
and the four-momentum operator is transformed in the following way

/S amu =a
pu - 8w;pl/ - ;ulpl/-

It is seen that the free particle Hamiltonian (6.5) is invariant with
respect to the infinitesimally small spacetime translation, a, = dz,.
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Similar to the non-relativistic case the generator of this transformation
is the four-momentum operator p, = —ih(8/0z,). Thus, we can assume
now that a, in the equation (6.19) is equal to zero and consider further
the transformations due to the matrix a,, only.

If we apply the transformations (6.19), (6.20) to the equation (6.14)
it becomes

(Yupy, — moc) ¥’ (z') = 0. (6.21)

The difference between the wave function in the transformed reference
frame, ¥’ (2'), and the wave function in the initial reference frame, ¥ (z),
is due to both the transformation of its arguments and the transforma-
tion associated with the column vector manner of the wave function.

As we have mentioned in the previous chapters the equation is sym-
metric with respect to the transformations (6.19), (6.20) if there is such
a matrix, S,

' (2') =S¥ (), (6.22)
that transforms the equation (6.21) to the initial unprimed form given
by (6.14).

By applying the transformation (6.22) to the equation (6.21), we get

(7uauupu - Z'mOC) Sy (:17) =0.

Multiplying the last equation by the matrix S~! from the left, we finally
get
(S_I’Yusauupu - imOC) ¥ =0. (6.23)

It should be noted the the matrix S is applied to the components of the
bespinor wave function, while the matrix a,, is applied to the coordinate
indexes, therefore these two matrices are commuting ones.

Thus we can see that the equations (6.23) and (6.14) coincide if the
following condition holds

S™y,.Sau, = .. (6.24)

The obtained equation yields the relationships between the matrices v,
and fy;L = S714,5, hence, we can calculate the explicit form of the
matrix S. If we shall use the orthogonality condition (6.20) then the set
of equations (6.24) can be rewritten in the form

S7ly,S = Qv V- (6.25)

When we deal with the continuous transformations it is convenient to
start with the infinitesimally small orthogonal transformation

Quy = 5;11/ + Euv, (626)
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where €, is the infinitesimally small tensor of the second rank. Similar
to the non-relativistic case, the tensor €,, should be an antisymmet-
ric tensor to satisfy the orthogonality condition (6.20) applied to the
matrices a,y. Indeed by substituting the equation (6.26) into the equa-
tion (6.20) we get

(5;1,1/ + 'Euu) (6uA + 5uk) = 51/>\ + (6/\1/ + 51//\) +..= 51/)\'

Hence, €y, = —€u.

At the infinitesimally small transformation (6.26), the matrix S differs
from the identity matrix by a small component proportional to the
tensor €,y

1 .
Sa,@ = 6&[3 + EOZEEW,. (627)

If the transformation (6.27) is applied to the equation (6.25), we get the
following equation for the generator of transformation C’gg:

1
5 (’Yucaﬁ - Caﬁ%) Eap = Epplp
or )
b (’y,LCaﬁ — C""B”m) — ,,a'yﬁ] gap = 0.

The solution of the last equation is
CcP = -;—fyg’yg. (6.28)

Thus, for the infinitesimally small continuous transformations, the ma-
trix .9 is defined by

1

6.3.1 Three-dimensional rotations

The matrix of reference frame rotation by the angle ¢ around the z
axis is
cosf sinf® 0 0O
—sinf cosff 0 0
=177 "% 1ol (6.30)
0 0 01

Hence, the matrix of the infinitesimally small rotation by the angle 60
around the z axis is

0 60 0 0
. _|-s8 0 00
w=1 0 0 00

0 0 00
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By substituting the last equation into the equation (6.29), we get
1 .
Sz (66) = I+ 766 (nm2 = y2m) = I + %5923.

As we have mentioned above, the generator of the transformation of
the infinitesimally small rotations is the intrinsic angular momentum
operator. Therefore, the matrix 33, having the form

_fo3z O
Yy = (0 US) , (6.31)

relates with the spin projection operator. By rotating the reference
frame around other spatial axes we can easily get the general equation

Sr(08) = I + 7003, (6.32)

Y= (g g) : (6.33)

To generalize the equation (6.32) for the case of any finite rotation
angle we need in the operator of powers of (n¥), where n = (n1,n2,n3)
is the arbitrary unit three-dimensional vector. The square of the opera-
tor (n¥) is

(n%)? = ((ng)2 (ng)2> _ ;nn] <01001 m‘OUj> (6.34)

By taking into account the commutation relations for the Pauli matrices,
005 + 0j0; = 26;5, we get

where the matrix ¥ is

(nZ)? =1. (6.35)

Thus, the all even powers of the operator (nX) are the identity operator,
(n%)* = I, and the all odd powers are (nZ)**™ = (nX). Finally, for
the matrix of rotation by the finite angle # around the axis of n we get

1 6 . .0
Sk =exp (§GE> = cos 5 +1 (n¥)sin 7 (6.36)

It follows from the equation (6.36) that under the rotation by the
angle 27 the transformed wave function does not coincide with the initial
wave function, it takes the opposite sign

U () = Sp(2m) ¥ (z) = - T (z).
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Thus, the transformation of the three-dimensional rotations, for the
bispinor wave function of the Dirac equation, is realized by the matrix X.
Therefore in the Dirac theory the spin operator is defined by

h hf{c O
s—-—2—2—§<0 0). (6.37)

6.3.2 Lorentz transformation
The matrix of the Lorentz transformation is

coseg 0 0 sing
0 10 O
aiﬁz) = 0 0 1 0 ) (638)

—sing 0 0 cosy

where tan ¢ = 4v/c. The matrix (6.38) describes the transformation to
the reference frame moving along the z axis with the velocity v with
respect to the initial reference frame.

The matrix of the infinitesimally small Lorentz transformation is

0 0 0 idv/c

| o 00 o0
=1 0 00 0
—idv/c 0 0 0O

By substituting the last equation into the equation (6.29) and applying
the equalities
Y4 = —Yam = iag,

we get

1dv

By making the similar transformations with the remaining spatial axes
we can easily get for the arbitrary vector v = ndv the following matrix

Sp(dv)=1T- 3% (6.40)
Notice that ( )2 .
(noc)2 = ( 0 (no)2> .

Hence, similar to (6.34), we get (noc)2 = I. Thus, the Lorentz transfor-
mation, at the arbitrary finite velocity v = nv, is realized by the matrix

St (v) = cosh (% tanh™! %) — (na) sinh (% tanh ™! %) . (6.41)
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6.3.3  Space inversion

The matrix of the space inversion transformation is

10 0 0
0 -1 0 0

a)=14 o 1 ol (6.42)
0 0 0 1

The space inversion is the discrete transformation, therefore to determine
the explicit form of the transformation matrix S we should directly solve
the equations (6.24) or the equivalent equations (6.25). By substituting
the matrix a,, given by (6.42) into the equations (6.25) we get

%S = =%, 1S =S, (6.43)
where ¢ = 1,2,3. It can be easily seen that the solution of the equa-

tions (6.43) is
Sp = A4, (6.44)

where A is the arbitrary constant. The double space inversion transfor-
mation can be considered as an identical transformation. In this case,
we get the following equation for the constant A

NM=1
the solutions of which are
Ar=1, A=-1 (6.45)

However, we have seen above that, for the bispinor wave function, the
rotation by the angle 27 is not the identical transformation. Hence if we
assume that the double space inversion is equivalent to the rotation by
the angle 27 we get the following equation for the constant A

A =-1
Hence
Az =1, Ag=—i. (6.46)

The choice of the value of constant A\, among its four possible values,
depends on the internal parity of a particle.

6.3.4 Time reversal

When we discussed the symmetry properties of the Schrodinger equa-
tion we have pointed out that, as the Schrodinger equation is the first
order differential equation with respect to time derivative, so the time re-
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versal transformation should inevitable include the complex conjugated
wave function. The Dirac equation is also the differential equation of
the first order with respect to time derivative. Hence, the time reversal
transformation will also include the Hermitian or Dirac adjoint.

Let us write the equation (6.14) in the form

[74( - g—%) +yp - imoc]\ll (t) =0.

By applying the time reversal transformation and complex conjugation
to this equation, we get

o * . %
‘We look for the transformation
U* (=t) = Sy (¢t),

which converts the equation (6.47) to (6.14). Multiplying the equa-
tion (6.47) by matrix —S7! from the left we get

[S;l'yZST( — ’—ié) + S:Fly*STp — imoc] ¥ (t) = 0.

c ot
Thus the transformation matrix St should satisfy the equations
Stys =v3ST, Sry=y"Sr. (6.48)

In the standard representation of the matrices 7, (see eq. (6.12)) the
solution of the equations (6.48) is

St = Arysm, (6.49)
where A7 is the constant of the unit modulus, [Ap| = 1.

6.3.5 Charge conjugation

As we have discussed above, the standard replacement (6.18) trans-
forms the equation for the free particle into the equation for the particle
interacting with the electromagnetic field

[74( - —g% — iq<p) +v (p - %A) - imoc]\IJ =0. (6.50)

The charge conjugation transformation defines the symmetry properties
of equation with respect to the replacement ¢ — —¢q. Making this
replacement in the equation (6.50), we get

(- g% +ige) +1(p+IA) —imoc] e = 0. (6:51)
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The complex conjugation of the equation (6.50) yields the following
equation

N ho . N . N
{74 ( YT zqcp) —y (p + %A) + zmoc} U* =0. (6.52)
We should find such a matrix, Sc,
U* = Sc¥c,

that transforms the equation (6.52) to the equation (6.51). Multiplying
the equation (6.52) by the matrix —Sg ! from the left we get the following
equations for the matrix S¢

Scva = —v1Sc, Scy=¥"Sc. (6.53)

In the standard representation of the matrices vy, the solution of the
equations (6.53) is
Sc = Aeys. (6.54)

where A¢ is the constant of the unit modulus, |A¢| = 1.

6.3.6 CPT invariance

By summarizing the results of the last three subsections we write the
space inversion, time reversal, and charge conjugation transformations
all together:

a) space inversion

U (—r,t) = Ap1a¥ (r,t) or U(r,t)=Apy¥(-r,t); (6.55)
b) time reversal
U* (r,—t) = Aryam ¥ (r,t) or ¥(r,t) = Arny3U*(r,—t); (6.56)
¢) charge conjugation

U* (r,t) = Ac1e¥c (r,t) or Ve (r,t)=Aen¥*(r,t). (6.57)
The combined transformation can be written as follows

TY(r,t) = Arnvs¥* (r, 1),
PT ¥ (r,1) = ApATyamvs U™ (-, ~t),

CPT ¥ (r,t) = ALApAT 2113V (=1, —t) = —AEAp ATV Y (—1, —t)
(6.58)

where
0 I
Ys=mrwn=—\r of- (6.59)
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In the frames of the Dirac theory there is some freedom in the choice of
the coefficient of the combined CPT transformation, Acpr = —AEAPAT.
Its value is determined by the internal symmetry of the particle. It is
usually assumed that Agpr = 1.

Thus, the CPT theorem can be formulated in the following way: any
solution describing the particle motion in the external electromagnetic
field has the counterpartner solution describing the space-inverted and
time-reversed motion of the antiparticle.

6.4  Free particle

So we have seen in section 6.1 that the second order in space and
time differential operator of the Klein—-Gordon-Fock equation for the
free particle is factorized into the product of the two operators, which
are the first order in space and time differential operators. It is evident
that any solution of the first order differential equation is at the same
time the solution of the second order differential equation. The two first
order differential equations are

.. 0¥

zhﬁl = (c(ap) + Bmoc?) ¥y, (6.60a)
.. O
i 6_152 = — (c(ap) + fmoc?) Vs (6.60b)

We have seen that the equation for the wave function ¥y results in
the following equation for the current density four-vector

3 = Gricp) = (ec¥ialy, ice¥{ ¥1), (6.61)

while the equation for the wave function U5 yields the current density
four-vector for the particle of the opposite charge

jl(12) = (ec\I!;"(x,\I/g, —z'ce\I’;\Ilz) . (6.62)

In the steady-state case, the wave functions are U2 (r,t) = Up9(r) x
x exp (—iE12t/h). It is seen that the steady-state equations (6.60a)
and (6.60b) coincide when Fy = —E;. Taking into account the equations
(6.61) and (6.62) we can assume that the equation (6.60a) describes the
particle and the equation (6.60b) describes the antiparticle. Hence, it
is seen that the solutions corresponding to the particle and antiparticle
have the opposite sign of energy. This will help us in systematization of
the solutions of the equations (6.60a), (6.60b).
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6.4.1 Plane waves

Let us consider the equation for particle (6.60a). The equations for
the spinors ¢ and  of the bispinor wave function ¥ (see (6.10)) are

ih%% = copy + moce, ih% = copyp — moc2y. (6.63)

We can exclude one of the spinors from the coupled set of equa-
tions (6.63). For example, by excluding spinor x, for the spinor ¢ we

get
1 9% mic?
(A ey )wzo. (6.64)

The general solutions of the equation (6.64) for spinor ¢, and similar
equation for spinor y, are

@ (r,t) = {A exp (z—ﬁ-> + A_pexp ( )] exp ( ZE;;:E) +
+ {Bp exp( z——) + B_pexp (.pr)} exp (z%) ,

x (r,t) = [Cp exp (Z_I.)hf) + C_pexp (—z%)] exp (—i%) +
oo (-55) s () ()

E, = y/mdct + p2c2. (6.66)

and Axp, Bip, Cip, Dip are the constants. These constants are really
coupled, because not all of the solutions of the equation (6.64) are
the solutions of the coupled equations (6.63). By substituting the
solutions (6.65) into the equations (6.63) we get

(6.65)

where

Cip=+-P 4, By =5_P p
tp Ep—f—mocz tp *p :FE + mgc? *p:

The solutions (6.65) correspond to the free particle of a given energy E).
We assume that particle makes a one-dimensional motion in finite vol-
ume V with the ideal boundaries. To account for the three-dimensional
motion we shall further make a summation over the all directions p.

It is evident from the equation (6.65) that both equations (6.60a)
and (6.60b) have the solutions of positive and negative energy. Thus in
the case of free particle there is no necessity to solve the equation for
antiparticle (6.60b), because the general solution of the equation (6.60a)
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includes the antiparticle solutions as well. The solutions of the equation
(6.60a) of the positive and negative energy are respectively

Wt < () 4o () o (58).

O (r,8) = [DPU§_) exP( R ) + Dpul) exp (Z_)] eXp( Efi—>
(6.6

where
Wip c(op) /
+ - o 2wt
uscp) = ¢ (op) ) u(ip) - Ep +moc Pl, (6.68)
T Wtp W
p T MoC Ep

here w4p and w'ip are the arbitrary two-dimensional spinors which obey
the normalization conditions wipwip = 1. It is seen that the spinors,
at positive and negative energy solutions, are orthogonal

c(op) c(op)
( )\ uip = :Fw:‘:pE——'—gw;:p + wlpmw;p = 0.
P

In the particle rest frame, p = 0, the bispinors u(¥) take the form

ult) = (%’) , ulD) = (3,) : (6.69)

So, in the particle rest frame one of spinors in the bispinor wave function
became zero. The solution u(+), having the non-zero upper spinor and
zero lower spinor, corresponds to particle, the solution u(~) corresponds
to antiparticle.

6.4.2 Helicity

It is seen from the equations of the previous subsection that the gen-
eral solution of the positive energy £, depends on the two spinors wyp.
It is quite natural, because the energy eigenvalue E,, is degenerated with
respect to the two directions of momentum +p. Let us discuss how we
can choose the explicit form of the spinors w4p.

The momentum operator commutes with the Hamiltonian of the
equation (6.60), hence the momentum is the conservative value. The

orbital momentum operator Al = [rp] and the spin operator s = EE do
not commute with the Hamiltonian Hp of the equation (6.60)

L, Hp] = iclap], [%,Hp] = —2ic[ap).
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The commuting operator is the operator of the total angular momentum
hj=hl+ 25 (6.70)

As far as (jp) = (¥p) /2, then the conservation of the total angular
momentum results in the conservation of the helicity. The helicity is the
projection of the spin on the direction of the momentum (¥n), where
n = p/p. We can check it directly

[(Zn), (an)] = 2iager;ning =0, [(En),s] =0.
So,
[(®p), Hp] = 0. (6.71)
If in the initial state the spin and momentum are parallel each other,

then it is convenient as the linear independent spinors w4p to take the
eigenfunctions of the equation

o' = gwl?),

where e, = p/p. These two spinors are

’LU(G=+1) _ (é) , ,w(0'=-—1) — (2) . (672)

In general case, when a particle moves in the direction defined by the
angles § and ¢ in the spin state reference frame, the linear independent
spinors are the eigenfunctions of the eigenvalue problem

(on) w!?) = gw!?),

which are
¥ Q _ (ﬁ-f) in?
o—t1) exp ( 2) cos 1) exp ( —i5 ) sing
Wp = , Wp =
exp ( <p) sin 9 exp (zf) cosg
2 2 2
(6.73)
There are the following relationships between the spinors w(_ag
and wg’)
(Up = zw(a_q), w(_ap:_l) = iw§,0=+1). (6.74)

Hence, the general solution of the equation (6.60a) can be written in the
following form

W(rt) =
_;azil [A gupanP< h )+B guﬁ,(j)eXp(E_t’;iI_‘)],

(6.75)
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U (r,t) =
. - Ept — « —(— Ept—
= Z [Apﬂugfa) exp (Zprr> + Bp,au%,g exp (——'L—fh—pz)],
P o=%1
(6.76)
where
wl
+ _ [Ep+ moc? P
up,a' - 2Ep C (o-p) - l()o-) ?
Eyp +mge
6.77
clop) (o) (6.77)
(=) _ [ Ep+moc E, +moc® ®
Upe = A TR
P wl®
P
The spinors ug‘? 1) are normalized by the following condition
u&,’\,t)fug";), = 6xndgor- (6.78)

Thus, at a given magnitude of the energy, we have the three binary
quantum numbers to classify the particle states. They are the energy
E = £E,, momentum +p, and helicity ¢ = £1. Therefore the linear
independent solutions can be chosen in the two equivalent forms: (1) the
four combinations of the different energy F' = £ E, and helicity ¢ =
= +1 solutions, at a given momentum p; (2) the four combinations of
the different energy £ = +F, and momentum +p solutions, at a given
helicity o.

6.4.3  Particle and antiparticle

In the frames of the quantum field theory formalism the linear inde-
pendent solutions can be chosen in the following way: the solution at
coefficient Ay, in equation (6.75) is associated with the electron, and
the solution at coefficient By, , in equation (6.76) is associated with the
positron. However, it is more convenient to choose both electron and
positron solutions having the positive energy. In this case, the electron
solution is given by the positive energy part of the wave function (6.75).
The positron solution is given by the positive energy part of the charge
conjugated wave function V¢ = Sal\Il* = At ¥*:

- * . Ept —
Ve =iAg Z }: [Ap’gou(_p)p exp (zp—h&r) -
p o=%1

- B;‘,vgau(_t)),a exp <—i§ih_g) ] . (6.79)
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The wave function normalization condition follows, as usual, from the
continuity equation 5
9 | e
5t +divj=0,
where the current density j and charge density p are defined by the
equation (6.7). By integrating the continuity equation over the volume V'
we get

L [ p(et)av = - f i (x,8)dS,
\%

where S is the boundary surface of the volume V.
If the wave function obeys the boundary condition

U (r)|,_.. =0, (6.80)

700

then the continuity equation generates the charge conservation law

/p (r,tydV = const,
v

where the charged density is integrated over the infinite volume. The
charge conservation law determines the normalization condition for the
wave functions of the bound states

/ Ut (1) T (r)dV = 1, (6.81)

The wave functions of the continuous spectrum are normalized by the
condition (see Chapter 2)

/ U (r,) Wy (r,8) dV = (200) 5(p — p). (6.82)

By applying the normalization condition to the wave function (6.75)

we get
> <|Ap,a|2+pr,a|2> =1. (6.83)

P o=+#1

Thus the normalization conditions (6.81) or (6.82) specify both the
charge and the integral number of the particles.

6.4.4  Spherical waves

The free-particle Dirac equation (6.60) is the rotationally invariant.
Hence, the solutions of this equation may be classified according to
their total angular momentum j and parity. For a given j, the wave
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function may be expanded in the spherical harmonics Y;,, with the
orbital angular momentum [ = j+ 1/2 and [ = j — 1/2, but the definite

parity (—1)’ F1/2 As already shown, the upper and lower spinors of the
bispinor wave function (6.10) have the opposite parity, hence, we can
only have | = j F1/2in p and | = j £+ 1/2 in x. The usual rules
of the angular-momentum addition then yield the following two linear
independent spherical spinors

j+m
_‘é’j—m,m—lﬂ

Qimir1/20m = — ,
.
\/—’2J~_Yl,m+1/2
e (6.84)
S ity
2j+2 bmY
Qimi-1/20m = :
Jj+m+ 1Y
iy Ylmtl/2

The spherical spinors (6.84) are orthonormalized
/ Qﬁmﬂj’l’m’ sin 4 df d(p = (5jj’5ll’ 5mm’- (685)
The relativistic total angular momentum is
hi=h+ s,

hence the bispinor wave function of the state with the total angular
momentum j and its projection m is

J1(r) Qu=j—1/2,m (0, <P)> N <f2(7“) Qji—j+1/2,m (0, w))
81(r) Qj1=j+1/2,m (60, ) 82(r) Qj1=j—1/2m (0,9))
(6.86)
We have shown above that, in the case of the free particle, the coupled
set of equations (6.63) can be transformed to the second order differential
equations for spinors ¢ and x in separate

1 62 mic? 1 8% mic?
A-— -0 =0 A- o — -0 =0.
( EETER >“’ ’ ( T R )X 0

By substituting here the wave functions in the form

(L) Qi > Bt
v (r’ t) B (gl+1 (I“) Qj,l-H,m oxp ( ' h ) ’

i () = (
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we get for the radial wave functions the following equations

*f | 2dfi (Eﬁ—mgc‘* l(l+1)>fl:07

dr? ;dr h2c2 bl
2 ' 2 cg 4 i (687)
Can  2dgn (BT -mie (14 1(1+2) —0
dr2 r dr hzcz 5 8i+1 .

The solutions of the equations (6.87), satisfying the boundary conditions
at r — 00, are

fi(r)=Aj(kr), g1 (r) = Bjiy1(kr), (6.88)

where A and B are the constants, k = \/E? — mgcl/(he), and jj (z) is
the spherical Bessel function. Thus, the radial wave functions are the
spherical Bessel functions.

To find the relationships between the coefficients A and B in (6.88),
we should substitute the equations (6.88) into the equations (6.63). It
is convenient to use the following transformation

_ : O o 9 3
(or) (op) = rp +ic[rp| = zhrar +ih (J 1 4) :
Hence,
(or) (op) it (1) Qjtm = ihkrji1 (1) jim,
(or) (oP) Jit1 (1) Qjas1,m = —ihwrji (1) Qi rr1m.

If the last transformations are applied to the equation (6.63), we get
(E - moc®) Aoy Qjim = —ihkcBQ 141,m,

(E+ mocz) B j11,m = thkcAorQjim.
Notice, that there is the following relationship between the spinors {25,
and le’m:
(10,0) Qi = ¥ " Q. (6.89)
This equation can be easily derived with the help of the explicit form of

the matrix o, = (n,0). So, we get finally the following equation for the
wave function

VE + mocZi (k1) Qjim .t
‘I’lzj—l/z (r,t)=C . exp (*1—) )
—VE = mocZjis1 (1) Qji11,m
(6.90)
where C is the normalization constant.
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The second linear independent solution (see equation (6.86)) can be
derived in the similar way

VE +mocjip (57) Qi1m exp (—i@)
—VE —moc%ji (k1) Qjim h
(6.91)
According to the definition (6.84) the spinors i, are transformed
under the space inversion in the following way

Qi (—1r) = (=1)' Qjim (1) .

Vi_jy12(r,t) = (

Hence,

_ VE 4+ moc?ji (k1) Qjim ()
Uij1y2 (1) = (-1) ( VE =m0t (5) Ut m (nr)> (6.92)

and
. —r) = +1 (Vv E + moc?jiiq (m") 4, 1+1,m (Ilr)
\I’l=3+1/2( ) - ( ) ( mﬁ (/il?") iim (nr) ) . (693)

Thus, as we have already mentioned, the the upper and lower spinors
of the bispinor wave functions (6.90) and (6.91) have the opposite parity.

6.5 Particle interaction with electromagnetic field
The Dirac equation for a particle interacting with the electromagnetic

field is
(’m (pu - %Aﬂ) - imoc> U (r,t) = 0. (6.94)

Before start with the analysis of this equation it is helpful to make
the following comments. We have already mentioned that there is a
close connection between the Dirac equation for the free particle and the
Klein—Gordon-Fock equation. Indeed,

, } 1
(YuPu + imoc) (Yupy = imoc) = 5 (W YoPuby + W WupuPu) + mie’.

As long as the components of the four-momentum operator p, =
= —ihd/0z, commute with each other, then, with the help of the
commutation relations (6.13), we finally get
, : 22 H* 2 2
(Yupu + imoc) (Vupy — tmoc) = pupy + mie® = = Z5E A + mge®.
It is seen that the right-hand-side of the last equation is the operator of
the Klein—Gordon—Fock equation for the case of free particle.
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However, the components of the generalized four-momentum operator
e
Pu=pu— EA;A
do not commute with each other. The commutation rules for them are
0 e ., 0 e __ihe (0A, 0A,\ _ ieh
(= ing, = £Au)s (= vy, = 40| = (5~ aat) = 5w

where F},, is the electromagnetic field tensor. As a result, the product
of the two first order differential operators does not coincide with the
operator of the Klein—-Gordon-Fock equation for a particle interacting
with the electromagnetic field. Instead of that, we have

(YpPy + imoc) (v Py — imoc) =
_ 1/7..0 2 € 2 2 92 eh .eh
- —c—z(zha - ego) + (p . ZA) +m3c — “'SB +iZaE. (6.95)

Thus, there are the two additional terms in the right-hand-side of the
equation (6.95) with respect to the operator of the Klein-Gordon-Fock
equation for particle interacting with the electromagnetic field.

In analysis of the solutions of the Dirac equation for the case of free
particle we have already used the following technique. The coupled
set of equations for the upper and lower spinors of the bispinor wave
function is transformed into the second order differential equation for
each of the spinors in separate. Of course, not all of the solutions of these
two second order differential equations are the solutions of the Dirac
equation, because the upper and lower spinors, of the desired bispinor
wave function, are not independent. However, the substitution of the
obtained solutions into the Dirac equation enable us to relate the upper
and lower spinor and find the solution for the bispinor wave function of
the Dirac equation.

In the analysis of the Dirac equation for the particle interacting with
the electromagnetic field it is also helpful often to find initially the
solutions of the second order differential equation

(’m (pu - gAu> + z’moc) (% (p,, - —EA,,) - z'moc) =0, (6.96)

To exclude the unnecessary solutions of the second order differential
equation (6.96) we can use the following technique. If the function
® (r,t) is a solution of the equation (6.96), then the solution of the Dirac
equation (6.94) is defined by

U (r,t) = (fyﬂ (pu — SA“) + imoc) P (r,t). (6.97)

Indeed, it is seen that the function ¥ (r,t) satisfies the Dirac equa-
tion (6.94).
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6.5.1 Pauli equation

With the application of the definitions (6.12) the equations (6.94)
reads

z‘h%‘f— - [ca (p - %A) + Bmoc® + U] , (6.98)

where we have introduced the potential energy U (r,t) = ey (r,t) to
avoid the confusion of the electromagnetic field scalar potential ¢ (r,t)
and the upper spinor of the bispinor wave function (6.10).

Let us start with the case when the particle kinetic energy is much
smaller than its rest energy. In this case it is convenient to use the
following transformation of the wave function

T (r,8) = U (r, £) exp (_im‘ft) . (6.99)

The substitution of the equation (6.99) into the equation (6.98) results
in the following coupled set of equations for the spinors ¢’ and x’

(ih% - U) ¢ = coPy/, (6.100)

(ih% + 2mgc? — U) x' = coPy’, (6.101)
where P =p — SA = —thV — %A. By neglecting the time derivative in
the equation (6.101), we get

1. _¢ (oP) /
2m062 -U )

The substitution of the last equation into the equation (6.100) results in
the closed equation for the spinor ¢’

Lo [ HaP)? p
i = [Qmocz = +U| ¢ (6.102)

With the help of the identity (4.10) we get
(oP) (oP) = P?+io [(p — %A) (p — —ZA)] = (p - EA)z—%o curl A.

Hence in the case U < moc? the equation (6.102) becomes

’ 2
in¥ _ [L (p - SA) +U - 2‘35 GB] o (6.103)

ot 2mg MoC
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It is seen that the obtained equation coincides with the Pauli equation
(see section 4.1.3), where the electron magnetic moment is
h = (6.104)

2moe mgc

u:

In the non-relativistic approximation the current density four vector is

p=e(eTo+xtx) mepty, (6.105)

j=ec(pTox +xTop) = 5;—13 ("o (cP) @' + (Py'to) op') =
ehi

_ = (VQPH_ . SO/ _ (pl—l—V(PI) _

2
1+ ! eh RN
Sme —'TAY + T curl (" oy’ .

maqcC
(6.106)

6.5.2  Non-relativistic approximation
To derive the equation accounting for the highest order of the non-

relativistic approximation (v < ¢) we can use the following technique
proposed in [54]. Let us write the equation (6.101) in the form

I 2 0 /
X—(Zmoc U+zh—a—t) c(oP) ¢,

where the inverse operator is defined by the following power series

! —ih ,
X = 2m0c -U Z (Qmoc —U (9t) (oP) ¢". (6.107)

The equivalence of the inverse operator to the series (6.107) can be shown
in the following way. Let us consider the equation

—(Zl—gtiwLax—f(t).

The solution of this equation can be written in the following form

t
z (t) = exp (—at) / f(z)exp(az) dz =
0

=~f(t)— %exp (—at) / %exp(az) dz — Mf (0) =

0
t

1 1 df d2f
=-f(t)— 5= exp ~at) | —5exp(az) dz—
a a? dt O/dz
_exp(—a )( £(0) — %Tf( )) = (6108)
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By continuing further the obtained chain, we can see that the series
(6.108) coincides with (6.107). In the equation (6.108) we can remove
the terms depending on the initial conditions, because in our case a =
= —i2moc?/h and we must omit these terms in non-relativistic approx-
imation, even if the initial conditions are non-zero.

The substitution of series (6.107) into the equation (6.100) produces
the closed equation for spinor ¢’. If we take into account the only first
two terms of series, we get

Loy 1 _eaNt el _ ehc? e B
’LF_LE- = {%1— (P EA> +U 2mlcO'B (2m062 B U)z [E (P CA)]

ehitc? div ( E > n Z.eh2(:2
2 (2moc? — U)* 2

+ Fo [V—Q%E (p- SA)} }d), (6.109)

ccurl( 1 18A>+

(2moc? — U)? c ot

where
2

P (r,t) = (1 + oP——Z——U—)20P><p’ (r,t),

2moc -~

w1 (i) )
— =\l |
mi mo 2mgc — U

The equation (6.109) generates the following equations for components
of the current density four vector

(6.110)

p=eyTy,
_ R Gt ) — Cpt Ay - —CCh
s (V0% = UPV0) A Ty el
(6.111)

In the case U < mpc?, the Hamiltonian of the equation (6.109) is
simplified and takes the form

=gk o= 5" 50 gt e[ 20)] -

- é?n—(; 2moc - 4m,
2 2
- —thg divE — i——c%ccurl E. (6.112)
8mge 8mge

Thus we can see that the Hamiltonian of the equation (6.109) includes
the extra terms in comparison with the Hamiltonian of the Pauli equa-
tion. Hence the structure of the hydrogenic spectra will differ from that
calculated in the Chapter 4 on the basis of the Pauli equation. However
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we do not present here the analysis of the equation (6.109), because the
Dirac equation for the problem of the electron motion in the Coulomb
field has the analytically tractable solution. The Hamiltonian (6.112)
is useful in the interpretation of the results of the exact analytical
calculations.

6.5.3 Motion in Coulomb field
Energy spectrum

Let us consider the problem on the electron motion in the Coulomb

field

Ze?

U(r)=—-——

where Z is the charge of nucleus the hydrogenlike atom.

As we have mentioned in the beginning of this section, we can find ini-
tially the solutions of the second order differential equation (6.96), then
the solutions of the Dirac equation are defined by the equation (6.97).
The second order differential equation for the considered problem is

2EZa 1 VAL WA
I:A - he 7 —7-:2—— + ZT—QOZT] d = 0, (6113)

where

\/méct — E?
K = ————h-c———-, Oy = (nroc) s (6114)

and we have introduced the fine structure constant o = e?/(hc). Let us
write the wave function of the second order differential equation in the

form
= @ , (6.115)

then for spinors £ and 5 we get the following coupled equations

2EZa 1 Z2a
I:A— e :|§_ -1 gaTna
6.116
A—r?i 2EZal Z2a2 L, ( )
he r re p2 TS

The Coulomb potential is the spherically symmetric, hence in accor-
dance with the analysis given in subsection 6.4.4 the spinors £ and 7 are:
a) for j=141/2:

&u(r) = p1(r) Qju=j—ry2,m (0,0) s m(r) = q{r) Q172 (0,9);
(6.117)
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b) for j =1-1/2:

&a(r) = pa(r) Qju=jr12 (0,9),  m(r) = @2(r) Qju=j-1/2.m (8, 90) -

(6.118)
Notice, that the equations (6.116) are symmetric with respect to
spinors & and 7, therefore we need not in the analysis of the equations
(6.116) for the cases (6.117) and (6.118) separately. If we have got the
solutions for the case j = I + 1/2, then the transposition of the upper
and lower spinors in the wave function (6.115) generates the solutions
for the case j = | — 1/2. By substituting the equations (6.117) into
the equation (6.116), we get the following equations for the radial wave
functions p (r) and ¢ (r)

2 2d o 2EZal | Z®—1(l+1) Zao
[Jf?*;a—f” M TR p==z
6.119
ﬁ+gi_ﬁ2+2E2a1+Z22—(l+1)(l+2) _ Za ( )
dr®  rdr he T r? 7= r? p-

The solutions of the coupled set of equations (6.119) can be easily
found with the help of the solutions of the following equation

df  2df boe\,_
@ il (a—;—m—z)f—o-

The last equation coincides with the equation for the radial wave func-
tions of the Schrodinger equation for particle moving in the Coulomb
field, and the solution of this equation, which is finite at x — 0, is

f(a:)zexp( \/—I—I-\/——— 12:>><

% F <1+__ vl-de 5\”7 14+ v1—4e, 2\/c—wc> , (6.120)
a

2

where F (p, ¢, z) is the confluent hypergeometric function. It is seen that
we can assume that the radial wave functions p(r) and ¢ (r) are

p(r) = Ar""lexp(—kr) F (1/ — E—ZQ,QV, 2m"> ,
o (6.121)
q(r) = Br* lexp(—kr) F (V — —h—cT-c—’QV’ 2/-67“) ,

where )
=3 (1+V1-4dc), (6.122)

and A and B are the arbitrary constants. By substituting the equa-
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tions (6.121) into the equations (6.119) we get the coupled set of the
algebraic equations for coefficients A and B

(Z°a® —1(l+1)—c) A+ ZaB =0,
ZaA—(Z** - (1+1)(1+2)—¢)B=0.

The condition of existence of the non-trivial solutions of the algebraic
equations (6.123) yields the following two values for the coefficient c:

co=—(1+1)2+ 2202+ /(1 4+ 1) - Z2a2. (6.124)

(6.123)

Hence,
v = \/(g + %)2 — 722, By =—cA (6.125)
and
vy =1+ \/(] v %)2 — 7202, Ay = —cBo, (6.126)
where Ja
¢= (6.127)

\/(j +1/2)2 - 2202 4+ j +1/2
Thus, in the case when j = [+ 1/2, the two linear independent solutions
of the second order differential equation (6.114) are

Qimi1/am
bu(e) = (A )R ),

—-< Qj,l:j+1/2,m

Q (6.128)
By (r) = ( ;2 J,l=J~1/2,m> R§~2) (r),
Jl=7+1/2,m
where
R (r) = r"v2"Yexp (—kr) F (I/ _ EZa 2v1 9 ZNT) (6.129)
J 1,2 h:CK) 9 1,2, . .

The solutions (6.128) satisfy the boundary condition at r — 0. The
radial wave function (6.129) satisfies the boundary condition at r — oo
when the following condition holds

EZ
V2 — ﬁc: = —n{b?), (6.130)

where n&l’z) is the non-negative integers. The equation (6.130) yields

the following equation for the energy spectrum

mo 62

A 2
o

1+ ————
(ngla) _;_,,172)

Eio=

(6.131)
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It is seen from the equations (6.125) and (6.126), that the obtained
spectrum is degenerated. Indeed, by introducing the following notations

vy =v, vp=v+1, np) =n,, nﬁg) =n, —1,
we get the general equation for the energy spectrum

moc? (n, + v)
Vo +0)* + (Za)*

and the following equations for the wave functions

En.j=

(6.132)

Qeie
Oy(r) = ( dil=j=1/2m )r”—lexp(—fcr)F(—nr,Zu,er),
Q) 1—j41/2,m

Qs
y(r) = < S3d=g 1/2’m> ¥ exp (—kr) F (1 — np, 2v 4 2,257) .
Qji=j+1/2,m ( )
6.133

As we have mentioned above we need not in separate analysis of the
case of j =1 —1/2. The energy spectrum is again defined by the equa-
tion (6.132), and the wave functions follow from the equations (6.133)
with the help of transposition of the upper and lower spinors in these
equations

Qs
D3(r) = AR PPt (~kr)F (1 —np,2v 4+ 2,2kr),
-S'Q‘,l:j—l/z,m

—c
Dy(r) = ( N J’l—JH/Z’m) " Yexp (—k1) F (—ny, 20, 267) .
Qji=j-1/2,m ( )
6.134

It should be reminded here that there are the superfluous or unneces-
sary solutions among the solutions of the second order differential equa-
tion (6.113). These solutions are the solutions of the equation (6.113),
but they are not the solutions of the Dirac equation

(Yupp — tmoc) ¥ = 0. (6.135)

We have mentioned above, that the general technique, to obtain the
Dirac equation solutions from the solutions of the second order differ-
ential equation, is in the following. If ® is a solution of the second
order differential equation, then the solution of the Dirac equation is
defined by

¥ = (yupy + tmoc) @ = {(3:74(3‘ ~U)+yp+ z'mgc] o,
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In the case when j = [ 4 1/2, the general solution of the second order
differential equation is

o (I‘) S A<I>1(r) + B@Q(I‘) . (6136)

The equations for ®; 2 can be symmetrized with the help of the recur-
rence relations for the confluent hypergeometric functions:

2vF (—ny, 2v,2kr) =
= —n,F (1 —ng,2v+12kr) — (ny + 2v) F (—ny, 2v + 1,267) ,

267 F (1 — ny, 20 + 2,267) = (6.137)

=2v+1)F(1—np2v+126r)—(2v + 1) F (—np, 20 + 1,267) .
If we apply the equations (6.137) to the equation (6.136) we can easily

find the coefficients A and B that realize the equality (6.135). The
resultant wave function is

fng (1) Qj1=j-1/2 m>
Uyim () = : my 6.138
i (1) (gnj e (6.138)
where

(2x)** E
T (2v + 1) 2mec?

« \/F(QI/—}—’I’LT—}-l) (moc® + E)

L(n.+1)  (n+v) (moc*(ne +v) + E(j +1/2)) %

fng (r) = ——— (2kr)" " exp (—kr) X

X [(Zo;imgc +J+ ) F(—nr,2v + 1,25r) = neF (1 = np, 20 4 1,267) |,
(6.139)
T (2v +1) 2mgc?

« I'(2v+n,.+1) (mocz——E) y
T(ne+1)  (ne+v) (moc*(ny +v) + E (j + 1/2))

(26r)" Y exp (—Kr) X

gnj (r) = —

x (B3 4+ 4 3) F (=g, 20 4 1207) + e (L= g, 20 4 1,257)]
(6.140)

The wave function (6.138)-(6.140) is normalized by the condition

/ njm (I') \I}njm ( )dV = 1.
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The energy spectrum (6.132) depends on the two quantum numbers
n, and j. Hence, in contrast to the Bohr formula the spectrum (6.132)
describes the fine structure, i.e. the splitting of the nP;/; and nPs/
levels. The first terms of expansion of the spectrum (6.132) in pow-
ers (Za)" are

AEnj = m002 - Enj =
Z%a? VAE 3/7. 1

2 - - 141
o 2t (5 1 1/2) (n 1 (]+ 2))] o (6:141)

where n is the principle quantum number, which is defined by

= MmpC

o1
n—nT+J+§.

It is seen that the equation (6.141) coincides with the Sommerfeld
formula (5.27).

The spectrum (6.125) differs from the Bohr formula in the dependency
on the charge Z of the ion. It is seen from the equation (6.125), that
there is the critical charge Zj, defined by

o1

It is impossible in the frames of the Dirac theory to consider the Coulomb
field with Z > Zy. At Z < Zg, the dependency of the parameter v on Z

=0 =1
=t e ————
S - 0.057
AE/E
_ 0.04+
0.03+
0.02
—_— 0.014
0 L AL A LS DA R
Z=1 Z=100 Z=1 Z=100 0 20 40 ZGO 80 100

Figure 6.1. The relative energy shift of the 2P/, and 2P;;5 levels as a function of
the ion charge Z. The insert shows the normalized spectra of hydrogen and ion of
charge Z =100 for l=0and [ =1
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changes the magnitude of the relative shifts of the different states. The
Fig. 6.1 shows in comparison the spectra given by equation (6.132) for
hydrogen and for ion of the charge Z=100. The energy of states are
normalized by the energy of 1s state Ey;/E1s. The states of 2 <n < 10
are only depicted. It is seen from the figure that the 2s state of ion lies
below the 2s state of hydrogen (i.e. the relative energy of this state of
ion is smaller than the relative energy of the same state of hydrogen).
At n > 3, the relative energy of the ns states of ion is higher than the
relative energy of the appropriate states of hydrogen. At ! > 0, the
relative energy of the all states of ion is higher than the relative energy
of hydrogen, and the energy shift exceeds significantly the energy shift
at [ = 0. The graph in Fig. 6.1 shows the relative energy shift,

E (2p3/2) = B (2p1/2)
E (131/2) ’
as a function of the ion charge. It is seen that at Z > 50 the energy

shift of 2p3/9 and 2py /5 states is about a few percents of the ground state
energy.

Wave functions

To compare the wave functions (6.139), (6.140) with the wave func-
tions of the non-relativistic Schrédinger equation, given by the equa-
tion (2.35), it is convenient to introduce the dimensionless coordinate

T

x = e (6.142)
where ap is the Bohr radius. Let us introduce additionally the effective
principle quantum number

N = /(e +v)* + (Za)’. (6.143)

Let us consider the case of j = [ + 1/2. In this case, at Za < 1, the
parameter v is approximately equal to

_ 2 2 _ (Ze)°
v=JU+1)? = (Za) ~1+1 ST (6.144)
then for the effective principle quantum number N we get

(Za)?n,
2me+ 14+ 1)1+ 1)
It is seen that in the limiting case of Za — 0 the quantum number N

approaches to the principle quantum number, n = n, + [ 4 1, of the
Schrédinger theory.

Nzang+104+1—
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By substituting the equations (6.142), (6.143) into the equations
(6.139), (6.140), we get

1
fon(z) = mx

y 1“(nT+21/+1)N+nr+u<g)”+1/2mu_1eX (_ﬁ) y
Tl +1) N+l+1 \N P\™WN

X ((N+l+1)F(—nr,21/+l,—2]—i£> —n,nF<1—nT,2u+1,QZTx ,

(6.145)
EATI ) pepm——
fir 2NT (2v + 1)

T(n,+2v+ 1) N—n, —v (2Z\v*V2 | <_Zx)
><\/ T(n, +1) N+l+1(N) roeRUTE )"

X ((N+l+ ) F (—nr,2u+ 1, %) +nF (1 20 1, -Q-JZVQ’-»
(6.146)

At [ > 0, there is almost complete coincidence between the wave func-
tion (6.145) and the radial wave function R, (z) of the Schrodinger

70—_ 6 -
60 (a) . (e)
50 oy
F 40 5
m - SN’
30 &
20—_ 24
10 1
0 — 7T T 1 T 1 1 0 — T T T T T T T ‘' 1
0 01 02 y 03 04 05 0 01 02 y 03 04 05
T/ a T/
2.01 ® 0.02- ®
& b
& L5 ()
i 4
® 1.0
““ -
0.5
i
o W77
0 01 02 03 04 05 0 01 02 03 04 05
/ap r/ag

Figure 6.2. The comparison of the Dirac and Schrédinger wave functions for the 15
state of the ion of charge Z = 10
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Figure 6.3. The comparison of the Dirac and Schrédinger wave functions for the 1P
state of the ion of charge Z = 10

equation. At the same time, there is some difference between the radial
wave functions of the s states. Indeed, the confluent hypergeometric
function has the following asymptotical form at z — 0: F'(a,b,z)|,_,, =
= 1. Hence, at z — 0 we get the following asymptotical expression for
the wave function (6.145)

F (@)~ g(z) ~ a2/, (6.147)

We can see that the wave function ¥ () is divergent at z — 0. The diver-
gency is weak, when Za <« 1. The Fig. 6.2 shows in comparison the wave
function R (z) (curve (a)) and difference f (z) — R (z) (curve (b)) for the
1s state of the hydrogenlike ion of charge Z = 10. The curves (¢) and (d)
illustrate the charge density distribution ¢ (z) = R%(x) 22 and the differ-
ence dg = (¥* () ¥ (x) — R*(z)) 2. The charge density distribution is
not divergent, and the ratio of dq to q is dg/q < 3-1073. The Fig. 6.3
shows the wave function R (z) (curve (a)), the difference f(x) — R(x)
(curve (b)), charge density distribution ¢ (x) = R?(z)z? (curve (c)),
and the difference dg = (¥ (z) ¥ (z) — R*(z)) z* (curve (d)) for the 2p
state of the hydrogenlike ion of charge Z = 10. The wave functions are
not divergent at [ > 0, and the ratio of dq/q is about of the same order
of magnitude as for the s states.
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Continuous spectrum

The states of the energy E > mgc? correspond to the continuous
spectrum. In this case the parameter x becomes pure imagine, and it is
convenient to introduce the new parameter

po VP me 6.148
= T = 1K. ( . )
The two linear independent solutions of the second order differential
equation (6.114) are still given by the equation (6.128), where we should
make the following replacement k — —ik, so

RW (r) = (2kr)* L exp(ikr)F (v — in, 2v, —i2kr)

(6.149)
R® (r) = (2kr)” exp(ikr)F (v + 1 — in, 2v + 2, —i2kr)
where 57
o
With the help of the recurrence relations (6.137) and the Kummer
transformation F'(a,b,z) = exp(z)F (b—a,b,—z), the wave func-
tions (6.139) and (6.140) are transformed to the following form
f(r) = C\/E + mgc2(2kr)Y 1 x
x Im {exp [i (kr + )| F (v —in, 2v + 1, —i2kr)},
(6.151)

g(r) = CVE — moc2(2kr)’ 1 x

x Re{exp [i (kr + )] F (v —in,2v + 1, —i2kr)},

where C is the normalization constant, and we have introduced the
following parameter

—(j +1/2) — inmoc®/E
v —1n

exp (i2¢) =

. (6.152)

The normalization constant C is determined by the asymptotical form
of the wave function at r — oco. Finally, for the normalized wave function
we get

_ E +moc® [T (v + 1+ in)| (2kr)” e/
=" Tory eXp(_Q')x

x Im {exp [i (kr + &) F (v —in,2v + 1, —i2kr)}, (6.153)
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g (r) = 4 /mo‘; - EIC %”infg”)‘ (21:?)” exp (m17/2) x

x Re{exp[i(kr + )] F (v —in,2v + 1, ~i2kr)} . (6.154)

The asymptotical form of the functions (6.153), (6.154) at r — oo is

2
fu(r) = -\? E—Jr—Em—oc—Sm (kT-I-(Sk +nln(2kr) - %) ,
- (6.155)
g (r) = ? E__Eﬂ)_c_ cos (kr + 6k + nln(2kr) — 7—; ,
where
; . 2 .
exp (2i0y) = —U+1/2) —igmoc’/EL (v + 1 = in) exp [im (I — v)].

v—1n I'(v+1+1n) (6.156)



Chapter 7

THEORY OF SPIN-1/2 PARTICLES
INTERACTING WITH
ELECTROMAGNETIC FIELD

The hydrogenic spectrum, calculated on the basis of the Dirac the-
ory [4, 55, 56], was in good agreement with the experimental data of
that time. Indeed, the fine structure splitting, a*mgc®/32, is in good
agreement with the experimental data and this value, which is only the
first order correction to the Bohr formula, coincides with the correction,
calculated earlier by Sommerfeld [53] with the help of quantization rules.
As we have mentioned, the next step in the development of the theory
of atomic spectra was stimulated by the experimental observation of the
Lamb shift [57]. The researches, directed towards the explanation of the
Lamb shift, triggered the development of the quantum field theory. The
application of the powerful technique of the quantum field theory enables
to calculate precisely the hyperfine structure of the hydrogenic spectra.
The radiative correction theory is based on the account of the virtual
processes of the charged particle interaction with the electromagnetic
vacuum and vacuum of the electron-positron pairs. The main technique
here is the invariant theory of perturbations. The smallness parameter
of the perturbation theory is the fine structure constant. Indeed, the
mean potential energy of electron in the hydrogen atom is equal to
Uy = e?/ap, where ap is the Bohr radius. The ratio of U, to the
electron rest energy is U,/(moc?) = o?. However, in the case of
the hydrogenlike ions, the characteristic constant of interaction is the
parameter Zo, which increases with the increase of the ion charge Z.
Hence, the perturbation series becomes less convergent with the increase
of Z. Therefore, the development of the non-perturbative approach is of
the great interest.

By comparing the quantum mechanics and quantum field theory ap-
proaches, we can see that the principle difference between them consists
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in the following. In the frames of the Schrédinger and Dirac theories
the charge density is p(r,t) = e¥* (r,t) U (r,t). Hence, the charge
conservation law fixes both the integral charge and integral number of
particles, because

/qﬂr (r,0) ¥ (r, )V = S JA?,

where the index ¢ numerates the linear independent solutions of the
quantum mechanical equation, and A; are the amplitudes of these solu-
tions.

On the other hand, the quantum field theory, including into consid-
eration the virtual processes, removes any restrictions for a number of
particles involved in the interaction. Hence, to account for the many-
particle processes we should reconstruct the normalization condition in
a way allowing the variation of the total number of particles. Notice
here, that the particle and antiparticle has the opposite sign of charge.
It gives us some hint, how we can construct the wave function nor-
malization condition in order to satisfy the charge conservation law, on
the one hand, and to remove the restrictions on the integral number of
particles, on the other hand. It is evident that such kind normalization
condition could not be incorporated into the theory, which is based on
the differential equation of the first order with respect to time derivative,
because the continuity equation should have the relativistic invariant
form. The theory, which met the all above mentioned requirements, was
proposed recently [58]. The calculated spectrum [59] is in reasonably
good agreement with the experimentally measured spectra of hydrogen
and deuterium. Here, we give an overview of the theory and demonstrate
its application to the theory of hydrogen atom, geonium atom, and
problem of the electric dipole moment of spin-1/2 particles.

7.1 Action principle

Let the action for the spin-1/2 particle interacting with the electro-
magnetic field be

1
= 16
~g [ (V0 - L) (<ih9, 0 - LAY+ mdET0] @V dst

27’710

S / FuwF,, dVdi-

2

where F),, = V, A, — V,A, is the electromagnetic field tensor; V=
= 0/0xy,, x, = (r,ict); Ay, = (A,iyp) is the four-potential of the

+ 2 / Uy, Fy W dVdt, (7.1)
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electromagnetic field; -y, are the four by four matrices; mo, go and pp is
mass, charge, and magneton (i.e. magnitude of the magnetic moment),
respectively. The wave function ¥ of the equation (7.1) is the bispinor

V(r,t)= <£> : (7.2)

where ¢ and y are the three-dimensional spinors. The Dirac adjoint
wave function is B
U = Uty

It is seen that the main difference of the action (7.1) and action for
the Dirac equation is in the following: Firstly, the action (7.1) is the
quadratic form of the four-momentum operator. Secondly, it enables to
introduce the three independent material constants characterizing the
particle properties — mass myg, charge qo, and magneton pg. _

The Euler-Lagrange equation, when S is varied with respect to ¥, is

1 0 Qo 2

il (_iha—- — ?Au) +mic| U =iy YV Fuu ¥, (7.3)

my Ty

The variation of S with respect to A, results in the following equation
4m

V%,Au - VI_LVI/AV = __C'-j/la (74)
where
o [h (0 F OV g, o]
J‘u—mol:Q (amuw \Ilé)a:u> c\I}A“\IJ]

icug 0 /=
- Togg (T (v — W) ). (7.5)

It is seen that the current density four vector satisfies the continuity
equation

Vdu = 0.
The spatial component of the current density four vector is the current
density
i) =2 [P gy v 0. ve) - 0§
iy =2 [2 (VI 0 —¥.VY) C\I/A\If] +

- -
+ cpo curl (IBT) — iHoz; (Ta®), (7.6)

and the time component is the charge density

_ o |_ih OV GOVY  aog 1oV (1
p(r,t)—moc{: 2c<8tql \Ilat> —E\Ilgo\Il]+zu0V(\I/a\Il). (7.7)
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7.2  Connections with the Dirac equation
Let us use the following identity

h
'YuPu’YVPV—P2 Q’Yu’Yu(PuPV—PP) Pﬁ z;; Y Fuu,

where 5
ey _Pp s O Q0
P,=1pyu . A, Zh@xu . Ay

With the help of this identity the equation (7.3) can be rewritten in the
following form

2m

. . . oft
(YuPy + imoe) (v Py — tmoc) ¥ = img (uo — i———) Y Yo Fop¥. (7.8)

Let us assume now that the magneton, introduced in the equa-
tions (7.1), is equal to the Bohr magneton

. Jelh
Ho =B = 5 —. (7.9)
In this case the equation (7.3) becomes
(Yu Py + tmoc) (Vu Py — imoc) ¥ = 0. (7.10)

Thus, we can see, that in the case, when the magneton is equal to the
Bohr magneton, any solution of the Dirac equation

(vu (‘ihgz— - %A“> - imoc> U=0 (7.11)
i

is, at the same time, the solution of the equation (7.3). However, the
opposite is not true, because the number of the linear independent
solutions of the second order differential equation is twice larger.

If the assumption (7.9) is applied to the equation (7.5), the current
density four vector takes the form

e st [ (e 24) )]
- [\Il( (——zhawy %"A,,) —imoc)] -«/M\I/}. (7.12)

The equation (7.11) for the Dirac adjoint wave function reads

U _; 0 90 . _
v (*y,t ( zha—mu- + ?Au> + zmoc) = 0. (7.13)
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If we apply the equations (7.11) and (7.13) to the right-hand-side of the
equation (7.12), then the equation for the current density four vector
becomes

§P) = icgo ¥, V. (7.14)

Thus, if a particle wave function obeys the Dirac equation (7.11), then
the equation for the current density four vector (7.5) takes the form of
the current density four vector in the Dirac theory:

j[(LD) = (_], icp) = (qu\I/+a\I’, icqo\Il+\I!) .

Thus, we can seen that in the case of ug = up (i.e. when the magneton
is equal to the Bohr magneton), any solution of the Dirac equation is
also a solution of the equation (7.3).

7.3 Symmetry properties with respect
to orthogonal transformations

Let us study the symmetry properties of the equation (7.3) with
respect to the orthogonal transformations

LL’L = QuTy + au, (715)
where the matrix a,, obeys the condition
Gy = Oy (7.16)

We have explored symmetries in the previous chapters, therefore we
can exclude some specific cases. Firstly, there is no necessity to study
the transformation properties of the equation (7.3) for the case of free
particle, because the left-hand-side of this equation has evidently rela-
tivistic form. Hence, the transformation properties of the equation (7.3)
for the free particle are completely determined by the transformation
properties of the bispinor wave function ¥. We have discussed them
in the previous chapter. Secondly, there is no necessity to discuss the
transformation properties with respect to the translation in spacetime,
because they are the same for all quantum-mechanical equations, and
we have discussed them in the previous chapters. Hence, we can assume
a, = 0 and consider further the following transformations

Th, = QuTy. (7.17)

If the transformations (7.17) are applied to the equation (7.3) we get

1 ,
p— (P2 + mic®) ¥ (2') = ipgvuVoappanaFap, ¥’ (2') . (7.18)
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As we have mentioned in the previous chapters, the invariance of the
equation with respect to the orthogonal transformations means that
there is a matrix S, defined by

V' (2) =S¥ (z), (7.19)

which transforms the equation (7.18) into the equation (7.3). By substi-
tuting the transformation (7.19) into (7.18) and then multiplying both
sides of the obtained equation by S~! from the left, we get the equation,
which coincides with the equation (7.3), if the following condition holds:

S—lqu’Yusaupav)\ = YT (7.20)

By taking into account the orthonormality of matrices a,, (see (7.16)),
we can rewrite the equation (7.20) in the form

S—I'YM’YVS = QupGuXYpYX- (7.21)

In spite of the fact, that the obtained equations (7.20), (7.21) differ
from the corresponding equations of the Dirac theory (see (6.24), (6.25)),
the transformation properties of the equation (7.3) are quite predictable.
Indeed, both equations (7.3) and (7.11) are the relativistic invariant
equations. Hence, their transformation properties with respect to the
three- and four-dimensional rotations will coincide, because these prop-
erties are determined by the symmetry properties of the wave function,
i.e. the internal symmetry of the particle.

The equivalence of the symmetry properties of equations (7.3)
and (7.11) with respect to the space inversion is not so evident.
Indeed, the left-hand-side of the equation (7.3) is invariant with
respect to the space inversion, but the right-hand-side of this equation
includes the electromagnetic field tensor F),,. Some components of the
electromagnetic field tensor are projections of the polar vector, some
of them are projections of the axial vector. However, the right-hand-
side of the equation (7.3) is proportional to the product of the two
antisymmetric tensors, therefore there is some reason to assume that
the symmetry properties of the equations (7.3) and (7.11) with respect
to the space inversion may be similar.

The time reversal and charge conjugation transformations require
the separate consideration, because these transformations include the
complex conjugation. In the frames of the Dirac theory formalism,
the time reversal transformation is applied to show the symmetry of
the free particle equations. In some sense, the time reversal plays an
auxiliary role in comparison with the charge conjugation transformation.
Indeed, the time reversal transformation changes sign only of the time
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derivative. The time-reversed equation can be returned to the initial
form only with the help of the complex conjugation. So, the positive and
negative energy solutions of the differential equations of the first order
with respect to time derivative are, in general sense, the solutions of the
different equations. As we have discussed in the previous chapter, the
positive and negative energy solutions are associated with the particles
and antiparticles, respectively. Hence, the particles and antiparticles
are not completely equivalent in the frames of theories, based on the
differential equations of the first order with respect to time derivative.
Contrary, the particles and antiparticles are certainly equivalent in the
frames of theories based on the equations of second order with respect
to the time derivative. However, the real symmetry of particles and
antiparticles can be revealed only with exploring of their interaction
with the electromagnetic field, because the equations describing the
interaction depend explicitly on the particle charge. At the charge
conjugation transformation we change sign of the charge and make
complex conjugation simultaneously, as a result the equation (7.11) as
well as the left-hand-side of the equation (7.8) do not vary under this
transformation. Hence, the transformation properties of the equation
(7.3) with respect to charge conjugation are determined primarily by the
transformation properties of the right-hand-side of the equation (7.8).

7.3.1 Space inversion

In the case of the space inversion transformation, the matrix a,, is

1 0 0 0
{0 -1 0 0
G =119 0 -1 0
o 0 0 1

By multiplying both sides of equation (7.20) by matrix .S from the left,
we get

%S = Sy, ¥veS = —Svu, 1S =57, (7.22)
where 4,7 = 1,2,3. It can be easily seen that the matrix
Sp = Apva, (7.23)

is the solution of the equations (7.22). In complete analogy with the
case of the Dirac equation, there is a freedom in the choice of the
value of constant Ap. If we assume that the double space inversion
transformation is the identical transformation, then we get Ap = =+1.
However, if we assume that the double space inversion transformation
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is equivalent to the rotation by the angle 27, then we get Ap = 4. In
both cases |Ap] = 1. Thus, the space inversion transformation of the
wave function of the equation (7.3) is realized by the matrix ~4.

7.3.2 Three-dimensional rotations

When we explore the continuous transformations, it is convenient to
consider initially the infinitesimally small transformations

al“/ —_ 6#,1/ + 5;1,1/, (724)

where €., is the infinitesimally small tensor of the second rank. As
far as the matrix a,, obeys the condition (7.16), then the tensor &, is
completely antisymmetric tensor

Epy = —Eyy. (725)

At the infinitesimally small transformations (7.24), the transforma-
tion matrix S differs from the identity matrix by a small component
proportional to the tensor g,

1
Suw = 8 + 5Cileap. (7.26)

By substituting the equation (7.26) into the equation (7.21), we get

1
3 (”muC"ﬁ - C“ﬁw%) Eaf = YuYBEWB + VB VELB

or

1
[5 (’Y;L'Yucaﬂ - Caﬂ')’u%/) - 5au7u'7ﬁ - 6&#’)//3’71/] €ap = 0. (7.27)

It is seen from the structure of the last equation, that its solution should
have the form C* = \y,7vs, where X is the constant. By substituting
this expression into the equation (7.27), we get

[(A = 1) (800 + 18 7w00u) = A (Wu¥adpy + Yadpu)] €ap =
= (A= 1) (Wwpdar + V8 ¥w00s) €ap — X (YuVp0aw + Vo Vwbau) €pa =
=2 -1) (’Yu7ﬂ5av + Y8 0ap) €ap = 0.
Thus, we get finally
C° = aryp. (7.28)
The three-dimensional rotations touche only the spatial components

of the four-vectors. Therefore, by taking into account the following
properties of the matrices v1, v2, v3:

Yiv; = ieijr i, (7.29)
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for the matrix of the three-dimensional rotations we get
Sr(00) = I + 260n3, (7.30)

where n is the unit vector of the rotation axis, and the matrix ¥ is defined
by the equation (6.33). Thus, in both cases of the equation (7.3) and the
Dirac equation, the three-dimensional rotations are realized by the same
matrix. Therefore, it can be easily understood, that the transformation
matrix for the finite angle of rotation will coincide with that given by
equation (6.36):

i 6 . .0
SR = exp (562) =cosg +1 (nX)sin 3 (7.31)

7.3.3 Lorentz transformation

The Lorentz transformation, or the four-dimensional rotation, is also
continuous transformation. Hence, to find the matrix of this transfor-
mation we can again use the equations (7.26) and (7.28). The matrix
€uw of the Lorentz transformation to the new reference frame, moving
along the x axis with the velocity év, is

0 0 0 &
S 0 00 O
W10 00 0

-dp 0 0 O

where d¢ = idv/c. By taking into account the equalities

Y14 = —Yam = i,
we get

&wm=1—§?m. (7.32)
By combining the similar transformations touching other spatial axes,

we get the following vectorial equation

Sy (6v)=1— %%’a (7.33)

Thus, we can see again, that in both cases of the equation (7.3)
and Dirac equation, the Lorentz transformation is realized by the same
matrix. Hence, at the arbitrary finite velocity v = nv, the matrix of the
Lorentz transformation is
1

St (v) = cosh (2

1 v . 1 -1V
tanh Z) — (na) sinh (-2— tanh Z) . (7.34)
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7.3.4 Time reversal

As already mentioned, the time reversal transformation establishes the
connection between the positive and negative energy solutions. There-
fore we should compare the equation for bispinor wave function ¥ (r, t)
and Dirac adjoint wave function ¥ (r,t). It is convenient to rewrite the
equation (7.3) in the following identical form

iy —PAN Z L (52 o)
(-2 A0
+ mic? + 2mopg (icE — EB) ] T =0. (7.35)
The equation for the Dirac adjoint wave function ¥ (r,t) is
= . do 2 1/7..0 2
T (r,1) [(mv - —E—A> . ?(zha + qocp) +
+ méc? + 2mopo (10E — EB)] =0. (7.36)

The time reversal transformation is usually applied to the free-particle
equation. However, the free-particle equation (7.3) is evidently invariant
with respect to time reversal. Therefore, it is useful to generalize the
transformation and to consider the equation for a particle interacting
with the electromagnetic field. Let us use the following notations

) h O . h o *
pu(r,t) = (—mv, _E§> = — (th, 252) = —p,, (r,~t).

It is seen, that the same equalities are valid for the generalized four-
momentum

By (r,t) = <—mv - LA, 28 - '%@(r,t)) = P (r,—1),
when
A(r,—-t)=—-A(r,t), @(r,—t)=¢(r1). (7.37)

Hence, the four-momentum p, and generalized four-momentum P,
are transformed in the same way, if the four-potential of electromagnetic
field is transformed under time reversal according to (7.37). As we
have mentioned in subsection 3.2.5, the classical particle makes the time
reversal motion in the case when the following conditions hold

E(r,-t)=E(r,t), B(r,—t)=-B(r,t). (7.38)
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It is seen that the conditions (7.38) are identical to the conditions (7.37).
By using the equations (7.37), we can transform the equation (7.36)
to the following form

(-9 20"~ (-0
+mc® + 2mop (zaE + EB) ]\I/ (r,—t) =0, (7.39)

where tilde matrix is the transposed matrix. Thus, the transformation
matrix, defined by

T (—t) = Sy (), (7.40)
should satisfy the following equations
StlaSr =a, S7!EST=-3. (7.41)

The solution of the equations (7.41) is

ST = Arysazar = Aryay3n, (7.42)

where, as above, we have used the standard representation of the
matrices y,. By taking into account that the double time reversal
transformation is identical transformation, we get |Ar|* = 1.

7.3.5  Charge conjugation

The charge conjugation transformation establishes the connection
between the solutions of the equation (7.3) and equation, obtained from
it, with the help of the following replacement: gg — —qp and pg — —po.
Thus, the wave function of the charge conjugated particle is a solution
of the following equation

. 2 1/,.0 2
+ m2c® — 2mopo (ioE — EB) | ¥ = 0. (7.43)

We should find the matrix transforming the transposed equation (7.36)
into the equation (7.43), i.e.

e = Sc¥,

It is easily seen from the comparison of equations (7.36) and (7.43), that
the transformation matrix should satisfy the following equations

ScaSg' = —a, S¢St =-%. (7.44)
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In the standard representation, there are the following relationships
between the transposed and direct matrices: qy3 = 1,3, G2 = —ag,
2173 = X3, and ¥, = —X,. With the help of these relationships, the
solution of the equations (7.44) can be easily found. It is

Sc = Acag = tAcYae, (7.45)

where |A¢c|? = 1.

7.3.6 CPT invariance

The combined transformations of the time reversal, space inversion,
and charge conjugation can be written in the following way:
a) T-transformation

StV (r,t) = I (r, -t),
b) PT-transformation
SpSTU (r,t) = ¥ (—r, —t),
¢) C PT-transformation
ScSpSTY (r,t) = Yo (—r,—t).
Hence, the combined transformation is
ScSpSr¥ (r,t) = —idcApAr11ye 3V (r,t) = Yo (—r, —t). (7.46)

It is seen, that the combined CPT-transformation is realized by the
matrix

0 I
Y5 = NV2V3Ve = — (I O) , (7.47)

this matrix coincides with the matrix realizing the C PT-transformation
of the Dirac wave function. The difference between the transformations
(7.46) and (6.58) can only be in the choice of the coeflicients in these
equations. In the equation (7.46) the coefficient is equal to —iAcApAr.
The exact value of this coefficient depends on the internal symmetry
of a particle. The internal symmetry of a particle describing by the
equation (7.3) will be discussed below.

As it is seen from the equation (7.46), the C' PT-invariance provides
a precise correspondence between the particle motion and reversed
in time and space motion of antiparticle. The matrix of the CPT-
transformation, +ys, satisfies the anticommutation relations

Y5 + YuYs = 0, (7.48)
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where 4 = 1,2,3,4. As a result, it does not commute with the Hamil-
tonian of the Dirac equation. It is not surprised, because the particle
and antiparticle obey the different equations in the frame of the Dirac
theory. Indeed, the Dirac equation for the wave function ¥p is

Operating on this equation with matrix 75, we get

= (YuPu + imoc) (vs¥p) = 0.
However, the equation
(Yu Py + imoc) Yo =0

can, in principle, have the solutions, which do not coincide with the
solution given by —vys¥p (r, t).

Contrary, the matrix of the C PT-transformation, 3, commutes with
the Hamiltonian of the equation (7.3). We shall see in the next chapters,
that it is this difference between the Dirac equation and equation (7.3),

which results in the crucial difference between the solutions of these two
equations.

7.4 Wave function normalization condition

The wave function normalization condition is unambiguously deter-
mined by the continuity equation

ap | .o.
5T divj =0, (7.49)

where the current j and charge p density are defined by the equa-
tions (7.6) and (7.7), respectively. Integrating the equation (7.49) over
the volume V, we get

%/p(r,t)dV=—7§j<r,t)ds,
\'4 S

where S is the boundary surface of the volume V.
If the initial and final states of the particle interacting with the
external fields satisfy the boundary condition

then the equation (7.49) yields

/p(r,t) = const, (7.51)

Vv
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where the charge density is integrated over the infinite volume (V — 00).

There are at least the two reasons, indicating that the space integral
of the charge density is not definitely positive defined value. Firstly,
the time derivative 0¥ /0t may be both positive and negative, and, in
principle, it can change sign in the process of evolution of the particle
state. Secondly, the product ¥¥ for the case of the bispinor wave

function ¥ = @ is

T(r,t) U (rt) =" (r,0) 0 (r,t) =X (r, ) x (1, ). (7.52)

Therefore, it is seen, that the space integral of the function (7.52) is not
definitely positive defined value.

Exploring the Klein—-Gordon-Fock equation, we have mentioned that
the problem of the positivity condition, [ p(r,t) dV > 0, can be elim-
inated by a proper choice of the sign of a particle charge. But, as we
have mentioned above, the Hamiltonian of the equation (7.3) commutes
with the operator ;. Hence, if the wave function ¥ is a solution of
the equation (7.3), then the wave function ¥’ = 5V is also a solution
of this equation. However, it is seen from the equation (7.52), that
V¥ = —U¥. We shall see later, that the sign of [p(r,t)dV is
the fundamental characteristic of the solutions of equation (7.3), which
provides the invariant definition of the particle and antiparticle states.

As we have discussed above, it is assumed, in the frames of the
quantum field theory, that the positive energy solutions

Uy, (r,t) = U (r)exp (—zph—t) , (7.53)
corresponds to particles, and the negative energy solutions
Vo (r,t) = V¥ (r)exp <z—EkE) (7.54)

corresponds to antiparticles. However, in the frames of the Dirac theory,
it is impossible to differ the particle state (7.53) from the antiparticle
state (7.54), because the Dirac equation is the first order differential
equation with respect to the time derivative. Hence, in order to define
unambiguously the initial state we need only in the initial value of
the wave function. Contrary, the charge density p(r,t), defined by
the equation (7.6), depends not only on the initial value of the wave
function ¥ (r,0), but on the value of the time derivative 9% (r,0) /¢,
too. Therefore, in the frames of the theory based on the equation (7.3),
the initial value of the charge density will be different for particle and
antiparticle even in the case, when the particle and antiparticle wave
functions differ only in the sign of energy.
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The wave function of particle, which is in the stationary state of
energy Ep, is

Z_—_—.
h
If the state of a particle is the bound state, then the wave function
satisfies the boundary condition (7.50). In this case the equation (7.51)
reads

W (r,) = U (x) exp (- 'E"t) . (7.55)

4 3 /\Tln (r) (En — o (r)) Up (r) dV = const, (7.56)

mpcC

where V — 0.
Thus the normalization condition can be written in the following form

= [owav=— [ @) B ap () wa )V = 1. (757

It is seen that the bound state normalization condition (7.57) means
that the charge [ pdV is equal to --qg or —qo, where go is the elementary
electric charge appearing in the equation for action (7.1). We can always
assume, that the condition

/ p(r)dV = q (7.58)

corresponds to particle, and the condition

/ p(r)dV = —qo (7.59)

corresponds to antiparticle.

It should be noted that the normalization conditions (7.58) and (7.59)
do not impose any restrictions. As already mentioned, the Hamiltonian
of the equation (7.3) commutes with the operator s, it means that the
particle and antiparticle possess the equivalent properties in the frames
of the theory based on the equation (7.3).

7.5 Plane waves

The momentum operator commutes with the free-particle Hamilto-
nian of the equation (7.3), therefore the free-particle wave function reads

Vg, (r,t) = ul® exp [—i@] . (7.60)

Substituting this wave function into the equation (7.3), we get

Ep = 4T = £4/méc* + p?c?. (7.61)
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Hence, the linear independent solutions can be taken in the form
(1) _ [P+ _ -Fpt‘wtpr] @ _(0 [_ ,Fpt:Fpr]
Uip = ( 0 ) exp [ == Vip= o+ exp | —i———|,

\Ilg?l)o = (XO—) exp [i_____l‘,,t:pr]’ \I/gfl), = (('00_) exp [i——r”t:pr].
(7.62)
As we have mentioned above, the dimension of the phase space of the
equation (7.3) is doubled with respect to that of the Dirac equation.
Indeed, the equation (7.3) is the second order differential equation both
in time and space, and the wave function is the bispinor. Hence, there
are the eight linear independent solutions of the equation (7.3) in general
case. To label the free particle states we can use the energy, momentum,

and charge. The charge of particle in the states (7.62) is defined by

a_D fotp av>0, 2=-Te [yty av<o,

qo moC qo0 mocC (7 63)
r r '

%:E:?/Xix_dv>0’ %:—W’;/g@ﬂp-d‘/<0.

The four states, \Pgt’?), correspond to the positively charged particle,

and the four states, \Ilgf]’f ), correspond to the negatively charged particle.

Thus, at a given value of energy I',, the eight linear independent free-
particle solutions of the equation (7.3) may be classified according to the
values of the following three binary quantum numbers: energy E, /T, =
= +1, momentum +p/ |p| = 1, and charge q/qo = £1.

The normalization condition of the free-particle wave functions is
completely similar to that of the Schrédinger equation:

% / T Wy dV = + (270)% 5 (p — p') (7.64)
In this case, the charge of the particle is defined by the sign in the right-
hand-side of the last equation, ¢ = £¢o. The values of the energy Ep /T,
momentum projection e(*)p, where e{t) = +p/p, and charge q/qo for
the eight linear independent states of free particle is shown in Table 7.1.

It is seen from the equations (7.62) that the positive energy solutions,

E, = T, for particle \IISZII), and antiparticle \IISEQI), are orthogonal. The

negative energy solutions, E, = —I'y, for particle \Il(jfl)) and antiparticle

\Il(ﬁr), are also orthogonal. The solutions \Il(ili, are orthogonal due to
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Table 7.1. Classification of linear independent free-particle solutions

(1) (2) (3) 4 (1 (2) ()] 4
Yip e v YVio v Yop Vip v

E,/T, +1 +1 -1 -1 +1 +1 -1 -1
eHp/p +1 +1 +1 +1 -1 -1 -1 -1
q/q +1 -1 +1 -1 +1 -1 +1 -1

normalization condition (7.64). Thus, the general solution for the free
spin-1/2 particle has the following form

| Tyt
U(r,t)=> > (Aprstag + Bpagtag) exp (—zAE—ph—pf),
P Ap=%1

(7.65)
where A = E,/T', = %1, and the bispinors u and v are

0
Up=+1 = <(P0+) y Urg=—17 (X—) P
(7.66)

0 _
R -}

The general solution depends on the two pairs of the arbitrary three-
dimensional spinors ¢4 and xy+. These spinors can be chosen in the
following way. The Hamiltonian of the equation (7.3) commutes with
the operators of momentum, angular momentum, spin, and helicity. If
the direction of the momentum coincides with the direction of the z axis
of the spin state reference frame, then the eigenfunctions of the equation

@ = ou@)

can be taken as the basis spinors. They are

o=+ — ((1)) ,wle=) = (g) . (7.67)

In general case, when the particle moves in the direction determined by
the angles ¢ and ¢ in the spin state reference frame, the basis spinors
are the eigenfunctions of the equation

(on) w(?) = gw(?),

which are
;e o _ (_ 'f) in?
(o=11) exp ( 1 2) cos 5 (o=—1) exp | —i 5 ) sin 5
wp - 30 0 ) wp — (P )
exp (Z§) sin 3 exp (2—2—) cos —
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In the latter case, the direction of the momentum —p is determined by
the angles ' = 7 — # and ¢’ = ¢ + 7, hence

i T o ) (7.69)

At 0 =0 and ¢ = 0, the equations (7.68) and (7.67) coincide, therefore,
in general case, we can assume

w

pr=wi, oo = wi, (7.70)

7.5.1  Particle-antiparticle transformation

Let us compare the CPT-transformation of the Dirac equation and
equation (7.3). As it was shown in the previous chapter, the CPT-
transformation of the Dirac equation is realized by the matrix 5 =
= 717273v4 (see (6.58), (6.59)). The matrix 75 anticommutes with
matrices 7y,

Y5Yu + Tuys =0, (7.71)
where p = 1,2,3,4. As a result, the matrix 5 does not commute with
the Hamiltonian of the Dirac equation. Indeed, let the wave function
¥, obey the Dirac equation

(VuPu — imoc) ¥ = 0. (7.72)
The current density four-vector of this equation is
i = igoc¥py, . (7.73)
Let us introduce the wave function
Vo (r,t) =vsW, (r,t). (7.74)
The Dirac adjoint wave function is
U, = —Tps. (7.75)

By taking into account the commutation relations (7.71), we can see
that the wave function ¥, obeys the equation

(Yupu + imoc) ¥q = 0. (7.76)
The current density four-vector, corresponding to the last equation, is
jp(ba) = 7:QOC\I'a’)’/,L\I/a' (7.77)

The current density four-vectors (7.73) and (7.77) coincide completely.
Indeed, with the help of equations (7.74) and (7.75), we get

i = igoc¥ayu o = —iqocTpysyuys Up = jP).
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On the other hand, the solution of the equation (7.76) can be written
as follows ¥, (r,t) = AV, (—r, —t), where X is the constant. Hence, the
equation (7.76) describes the time-reversed and space-inverted particle
motion, remaining invariable the current density four-vector. If, simul-
taneously with the transformation (7.74), we change the sign of charge
go — —qo, then the current density four-vector will change sign too.
As we have seen above, the CPT-transformation of the wave function
of the equation (7.3) is also realized by the matrix 5 (see (7.46),
(7.47)). However, the operator v commutes with the Hamiltonian of
the equation (7.3). As a result, if the wave function ¥, is the solution
of the equation (7.3), then the wave function ¥, is also the solution
of the equation (7.3). With the help of matrix 7, the positive energy
solutions (7.62) of the equation (7.3) can be written as follows

v = sul). (7.78)

The similar relation holds for the negative energy solutions (7.62).

We have already shown, that the free-particle wave functions ¥,
and ¥, = 5V, correspond to the oppositely charged particles. By
substituting the wave functions (7.74) and (7.75) into the equation for
the current density four-vector (7.5), we get

jo = 5. (7.79)

Thus, the wave functions ¥, and ¥, correspond to the spin-1/2 particles,
that have the opposite charges and opposite magnetic moments, i.e.
they correspond to the particle and antiparticle. So, we can see the
principle difference between the physical meaning, attributed to the wave
functions ¥, and ¥, = ¥V, in the frames of the Dirac theory and
theory based on the equation (7.3).

7.5.2  Space inversion, three-dimensional rotation,
Lorentz transformation, and time reversal

The relativistic parity operator is defined by
P =P, (7.80)

where Pj is the three-dimensional space inversion operator acting as
follows: Psf (r) = f(-r).

The wave functions of the even \If§,+) and odd \I/,(,") states are the
eigenfunctions of the following equation

PUE) (r,1) = 70 (-1, 1) = 2T (v, 1).

If \Ifgi) is the particle wave function, then the antiparticle wave function
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is \Il,(li) =5 \Ilgi). By applying the operator P to the wave function \Ilgi)
we get

15(75\If](f) (r,1)) = 7475\D§,i)(—r,t) = —7515{l§,i)(r, t) = :ny5\I!§,i)(r,t).
(7.81)
Thus, the particle and antiparticle wave functions have the opposite
parity.
The operators of the three-dimensional rotation Sg and Lorentz trans-
formation Sy, are defined by

Sp = cos-g— + i (nX) sing,

v

S1, = cosh (% tanh~! E) — (na) sinh (% tanh™! %) )

As far as ¥; = —%eijk'yjfyk and o = iv4y, then the operator <5 com-
mutes with Sg and Sp. Hence, the particle and antiparticle have the
same transformation properties with respect to the three-dimensional
rotations and Lorentz transformation.

The time reversal transformation is

T (r,t) = My1y3 0" (r, —t) . (7.82)
By applying the transformation (7.82) to the wave function
(e==%1)
(1) _fw I't — pr
) _,, = ( 3 )exp (-i—2), (7.83)
we get
PO ety =Fin el (1), (7.84)

It is seen that the wave function (7.84) describes the particle motion,
which is time-reversed with respect to motion described by the wave
function (7.83), because the particle momentum changes its sign. It
can be easily understood that the transformation properties of the

antiparticle wave function \Ilé,zz, are similar to (7.84), because, in the
standard representation, we have 7§ = s, and matrix 5 commutes with
the products of matrices v, and v,.

7.5.3 Charge conjugation
The charge conjugation transformation is
CVU (r,t) = —irgy2 U (r,1). (7.85)
By applying the transformation (7.85) to the wave function (7.83),
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we get
) (r,t) = 2iAcTS)__ (r,1), (7.86)

0
(3) _ I't — pr
Voo (r,t) = (w@) exp (z = ) .

As far as the charge conjugation operator(7.85) is the linear operator
with respect to matrices 7, (the matrix v,, in the standard represen-
tation), then the particle ¥, and antiparticle ¥, wave functions are
transformed with the opposite signs.

Let us compare the parity of the particle and charged conjugated par-
ticle. The wave function of the charged conjugated particle V¢ (r,t) =
= —iAc7U* (r,t) is transformed under space inversion in the following
way

where

Pyo (r,t) = iAcy PU* (r,t) = ¥¥¢ (r,t),

therefore the particle and charge conjugated particle have the opposite
parity. Hence, the positive energy particle solution is transformed, under
charge conjugation, into the negative energy antiparticle solution. For
the case of a free particle, it is directly seen from the equations (7.62).
Thus, the general positive energy solution for the free particle is

Tyt —
U (r,t) = Z E (Apotups + Bpoysips) €xp (—z——’f—h—p£>, (7.87)
P o=%*1

where
2 (o)
Upy = % (“’8 ) : (7.88)

The charged conjugated solution is the negative energy solution

T (r,t) = ire Z Z o (A;g’}’supa — B;aupg) exp (irptg PI‘>.

p o=%1

(7.89)
By comparing the equations (7.87) and (7.89), we can see that the pos-
itive and negative energy solutions are really the degenerated solutions.
We shall see below, that the degeneracy is appropriate not only to the
case of free particle, but to the case of particle motion in the external
fields too. Therefore, we can really take into account the positive energy
solutions only. Notice, that the physical sense of the charge conjugation
transformation may be completely understood only if we consider the
interactions of the particles. We shall see later, that this symmetry
means that the change of sign of all particles in an isolated system does
not affect on the dynamics of the system evolution.
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By substituting the wave function (7.87) into the normalization con-
dition (7.64), we get

Z Z <|AP¢7|2 - IBpolz) =1 (7.90)

p o=%1

It is seen, that, in contrast to the Schrédinger theory and Dirac theory,
the normalization condition (7.51), applied to the wave function of the
equation (7.3), means only the conservation of the charge, but it does
not demand the conservation of the integral number of particles and
antiparticles.

7.6  Spherical waves
7.6.1 Spherical spinors

The free-particle Hamiltonian of the equation (7.3) commutes with
the total angular momentum operator

Rj=h(l+s) = [rp] + 33 (7.91)

and operator of its projection j,, therefore the angular part of the free-
particle wave function can be expressed in terms of the spherical spinors
of the total angular momentum j and its projection m. As we have
mentioned in the previous chapter, according to the rules of the angular-
momentum addition, at a given value of the total angular momentum 7,
total angular-momentum 2z component m, and parity (—1)j 1/ 2. there
are the two linear independent spherical spinors corresponding to the
two possible values of the orbital angular momentum ! = j F1/2. These

spinors are
T
) ” 1 2 Yl,m—1/2 ((9, (P)
QJ',l,m (9’ (P) = T—m
2—le,m+1/2 (9, ‘P)
j—m+1
@ *\/ Lmyi+1,m-—l/2 (0,9)
Jl+1,m (0,90) = -
j+m+1 Y, 9
W l+1,m+1/2( , )

We have mentioned in the previous chapter, that the spinors (7.92) are
orthonormalized

)

(7.92)

/ Uyt S0 dB dip = 8551010 Oy
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There are the following useful relationships between these spinors

iaTQ(Q)

1 1
—ig, ) Q) Jl+1,m

Gl+lm 5,lm? Jlm T (7'93)

where o, = e,0.

For further applications, it is helpful to express the free-particle solu-
tion in terms of the spinors (7.92). Accounting the previous discussion,
the general solution of the positive energy F, total angular momentum j,
and its projection m reads

Uijm (1) = > ADUD (D (1) +45 3 Bl 180 (1), (7.94)
n=1,2 n=1,2

where
E2 _ m2 C4
K22

o o
u% ( ;Ozm>, ﬁl_( J,lgl,m . (7.96)

The four linear independent solutions (7.94) have the following parity

k2 = (7.95)

puﬁ,)l (-1 u () IADuﬁ)L:(—l)l“ug?)

]m’ m?

Prsull) = (1) ysull,  Prsul?) = (—1)! y5ul2),
where P is the parity operator defined by the equation (7.80). Thus, if we
deal with the problem of a particle motion in the external field, then the
solutions possessing the definite parity are the following superpositions
of the eigenfunctions: u(l) s u(2) and u(2) +v u(l)

By substituting the wave functlon (7. 94) into the equation (7.3), w
get for the radial wave functions f(™ the following equations

0 24V LY 1y g2p0)
a i e TRIE0

d?f@ 42 #®  (1+1)(+2)
dr? r dr r?

(7.97)

f@ 4 k252 =

The solutions of the equations (7.97) are the spherical Bessel function

Ji(z) = \/%JHIN (z),
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therefore, the general solution (7.94) reads

Ukjm (r) = (Am(l)ﬂ(kr) + Bz+1u§,,lm+1(kr))
+ +75 (Cm mJi(kr) + Dz+1UJmJl+1(kT)> (7.98)

With the help of the obtained free-particle solutions, we can easily
construct the general solution for the particle moving in the spherically
symmetric external field. Indeed, the general free-particle solutions of
the parity (—1)! or (—1)"*! are, respectlvely

Alﬂg',ll),mjl(k'r) gD Bl+1Q§2l)+1 mii1(kr)

0] (L) _
m
I —le< D (k)

kjm = .
. —Dl+19§?1)4r1,mjl+1(kT)

It should be noted that, in the case of particle motion in the external
electric field, the equations for the radial wave functions of the upper
and lower spinors of the bispinor wave function form the coupled set of
equations. Hence, instead of the two independent equations (7.97) we
shall have the coupled set of equations, the general solution of which has
the following form

n 1,2) ZAn—12)F

where the index ¢ numerates the linear independent solutions of the
coupled set of equations. Thus, the general solution of the parity (—l)l
for the particle moving in the external field has the following form

Db
o AQ

i Lm
kjm = Z 2) (2 Fi(r).
=\,

7.6.2 Plane wave expansion in spherical harmonics series

In the study of the scattering problems, it is usually assumed that the
incident particle is in the plane wave state. Therefore, it is helpful to
express the plane waves in terms of the spherical waves. Let the incident
particle be in the following plane wave state

Uy (r,1) = (%") expl(ikz), (7.99)

where the spinors u, are the eigenfunctions of the equation

Orlly = OUg,
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Uy = (é) Uy = ((1’) : (7.100)

In the case of free motion, the particle and antiparticle solutions are
not coupled, therefore, without loss of generality, we can take the wave
©
0
with the equation (7.98), are

which are

function in the form ¥ = , where the spinors ¢g;m, in accordance

Pjm () = QY i(kr) + BOE, | v (k). (7.101)

The projection of the total angular momentum in the states (7.99) is
equal to m = £1/2. Hence, we get

. VI+1PR
Q(1l)m /2~ it
Shm= Vi —\/-—l:_P exp (ip)
(7.102)
. —i+1 /T T 1Pl+1
95',2!)4-1,771:1/2 = Vin i . )
4 —ﬁ'PH.l exp (i)
and
it 1 .
o= [V
Jrb,m=— ?
Vir IVT+ 1P,
i’+1 o (7.103)
(2) 1|~ e (—ig)
Yinimea1p =g | Y ,
ZHI /] T Pl+1
where Pl(m) (cos ) is the associated Legendre polynomial.
Let us use the well known expansion
exp(ikz) = Z (21 + 1) Py (cos 8) jy(kr). (7.104)

=0

By substituting the equations (7.102) into the equation (7.101) and
summing over I, we get, with the help of (7.104), the following results:

Prmesya 1) = (g ) explik)
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when the coefficients 4; and B; in the equation (7.101) are equal to

A=-B, =+\/Ar(1+1), (7.105)

and 0
Pjm=—1/2(r) = <1> exp(ik2)
when the coefficients A; and B; in the equation (7.101) are equal to

Al=B = 4n(l+1). (7.106)

Thus, the wave function (7.101) is transformed into the wave func-
tion (7.99) under appropriate choice of the coefficients 4; and By in the
equation (7.101).

7.6.3 Convergent and divergent spherical waves

According to the definition of the orbital angular momentum opera-
tor 1, its radial projection [, = le, = 0 is identically equal to zero. Hence,
the radial projection of the spin ¥, conserves when particle moves in the
spherically symmetric external field. Therefore, it is useful to find the
eigenfunctions of the operator o,. These eigenfunctions can be directly
obtained from the relationships (7.93). Indeed, we can easily get

+
o) = (£1) ;)
where (#) (v )
+ 1 2
Q]lm \/— (QJ I,m * ZQJ +1 m) :

The spinors QUF) are orthonormalized

+)
/Q§Im+ﬂjlm /lem+Q§7:r31 do=0

By substitutlng the equation (7.107) into the equation (7.101), we get

(7.107)

Okjm (1) = f Q) (Auikr) - szylH(kr))

+ 7 O (Auia(kr) + iBijie (kr))

Particularly, at m = +1/2, with the help of equations (7.105) and
(7.106), we can easily obtain the following asymptotical wave functions

3 v/ ; +ik
hmes1/2 () = MZ [ Lt 1(4[2)”19%#1/2————6”( - r)+

kr

+ VI+ T ()l ﬂ/z,——_—e"p(f’“) . (7.108)
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Thus, at m = 1/2, the wave function is the sum of the divergent spherical
wave with the spin radial projection o, = +1 and convergent spherical
wave with the spin radial projection o, = —1. At m = —1/2, the spin
radial projections of the divergent and convergent waves change their
signs.

With the help of the recurrence relations for the associated Legendre
polynomials, the spinors Q(F) can be transformed to the following form

1
+ g Ji+1
Qg-,n)l=1/2 =g - (P + Pa) ( (i g) ,

1
(<) _a Ji+1 _
m=t/2 =1 8w (Pt = Piy) (— exp (i) cot g) ’

g
+ g [t+1 exp (—ip) cot =
Q;,nzz_uz =4/ 35— (B~ P4) ( p( f) 2> :

0
- 4 fi+1 o 0
QE,")l:—l/:% =i ;—W (P, + Piy1) ( exp ( 1“?) tan 2) ‘

Thus, in the case m = +1/2, the spinors 2(F) are the products of the
Legendre polynomials and spinors w(%), which are the eigenfunctions of
the equation o,w(?) = gw()

exp (—ig) cos o —ex ( 90) sin g

o=+ _ 2)°72) =1 P\ 7ty )50)
N o\ . 8 - P 0
exp (25) sin 5 exp (15) cos 5

With the help of the last equations, the asymptotical wave func-
tion (7.108) can be transformed to the following form

(o0}

ZQl-l-lPlcos()) ( )
- _ t =0 +1) €Xp tkr +1ip/2
Prme 2 (O], oy = =75 = =

Ngk

(1) (20 + 1) Py (cos 6)
i () &P (—ikr +1p/2) (7.109)
V2 V1 —cosd kr ’ '

To interpret the equation (7.109), it is helpful to use the following

Il
[}
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equations

Z P, (cosb) = \/-_—cgﬁ—)

1
-1)"P, f) = ————,
nz:()( )" Fn (cos6) 2(1 + cos9)
- (7.110)
P, (cosb) = ~—=—=——=
Zn (cos \/2(1——c030)
= 1
-1 nP, )= ————.
nzzo( ) nFn (cos6) 24/2(1 + cos 6)
The equations (7.110) generate the following equations
Z (2n + 1) P, (cos8) = 26 (1 — cosb),
n=0
z (—=1)" (2n + 1) Py (cos ) = 26 (1 + cos¥) .
n=0

Thus, the asymptotical wave function (7.109) at z — —o0, i.e. § =, is

1 —ik
‘Pk,m=1/2lz_,_oo =- (0> ex_pi(];z__r) §(1+4cosb).

By taking into account the following transformation
exp(ikz) = exp (ikr cos8)|,_, = exp (—ikr),

we can see that the divergent wave in the equation (7.109) is the incident
wave. Indeed, at z = —o0, this wave is the plane wave propagating into
the positive direction of the z axis. At z — 00, the asymptotical wave
function (7.109) takes the form

I\ e
(Pk,mzl/zlz__)oo=<0) sz)k §(1 —cosf),

i.e. the angular spectrum of the transmitted wave (at z = +00) coincides
with the angular spectrum of the incident wave. In the presence of the
external field the angular spectrum of the scattered wave will differ from
the delta function. The obtained equation for the asymptotical wave
function (7.109) is of interest for the study the scattering processes. It
enables us to exclude the incident plane wave from the general continuous
spectrum solution of the problem on particle motion in the external field.




Chapter 8

PARTICLE MOTION IN STATIC
EXTERNAL FIELDS

In previous chapter, the general principles of the relativistic second
order differential equation, describing the spin-1/2 particle, have been
mainly applied to the free particle states. We have seen that there is a
number of specific features of this equation, that give us some grounds
to assume that, in this case, particle and antiparticle behave themselves
in a way different of that prescribed by the Dirac equation. But the real
specificity of particle behavior can be understood only in the study of
their interaction with the external fields. In this chapter, we will consider
the basic problems on particle motion in the external fields: the electron
motions in Coulomb field and uniform magnetic field, and the neutron
interaction with the static magnetic fields of the different spatial profile.

8.1 Integrals of motion

The very important category of the physical variables is the conser-
vative variables. Let L be the operator of some physical variable. The
mean value of the operator L in the state, described by the arbitrary
wave function ¥ (r,t), is defined by

- / T (r,t) LY (r,t) dV. (8.1)

The physical variable corresponding to operator L is conservative, if the
mean value (8.1) does not vary in time. The time derivative of the mean
value is

2 [wrwav = /\I/ \ydv+/—L\pdV+/@L%—‘de (8.2)
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Let us rewrite the equation (7.3) in the following form

2
1 o 0 L0 .0
2m0c2 {(Zha) - U'lha — ZhaU

U = HU, (8.3)

where

2
H= 2mloc2 [02 (p - %"A) +m2ct — U2 + 2mocuo(iaE — IB)
8.4)
and U (r,t) = qoyp (r,t). Multiplying the equation (8.3) by YL from the
left, then, by multiplying the equation for the Dirac adjoint function ¥

by LV from the right, and, finally, subtracting the obtained equations,
we get

%[(%‘f U\I') LV - VL (%‘% U\Il)]
— - (@A) LY - T (HY)),

where H = 1H+44, notice, that this operator acts on the wave
function ¥. Integrating both sides of the last equation over the whole
space and transposing the action of the operator H to the function ¥,
we get

d ov = (00
E/[(@t ‘IIU)L\II—\][IL(a + 3 UT)]dV—

= h2 U ((HL — LH)0)dV. (8.5)

The wave function ¥ is an arbitrary wave function. Hence, if the
operator L commutes with the Hamiltonian (8.4)

[H L}=HL~LH =0, (8.6)
we get
ov 1 ov
= _ﬁU\P’ B —\IIU

Substituting the last equations into the equation (8.2), we can see, that
if the operator L does not depend explicitly on time and commutes with
the Hamiltonian, then the mean value of this operator does not depend
on time:

d

= \I/L\I!dV——/\II(UL LU)¥dV =0.
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Notice, if L commutes with H, then it commutes with U. Thus,
the operator L corresponds to the conservative variable, if it does not
explicitly depend on time and commutes with the Hamiltonian (8.4).

The Hamiltonian H commutes with itself, therefore the energy of a
particle interacting with the static external fields is the conservative
variable, or integral of motion. The wave function of the equation (7.3),
for the case of particle interacting with the static external fields, is

U, (r,t) = ¥y (r)exp (—iEnt/h),

where the spatial part of the wave function is determined by the solution
of the eigenvalue problem

H(En) ¥y (r)=0, (8.7)

mo

H(En)zg—l—K i -~ LA ) +m3c? ~~(E U (@)?
+ ipgoE — eEB, (8.8)

The boundary conditions for the eigenvalue problem (8.7) are the same
as in all previous chapters. The eigenfunctions of the equation (8.7) are
orthonormalized. Indeed, if the wave function ¥, (r) satisfies the equa-
tion (8.7), then the Dirac adjoint wave function satisfies the equation

1 g0 A\?,, 22 1 _ 2
T (1) [%— ((p+ DAY 4wt~ (B~ U@)) +
+ ipgol — MOEB] =0. (8.9)
Multiplying the equation (8.9) by ¥, from the right, integrating the

obtained equation over the whole space and transposing the action of
Hamiltonian from the wave function ¥,, to ¥,,, we finally get

(En—E

162 / T (ﬂi;fﬂ ~U(®) TadV =0, (8.10)

Thus, the wave functions of the non-degenerated states are orthonor-
malized by the condition

L /\i/m (r) (E—"ﬂ ~U®) o () dV = £6um. (811)

mycC 2

At n = m the last equation coincides with the normalization condi-
tion (7.56).
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8.1.1  Free particle

The solution of the equation (8.7) for the case of the free particle
has been already obtained in the previous chapter. The free-particle
Hamiltonian (8.8) is

2 g2 24
Hy(E) = 2 - 2 "¢ 12
R (812)
The Hamiltonian (8.12) commutes with the operators of parity, momen-
tum p = —ihV, angular momentum Al = [rp], spin As = iX/2, and,
hence, total angular momentum

fij=h+hs =[rp] + gE. (8.13)

Thus, the free-particle states are the eigenfunctions of all these operators.
However, we have seen that there are the eight linear independent
solutions at a given energy eigenvalue and momentum direction p =
= Znp. Hence, to label the eight linear independent solutions we need
only in the three binary quantum numbers. In the previous chapter we
have chosen the following quantum numbers: A = (Ag, Ap, Aq), where
Ag = E/|E|, A\p = (np)/ |p|, and A\; = ¢/qo. But, the sign of the energy
is unambiguously related with the charge conjugation transformation,
therefore we can use the quantum number A¢ = ¢o/|go| instead of
quantum number Ap. Instead of quantum number Ay, we can use the
spin quantum number ¢ = +1, which determines the spin state of the
particle at given momentum p.

As we have seen in the previous chapter, the quantum number A,
indicates whether a given state corresponds to particle or antiparticle
solution. This quantum number is closely related with the eigenvalues
of the operator 5. The operator 5 commutes with the Hamiltonian
(8.8). In the standard representation of the matrices vy, the eigenvalue
problem for the operator ~s:

Ysur1 = (£1) ugi, (8.14)
has the following solutions
1 © 1 ©
U = 7= y U1 = —= , 8.15
TV (-w) TV (so> (8:15)

where @ is the arbitrary spinor satisfying the normalization condition
%y = 1. The wave functions of the particle u, and antiparticle u, are
the superpositions of the wave functions (8.15):

1

up = -\}—5 (41 +u-1) = ((g) U= (up1 —u_1) = (_O<p> = sUp-
(8.16)
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It can be easily seen, that, in standard representation of matrices 7y,
the wave functions u, and u, are the eigenfunctions of the operator 4.
Indeed, the eigenvalue problem for the operator vs,

Y441 = (£1) v41,

has the following solutions

el +1=()

The operator 4 commutes with the free-particle Hamiltonian (8.12) and
does not commute with the Hamiltonian (8.8) at E # 0. Hence, a state
of fermion is the pure state of particle or antiparticle only in the absence
of the external electric field. If the amplitude of the external electric
field is non-zero, then the particle state is a superposition of the pure
particle and antiparticle states.

Notice, that, to simplify the reading, in this book we use the standard
representation of the matrices ,, given by (6.12). However, we can
choose these matrices as follows

. {0 —o 01 1 0
YI:7’<°, 0); '7112_(1 0)7 7é:<0 _1)' (8'17)

In this case the notation 75 is particularly appropriate, because the
given above commutation relations for matrices 7, and 5 show that
the matrices v1,7v2,73,7s,7s provide the Clifford algebra in the five
spacetime dimensions. It is seen that, in this case, the bispinors (8.16)
are the eigenfunctions of the operator .

8.1.2 Particle motion in centro-symmetric fields
When we analyze the particle motion in the external fields of the
spherical or cylindrical symmetry, it is convenient to use the curvilinear
coordinates instead of Cartesian ones. The relationships between the
components of the matrix o in the curvilinear and Cartesian coordinates
are determined by the general equations of the vectorial analysis. The
projections of o in the spherical coordinates are
o, = o4 sinfexp (—ip) + o_sinfexp (i) + o, cos¥,
0p = 04 cosfexp(—ip) + o cosfexp (ip) — o, sinb, (8.18)
oy = —ioy exp (—ip) + io_ exp (ip),
where 0+ = (0 +i0y) /2. The commutation relations for the matri-
ces (8.18) are
[0a,08] = 2ieqpy04, (8.19)
where a, 3,7 =1,0,¢ and €9, = 1.
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In spherical coordinates, the operator of the orbital angular momen-
tum has the following form

i 0 g

l=—3 [rV] = eg'siTe% - ewi“ép.

(8.20)

The operator of the square of the orbital angular momentum is

o2, 2.2 | 1 & 1 0 (. ,0
1 —lz+ly+lz— [Slngeé;;g‘l‘m% (SIHQ% .

The operator 12 coincides with the angular part of the Laplace operator

10 (20) 1p
A= 23 (r Br) r21 . (8.21)
When a particle moves in the spherically symmetric external field, i.e.
¢ (r) = ¢ (r), the Hamiltonian (8.8) takes the form
H® (E,) = §r—n1_c§ [—h2C2A +mdct — (Bn — U (r)?| + ipoar Ex(r).
0
(8.22)
It follows from the equations (8.20) and (8.21), that the angular mo-
mentum operator 1 commutes with terms in square brackets of the
Hamiltonian (8.22). It is convenient to use the equations (8.18) in order

to find the commutation relations of the operator 1 and the last term in
the Hamiltonian (8.22). According to (8.18), we get

Gor _ o, sind Gor _ lof
dp e Hg — 0%
Hence, 5
. 1 JOa, . .
(lo, rEr (1)] = ZETsinH 9 iEra, = i[aEly,
Ja

o, arEr ()] = —z'Erb?T = —iErap = i [oE], .
For the commutator of 1 and H®) we get finally
[L,H®] = —po[aE]. (8.23)

Thus, in contrast to the spinless particle, the orbital angular momentum
ceases to be the integral of motion for the problem of the particle motion
in the spherically symmetric external field.
The commutation relation, for the spin operator and Hamilto-
nian (8.8), is
(%, H (En)] = 240((aE] + i [SB]). (8:24)



Integrals of motion 189

Hence, in the spherically symmetric external field (U (r) = U (r) and

A = 0) the total angular momentum operator j is the integral of motion.
Indeed,

[, HO) =1L H] + %[2, H9] = —po[aE] + %2;«,[@3} =0. (8.25)

According to the definition of the orbital angular momentum, its
radial projection I, = (e;l) is equal to zero. Hence, the conservation
of the total angular momentum results in the conservation of the spin
radial projection

(=, HO] = 0. (8.26)

Thus, the total angular momentum and radial projection of the spin are
the conservative variables in the case of particle motion in the spherically
symmetric external field. The orbital angular momentum and other spin
projections are not the conservative variables.

The relativistic parity is also the integral of motion for the spherically
symmetric external field. Indeed,

PoE = y4P3aE = —740EP; = aEy4P; = aEP.

8.1.3 Cylindrically symmetric external fields

Let us consider the particle motion in the axially symmetric static

fields: ¢ = ¢ (p, z) and A = e, A (p, z). In this case we have
= e, _¢ 00 B _o 94 1204
=—e, 5 €5 B=—e, 5 +ezp o (8.27)

and the Hamiltonian (8.8) reads

© = _ 1| 122A 4 2iheg AP0 9
H G- hec” A + 2ikicqo ) 8<p+

+m3c — (Bn— U(p,2))* + ¢2A%(p, 2) | + po(icE — TB). (8.28)

The projections of the vectorial spin operator ¢ in the cylindrical coor-
dinates are given by

0 = 01 exp (—i) + o_exp (ig)
o, = —i04 exp (—ip) + io_exp (i), (8.29)
0, =0,

The commutation relations for the operators o, 0,, 0, are given by
(0w, 08] = 2ieqpy0y, (8.30)

where o, 8,7 = p, ¢,z and ep,; = 1.
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In cylindrical coordinates, the operator of the orbital angular momen-
tum has the following form

.z 0 ) 9 .0
l—ep<z;8—<p) +e¢[—z<za—p—pa)] +ez<—z%). (8.31)
It can be easily seen that the axial projection of the orbital angular
momentum, I, = —i(9/0p), commutes with the terms in the square
brackets of the Hamiltonian (8.28). It is convenient to use the equa-
tions (8.29) in order to find the commutator of the operators [, and the

last term in the Hamiltonian (8.28). It follows from the equations (8.29),
that

09, _ 9oy _ _
—8—(; = U(p, ago = Up.
With the help of the last equations we get
[, H] = —pio([oE] +[SB)), (8:32)

Thus, in contrast to the case of the spinless particle, the axial projection
of the orbital angular momentum ceases to be the integral of motion
in the case of the axially symmetric external fields. This is due to the
interaction of the orbital angular momentum and spin.

The commutation relation of the operator ¥, and Hamiltonian (8.8)
follows from the general equation (8.24):

Sz, H] = 2p0([oE] + i [SB]), . (8.33)

It is seen from the equations (8.32) and (8.33) that the axial projection
of the total angular momentum is the conservative variable: [ jz H (C)] =
= (0. Thus, the axial projection of the total angular momentum is only
conservative variable in the case of the particle motion in the external
fields of the cylindrical symmetry. In general case, the axial projections
of the orbital angular momentum and spin are not the conservative
variables. However, it follows from the equation (8.33), that the axial
projection of the spin is conservative variable, when a particle moves in
the homogeneous magnetic field, B = e, B, or in the superposition of the
parallel homogeneous magnetic and electric fields, B = e,B, E = e, FE.

The relativistic parity is the integral of motion, when a particle
moves in the cylindrically symmetric external fields of the following
type: ¢ (p,|z|) and A(p,|z|). Indeed, it is evident that in this case
the parity operator commutes with the terms in the square brackets
of the Hamiltonian (8.28). It also commutes with the last term of the
Hamiltonian (8.28), because the electric field is antisymmetric in this
case, E(—r) = —E(r), and 0 = —ay4, while the magnetic field is
symmetric, B (—r) = B (r), and 74X = Z,.
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8.2 Electron motion in Coulomb field
8.2.1 General solution
Let a particle move in the attracting Coulomb field. In this case

2
U(r) = ep(r) = -2, (8.34)

and the equation (7.3) becomes

_mic* —E*  2EZal | Z%d _ it Za
A oy + r— + " v = g U (8.35)
where a = e?/fic is the fine structure constant, o, = ae, = 00 cgz,
T

here e, is the radial unit vector of the spherical coordinates. In the
equation (8.35) we have assumed gp = — |e| and taken into account that

the electron magneton is negative, hence the constant pg is here the
magnitude of the magneton.

As far as the total angular momentum and parity are the integrals
of motion in the Coulomb field, then the angular part of the wave
function is given by the spinors (7.92). Therefore the wave function of
the equation (8.35) has the following form

\P (I‘) = ]lmf (T)
Qﬁ,mg (r)
where | = j +1/2, I' = 2j I, and spinors {02 are

7+m [1—m+1
Q(l) 27 lm—-1/2 0(2) 2 + 2 lm-1/2
glm i—m T Tim Jtm+1
o5 Ym+1/2 \ o Thme2

(8.36)

Let us start with the case of j = [ + 1/2. The equations for the
radial wave functions f(r) and g (r) can be easily obtained, if we use

the following relationship: Q;l-)}-lm = —iorﬂgh)n With the help of this
relationship, we get

d 2d  Z%*-1(l+1) 2EZal Z
{E‘ﬁ + - Td?" + T‘2 -+ Fic ; — K f = —-TTg, (837)

d_“+;$+ e he r

[dz 2d 2a2—(l+l)(l+2)+2EZa_1__K2} _ Zia
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where Z; and k are defined by

2.4 2
mge” — FE
7. = gH0 2 MoC
! pB’ h2c?

In order to find the solutions of the equations (8.37), (8.38), it is
convenient to use the solution of the following equation

d? d b
o+ 2L (a-2-5) @0

The solution of the last equation, which is not divergent at r = 0, is

f(z) =exp (—\/Ex + Lﬁlnw) X

x F (i—— Vi-de b 4 T, 2\/&1:) . (8.39)
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where F (p,q,2) is the confluent hypergeometric function. We have

omitted the second linear independent solution of this equation, which

is proportional to 21 79F (p — g + 1,2 — g, 2), because it is convergent at

z — 0. It is convenient to introduce the following function

G (& v,7) = exp (—kr)r* IF (V - %, 2v, 2m~) , (8.40)
where
f:v—% and V=1—+————— V21_47
So, let the solutions of the equations (8.37), (8.38) be
fr)=fGEvr), g(r)=gG(Evr), (8.41)

where fp and gp are the constants. By substituting the equations (8.41)
into the equations (8.37), (8.38), we get the following algebraic set of
equations for the coefficients fy and gp:

(Z2%® =1(1+1) =) fo+ Ziago = 0,
Ziafo— (222 = (1+1) (1 +2) —v) g =0.

The condition of existence of the non-trivial solutions of the last equa-
tions enables us to determine the unknown parameter 4 in the solu-
tions (8.41). Employing this condition, we have

N2 = 2% - (j+1/2 £ /(G +1/2)° - (Z1a)> (8.42)
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8.2.2 Discrete spectrum

The radial wave functions (8.41) satisfy the boundary conditions at
r — 00, when the parameter £ is the non-positive integer

EZa
=, (8.43)

where n is the non-negative integer. By solving the last equation with
respect to E, we obtain the following formula for the energy spectrum

() _ moc?(v; +n)
Enj = (8.44)

\ (vi + n)? + 2202

where the index 7 enumerates the roots of the equation (8.42), and

14 \/1—4’)’1’2
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The wave functions, associated with 14 and vy, are

. Q(%)
\Ilglj)m (r) =C1 3(2) G(—n,v1,1),
=835 m

(8.45)
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where C) 2 are the normalization constants, and
Zla
J 41724/ +1/2) = (Z10)?

As we have mentioned above, there is no need to consider separately
the case of j = [ —1/2, because the corresponding solutions follow from
the above obtained with the help of transposition of the upper and lower
spinors in the equations (8.45):

(=

0¥
‘I’S?J)m (r)=0Cs JHm ) o (—n,v1,71),
G,
4 i .
‘I,ﬁtj)m (I‘) =Cq4 ! Q(l) G (_n, V2, ’I“) :
—¢ jlm

According to the discussion given in the previous chapter, one of the
solutions (8.45) (or (8.46)) corresponds to the particle, and another
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corresponds to antiparticle. Indeed, the particle charge in the states
described by the equations (8.45) is

1
— / pr2(r)dV =
0

2
- s (1-¢%) / (Er(z;"z) + “Zri> |G (=, v1,2,7)Pr? dr. (847)

mocC

By taking into account that the constant ( is proportional to the fine
structure constant o, we can see that the solutions ¥(}) and ¥(® corre-
spond to the particle and antiparticle, respectively.

Similarly, the solutions ¥®) and ¥@ correspond to the antiparticle
and particle. It is also seen that the sign of the constant gp in the
equation (7.3) does not determine the sign of the particle charge.. In
complete analogy with the case of the free particle, the sign of particle
charge is determined by the integral [ pdV.

If we apply the charge conjugation transformation go — —¢qg and
to — —po to the equation (8.35), then the negative energy solutions
will only satisfy the condition (8.43). However, the simultaneous change
of sign of energy E and potential energy U (r) = qow (r) results in the
reversion of sign of the right-hand-side of the equation (8.47). Notice,
that the wave functions of the charge conjugated states can be also
obtained by the action of the operator C on the wave functions (8.45)
and (8.46). Thus, the degeneracy of energy spectrum with respect to its
sign is the demonstration of the charge symmetry, which means that the
change of sign of all charges in the isolated system does not result in the
change of the physical state of a system.

The analysis given above shows that the positive energy solutions,
corresponding to electron, are

l=j—1/2 Q(‘ll)
=7— m
\I”SLJTZI /3 (I‘) = Cl 3(2) G (—‘Tl, Vy, T) ;
_Cle+1m
@ (8.48)
—; Q;
\I’gj_n]zﬂﬂ) (r)=Co shm G (-n,v_,1),
—co¥
jl—1m
the energies of these states are defined by
gl=iF1/2) _ __moci(n +vs) (8.49)
nj :

\/(n +vi)? + 2202

where vy = 11, v— = 9. The normalization constants of the wave
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functions (8.48) can be easily calculated. They are

1/2
(26n51)" moc/h moc? — B}

anl:
VT (n+20) \ (1-¢5) Enji (n+v) + Zay/moc? - B2

At a given value of j, the two solutions (8.48) have the opposite parity.

It is natural to compare the spectrum (8.49) with the spectrum
(6.132), that was obtained from the solution of the Dirac equation.
The principle difference between these two spectra consists in the fact,
that the spectrum (6.132) depends on the total angular momentum j
and does not depend on the mutual orientation of the orbital angular
momentum 1 and spin s. Contrary, the spectrum (8.49) depends on the
mutual orientation of the orbital angular momentum and spin. It means
that the energy of the states with the same value of j and different values
of | (or spin s) is different. Particularly, the Lamb shift is appeared in
the spectrum of hydrogen atom. Indeed, for the 2s;/, and 2p; /o states
we have

v (2812) = (Za)* =1+ /1 - (Z10)?,

~ (2])1/2) = (Zoz)2 —1—-4/1- (Zla)z.

Of course, the fine structure of the hydrogenic spectra still remains.

Indeed,
v (2p3)2) = (Z0)* — 4+ /4 = (Z1)?

Thus, the equation (8.49) shows the presence of the shift between the
2s1/2 and 2py ), states.

It should be noted finally, that at pg = pp, i.e. when the electron
magneton is equal to the Bohr magneton, the shift of the 2sy /5 and 2p, /5
states disappears and the energy spectrum (8.49) transforms into the
energy spectrum (6.132)

moc? (nr +Vk%— Z2a2>
By = (8.50)

\/(nr + k% — Zzoz?)2 + Zzaz’

where n, is the radial quantum number, and k =1, — (I + 1).

8.2.3 Continuous spectrum

In the case, when E > mgc?, the parameter x becomes the pure
imaginary number

\/méct — E? v E? - mict
K= OM = —i m“ = —ik. (8.51)
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The radial wave function (8.40) takes in this case the following form

G (&,v,r) = exp(ikr)(2kr)’ ™1 F (v — in, 2v, —i2kr) (8.52)
where s
8%
- (8.53)

The asymptotical form of the wave function (8.52) at r — oo is
—exp(-T2) L 1
G wr) = exp( 2 ) T (v + in)] %
. v .
X {exp [z (kr +nln2kr — =~ arg (v + zn))] +
. it 2 .
+ exp [—z (kr +nln2kr — - = arg (v + m))] } (8.54)

The states of the continuous spectrum are infinitely degenerated with
respect to the total angular momentum and its projection.

8.3 Geonium atom
8.3.1  Electron motion in homogeneous magnetic field

Let us consider the problem on electron motion in the homogeneous
magnetic field, B = e,By. In this case the vector potential is A =
= e,Byp/2 and the equation (7.3) takes the form

BE?> —mjc*  ilglBo 9 qBo\? o _ 2mouoBy
{A+ i + 'an“(aa) Pl () = SRR (r).
(8.55)

where p is again the magnitude of the electron magneton. As we have
mentioned above, the axial projection j, of the total angular momentum,

j=—ih[rV] 4 2%,

is the conservative variable, when a particle moves in the homogeneous
magnetic field. However, the Hamiltonian (8.55) commutes, separately,
with axial projection of the orbital angular momentum

. . 0
l, =—ih[rV], = —zh%,

and the axial projection of spin

h
8, = 522
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Hence, without loss of generality, we can assume that one of the
spinors of the bispinor wave function is equal to zero. Let the lower
spinor be equal zero and we can take the upper spinor in the form

¢ (r) = Cf (p) exp (imyp + ik.2) us,
where the spinors u, are the eigenfunctions of the operator o:

OzUg = OUg,

) om0

The substitution of the above wave function into the equation (8.55)
results in the following equation for the radial wave function f (p):

d*f  1df m?  (aBo\? 9\ . _
R (ﬂma——z (th)p>f—0, (8.56)

B —mic* 2 ldlBo Ho
ﬂma:(—gj%'—k}——hc— m—i-%-a .

The general solution of the equation (8.56) is

2 1+ -
fme (p) = C1 (sz)m/Z exp (—%) F <-—2—T2 — %—K—, 1+m, npz) +

2 pu—
+ Cz(Np2)_m/2 exp (—-%) F (LQ_T_ - ﬂi’;’, 1—-m, sz) , (8.57)

where

they have the form

where

and
WH = =——. (8.58)

It is seen that the substitution m — —m transforms the first term in the
equation (8.57) into the second one. Hence, let us consider the function

2
fmo (p) = C (kp?) /2exp<~ﬂ—g—>F<1-;m i’“” 14+ m, np)

The function F(p,q,2) becomes polynomial, and, hence, satisfies the
boundary condition at p — oo, when the following condition holds

1+m Bmo _ _
5 T Tie n, (8.59)
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where 7 is the non-negative integer. The normalized wave function is

! 2 Kp?
Onmo (r) = %(n——tm—)' (RP2)m/ €Xp (“‘g—> X

X L (59?) exp (imip + iks2) o, (8.60)

where L is the length of the region available for electron motion in
the direction of the applied magnetic field, L%m) (z) is the generalized
Laguerre polynomial. The solution (8.60) is not divergent at r = 0,
when the following condition holds m > —n.

It should be noted that in the case, when the condition (8.59) holds,
the two solutions (8.57) coincide, because

LR (2) = ()" o 7 (2).

8.3.2 Energy spectrum

The condition (8.59) yields the following equation for the energy
spectrum

1
B2y = mict + 12622 + 2moc? [huogs (n+m+ 5) + poBoo . (8.61)

The solution (8.60) satisfies the boundary conditions at p = 0 and
p — 00, when —n < m. Hence, by taking into account the wave function
symmetric form given by (8.57), we should assume that in the equat-
ion (8.61) the quantum number m lies inside the interval —n < m < n.

Notice, that at pg = up, i.e. when the electron magneton is equal to
the Bohr magneton, the equation (8.61) becomes

(8.62)

E2 . =mic + R%K2 + 2mocthwy (n +m+ 1 ;U) .

Introducing the eigenvalues of the axial projection of the total angular
momentum

Je U = MUy = h(m+ 7)) Uy,

the spectrum (8.61) can be rewritten in the form

Eny = (/m3ct + 2¢2K2 + 2mocthw (n+ M +1/2).  (8.63)

Thus, we can see that, at pg = up, the energy spectrum becomes degen-
erated with respect to the sum of the quantum numbers, n + M. This
is the characteristic feature of the spectra obtained from the solution
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of the Pauli and Dirac equations. In the case, when Awg < moc?, the
equation (8.63) is simplified and takes the form

2 1\ , R%k?
Bt = Bunt — moc? & g (n+ M+ ) + 5=
2 2mg
It follows from the last equation, that the states with the smallest
projection of the total angular momentum M = —n — 1/2, at given j
and k, = 0, have the zero energy, AE, _,_1/2 =0.
In general case, when po # 1B, the hyperfine structure is appeared in
the spectrum of electron moving in uniform magnetic field

AEnMa = th (Tl + M+ 1/2) + (No - MB) B()O'. (8.64)

The energy level (n, M), characterized by the quantum numbers n and
M, splits into the two sublevels (n, M, o) with the energy difference
of 2(uo — 1) Bo between them. It is this splitting that was observed
experimentally by Dehmelt and co-authors [15].

8.3.3 Induced magnetic field

The wave functions (8.60) enable us to calculate the current density
produced by electron in the state with the quantum numbers (n,m, ).
Substituting the wave function into the equation (7.6), we can easily get

K3/2 1

< L%Mﬂ/z) (ﬁp2) L%M—I/Z) (ﬁp2) +

lg| Rk,

20— 1) g (4) (o + 2 ) — LR A2 (), (800

where L™ (2) is the generalized Laguerre polynomial. It is seen from
the last equation, that, in the state with the largest negative projection
of the total angular momentum, i.e. M = —n —1/2, and k, = 0, the
current density is non-zero and proportional to po — up. Contrary, if
we shall use the wave functions obtained from the solution of the Pauli
or Dirac equations, the current density is exactly equal to zero in this
specific state (see section 4.2).

To calculate the magnetic field, induced by the current density (8.65),
we can use the Maxwell equation

curl B = %j. (8.66)
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Substituting the current density (8.65) into the equation (8.66) we get

1 ¢ ! 2
B=-e.Bo—® [UZ%(T}:W)' (L5 (6%)) " (6%)™ exp (—re?) +

+ o 70 (L,(lm) (x2))2x2m exp (—z?) (m + —7;—1) d:c]. (8.67)

(n+m)!
VEp

A simple interpretation can be given to the equation (8.67). Indeed, it is
well known that the capacity of a cylindrical capacitor is proportional to

p/po p/po
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Figure 8.1. The spatial profile of the induced magnetic field for the states of electron:

n=1lm=1Ls=-1(ahn=1,m=1s=1{0)n=1,m=0,s=-1(c);n=1,
m=0,s=1(d;n=1,m=-1,s=-1(e)jn=1,m=-1,5=1(f); n=0,
m=0,s=-1(g);n=0,m=0,s=1(h)
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its length. By taking this into account, one can guess that the variable

Wg (P) _ QQInI]iI ()

determines the energy density of the electrostatic field produced by the
electron in the state (n, M). Thus, we can see that the strength of the
magnetic fleld, induced by the electron motion in the external magnetic
field By, is proportional to the ratio of the energy of electrostatic field,
produced by the electron in the given quantum state, to the electron rest
energy. It is seen that the equation (8.67) consists of two terms, one of
them is proportional to the magneton 1 and another is proportional to
the Bohr magneton ug. The detailed interpretation of these two terms
will be given in the next chapter.

The induced magnetic field as a function of the distance p is shown
in the Fig. 8.1. It is seen that the induced magnetic field is opposite
to the applied external field By in all states of electron, excepting the
states of the smallest energy (M = —n — 1/2, 0 = —1). In the state of
the smallest energy the induced field is parallel to the applied external
field. Indeed, at m = —n the equation (8.67) becomes

2
B = —ezBOml 4 (::_}20 + 1> ﬁl'l (KIO?)”eXp (—,‘{,pQ) ,

as far as pg > up, then at ¢ = —1 the right-hand-side of the last
equation stands positive. Thus, the response of an ensemble of free
electrons may be both diamagnetic and paramagnetic. It is this feature
that shows the qualitative difference between the Dirac equation and
equation (7.3), because in the frames of the Dirac theory the response
is always diamagnetic.

8.4 Neutron motion in static magnetic field

The specific feature of the equation (7.3) is that it includes the
magneton as an independent material constant, as a result the particle,
of zero charge and non-zero magneton, interacts with the electric and
magnetic fields. In this section we consider the problems of the neutron
motion in the static magnetic field. The problems on the neutron motion
in the electric field will be considered in the next chapter, becausc the
successive interpretation of the phenomena appearing in the neutron
motion in the electric field is possible only with the application of
the concept of the electric polarization vector. This concept will be
successively introduced in the next chapter.
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8.4.1 Neutron reflection by magnetic field

Let us consider the neutron motion in static uniform magnetic field.
The magnetic field is really uniform in the finite region of space, therefore
it is more realistic to consider the problem, when an initially free neutron
enters into the region of the non-zero magnetic field. Therefore, it is
natural to assume that the strength of the magnetic field is determined
by

B(z)= — D50 (8.68)
1+exp(—f82)’
i.e. the strength of the field changes gradually from the zero value at
2z — —o0 to the value By at z — 00. The characteristic spatial width of
the varying field region is about [ = 1/4.
In this case, the equation (7.3) is

(A+K2) U (r) = —2%92’19 (SB) ¥ (r), (8.69)
where ) )4
o2 E* —mge
o K22

As already mentioned, the equations for spinors of the bispinor wave
function are independent , when a particle moves in the static magnetic
field. Therefore, the neutron wave function can be taken in the form

U (r) = (9” (()r)) . (8.70)

The Hamiltonian of the equation (8.69) commutes with the operator of
the spin projection on the direction of the magnetic field (ngX), where
ng = Bg/By, therefore it is convenient to take the three-dimensional
spinor of the wave function (8.70) in the form

@ (r) = uofo (r), (8.71)
where the spinors u, are the eigenfunctions of the equation
(nBo) s = oug. (8.72)

The operator of momentum projection on the plane perpendicular to the
z axis commutes with the Hamiltonian of the equation (8.69). Hence,
this momentum projection is the conservative variable, and we can
assume VU (r) = ¥ (z).

By substituting the equations (8.68) and (8.71) into the equa-
tion (8.69), we get

2 mol ,
(—;7 + 52) fo(2) = 2 01}220| By : +exg(—ﬂz) s (2),
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where we have taken into account that the neutron magneton is negative.
By introducing the new variable

5 = —€exp (_ﬁz) s
we can transform the last equation to the hypergeometric type equation

EA-O M +EQ=8fr+r(1=&) fs —aofs =0, (8.73)

where )
K o= 2mo| ol Bo

T R

The general solution of the equation (8.73) is

k'2

fo (&) = CL(=&)™" F (—ik — vy, ik — ivy, 1 — 2ivg, &) +
+ Co(=6)"" F (—ik + ivy, ik + vy, 1 + 2ivy, £), (8.74)
where

vy = VK2 —ao. (8.75)

At z — oo the solution (8.74) has the following asymptotic form

fo (2)],m00 = Crexp (ivefz) + Coexp (—ivsf2).

Hence, only the first term in equation (8.74) satisfies the required bound-
ary condition at z — o0o. At z — --00, the asymptotical form of this
solution is

' (1 — i2v,) [(i2k)
T (ik — i,) T (1 + ik — ivg)
T (1 —i2v,) T (—i2k)
T (=ik — i) T (1 — ik — ivg)

Jo (2)]smoo = exp (—ik32)

+ exp (ikBz)

By normalizing this solution to the unit current of the incident particles

f () = { exp (ikz) + roexp (—ikz), 2z — —00 (8.76)

te exp (iv,02), 2z— 0
for the coefficients r, and t, we get

. T (—ik — iv,) T (1 — ik — iv, ) ['(i2k)
7 T (ik —ivy) T (1 + ik — iv,) T (—i2k)’

T (—ik — iv,) T (1 — ik — i)
T(1—20,) T (=i2k)

te =
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The continuity equation, applied to the wave functions of the contin-
uous spectrum, results in the current conservation law

/de+ / jds = 0.
Z2—00 Z——00

Hence, the energy reflection R, and transmission T, coeflicients are
defined by

PO VA T TR A | N o
7 e, (V‘i’o . \I/o - \T/o . V‘I/()) el

g

e, (V\I’t Wy — Wy 'V\I!t)|z—->oo — |t |2
e, (V¥ - ¥o — Vg - V) -k ’

By substituting here the obtained wave function, we get

R — <sinh {m(k—Re (1/,,))))2 T — sinh (27Re (v,)) sinh (27k)
7 sinh (7 (k + Re (v5))) /] ' sinh?(7 (k + Re (1)) s

It is seen, that
R, +T,=1.

Notice, that according to the definition (8.75) we have Re (vy) = 0 at
k < a and Re(vy) > 0 at k£ > a, while Re(v_) > 0 at any k. Thus,
the total reflection of neutrons with the polarization ¢ = +1 occurs at
k < a. It is quite natural, because the energy of the neutron polarized
along the magnetic field (and, hence, the magnetic moment directed
oppositely magnetic field) increases with the increase of the magnetic
field strength. The reflection coefficient for the incident neutrons of
polarization o = —1 is notably non-zero, only at £k — 0. The reflection
R+ and transmission T4 coefficients as a function of k£ are shown at
Fig. 8.2.

As we have mentioned in the Chapter 1, the main idea of experiments
on search of the electric dipole .moment of neutron is based on the
comparison of the neutron spin precession frequency in the parallel and
antiparallel magnetic and electric fields. Therefore, for further discussion
it is convenient to calculate the spin precession frequency in the uniform
magnetic field. It is seen from the Fig. 8.2 that the reflection coefficient
sharply drops at k =~ a and transmission coefficient tends to unity with
the increase of k. If the spin of the incident neutron is polarized along the
magnetic field, then the direction of the spin does not vary with neutron
propagation through the magnetic field, because the spin projection ¥,
is integral of motion. If the incident neutron has the non-zero spin
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Figure 8.2. The reflection R, and transmission T, coefficients as functions of
wavenumber k for spin projection: o ="1 (a}, (b); o0 = —1 (¢), (d)

projection on the plane perpendicular to the magnetic field, then the
spin precession around the direction of the magnetic field occurs. Let the
incident neutron be polarized along the x axis, then the spin projection
vary with the distance traveled in the magnetic field in the following way

oS = cos (v —v)2), @ Syp=sin((ve —v)z),  (8.78)
where v is defined by the equation (8.75).

8.4.2 Neutron scattering by localized magnetic field

In the experiments on the neutron scattering by the gas of the po-
larized atoms the magnetic field is strongly localized in the volume of
the atomic size. To model this process we can assume that the spatial
profile of the magnetic field is

Bo

(8.79)

In this case, the equation (7.3) takes the form

d2 2 _ 2m0|u0| Bo g
(E;Q_ + k ) f(f (Z) - h2ﬁ2 COShQ(Z) fol.(z) . (880)
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In accordance with the discussion given in the previous subsection, we
have taken the wave function in the form of (8.70)-(8.72). We have -
introduced in the equation (8.80) the dimensionless coordinate 2’ = (z
(in (8.80) and later, the primes are omitted), therefore the equation
(8.80) depends on the parameter k = «/f3, where the pararmeter x is
the same as in previous subsection.

By introducing the new unknown function

f (2) = (coshz) ™ g (2)

and new variable .

= Trow@)’

we can transform the equation (8.80) to the hypergeometric type equa-
tion

n

n(1=mn) gy (n) + (1 +ik) (1 —2n) g; (n) — ik (1 + k) g» (1) = aaggg(g)lj
where ool B '
__ «Mmp|lo} Do

The general solution of the equation (8.81) is

g ()= C1F (1 4+ ik + sy, ik — S5, 1 + ik, ) +
+ C'Qn"ikF 1+ s5,—85,1 —ik,n),

where

so =5 (VI—dag —1). (8.83)
The asymptotical form of the solution f (z) at z — oo is
F(2)],000 = Crexp (—ikz) + Crexp(ikz).

Hence, the term proportional to the coefficient C is only satisfied to the
required boundary condition at z — co. Thus, the solution reads

. . 1
fg (Z) = eXp(’LkZ)F <1 + Sgy, — 8o, 1- lk, mﬁ) . (884)
At z — —oo0 this solution takes the following asymptotical form
_ T(1—ik)T(=ik)
F @)oo = Tz ST —ik+s)
T (1—ik)T(ik)
T(1+s)T(-s)

exp(ikz)+

+ exp (—ikz). (8.85)
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Thus, by normalizing the function f () to the unit current of the incident
particles (see (8.76)) and taking into account the definition (8.83) of the
reflection and transmission coeflicients, we get

Ro=|r 12 _ sin (7s,) sin (ws},)
7 7 sinh? (k) + sin (7s, ) sin (7s%)’
I (8.86)
Ty = |t,|? = sinh*(7k)
7o sinh® (k) + sin (s, ) sin (7s%)’
where we have taken into account, that at @ > 1/4 and ¢ = 41

the parameter s, is the complex number. Indeed, in this case, the
parameter s; becomes

Spmt1 = 5 (-1 +ivIa—T).
It follows directly from the equations (8.86), that
R, +T,=1

It is also seen from the equations (8.86), that the boundary of the
reflection region is determined by the condition ko = |s|. It is seen from
the equation (8.82), that the parameter a is equal to the ratio of the
energy of magnetic dipole interaction, |po|Bo to the energy /242 /{2my)
that determines the kinetic energy of a particle localized in the region
of the non-zero magnetic field. At a < 1/4, the boundary energy of
reflection is given by

AEq = Ey — moc® =~ poBy - a.

Thus, at small values of the parameter a the boundary energy is the
product of the magnetic dipole interaction energy and the parameter .
The non-zero difference of the reflection coefficients for the two states of
the incident neutron polarization, o = %1, occurs in the region AE, —
—AFE_ =2|uo| By-a. At a>> 1/4 we get AE, ~ |uo| Bo. Fig. 8.3 shows
the difference of the reflection coefficients AR = Ry — R_ as a function
of the wavenumber k at following values of the parameter a: 1/40 (a),
1/20 (b), 1/8 (c), 1/4 (d), 1 (e), 2 (f), 4 (g), 8 (h). It is seen that the
increase in the strength of the magnetic field results in broadening of the
region, where the neutrons of polarization o = +1 are reflected from the
barrier and neutrons of polarization ¢ = —1 pass through it. It is seen
from the equations (8.86) that the reflection coefficient for the neutrons
of polarization ¢ = —1 becomes zero when the parameter s is equal to
an integer. In this case we get AR = R.. Particularly, the curve f in
Fig. 8.3 shows the case of s_ = 1.
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8.4.3 The bound states of neutron in magnetic field

As we have discussed above, the energy of the magnetic dipole inter=
action is positive for the neutrons of polarization ¢ = +1, as a result
these neutrons are reflected by the magnetic field, when their kinetic
energy is small. Contrary, the energy of the magnetic dipole interaction
for neutrons of polarization ¢ = —1 is negative, hence, these neutrons
can form the bound states inside the magnetic field barrier. The energy
of the bound state is negative, therefore

p \/E2—mgc4 :i\/r;(%c“—Ez .

heB 7B e

With the help of the hypergeometric function transformation
F(abc,2)=(1-2)°"""F(c—a,c—b,cz),
the wave function (8.84) can be written as follows

fo(2) = (

1
exp (z) +exp{(~z

€ 1
)) F(E‘—SU,1+€+SO—,1+E,—1—W>.

(8.87)
The function (8.87) tends to zero at z — oo. In order this function to
be zero at z — —o0, the following condition should hold

€— 8¢ = —n, (8.88)
where n is the non-negative integer. The condition € > 0 means that
n < .

As far as s is negative at @ > 0, then the last condition holds true only
for o = —1. Thus, the neutrons polarized opposite to the magnetic field
can form the bound states in the magnetic field, because their magnetic
moment is parallel to the magnetic field and, hence, the energy of the
magnetic dipole interaction is negative. The condition (8.88) yields the
energy spectrum of the bound states

E, = \/m%c4 — h2¢202(s_ — n)>. (8.89)
Hence -
2 ? 2
AE, = moc” — B, ~ Tme (s- —n)”.

There is a finite number of the bound states at a given magnitude of the
magnetic field strength.



Chapter 9

ORIGIN OF LAMB SHIFT

In the previous chapter we have applied the equation (7.3) to the
analysis of a number of problems on particle motion in the static external
fields. The analysis has shown that the equation (7.3) results in a number
of specific features in the particle behavior that are qualitatively different
from the predictions of other theories. Indeed, the spectrum of the
electron moving in the Coulomb field shows the presence of the splitting
of 251/, and 2p, /5 states. The numerical estimations of the magnitude of
this splitting will be given later, but it is essentially more important to
understand what is the origin of the splitting. The splitting occurs also
for the levels of electron in the uniform magnetic field, and the magnetic
field of response demonstrates a number of the unusual features. The
analysis of the problem on the neutron motion in the magnetic field has
shown that the neutron can be reflected by the magnetic field, and it can
form the bound states in the localized magnetic field. The amplitude
of reflection significantly depends on the incident neutron polarization.
This is also agree qualitatively with the experimental data discussed in
the Chapter 1.

Before we start with the numerical estimations and comparison be-
tween the theory and experiment, it is quite useful, at least qualitatively,
to answer the question: why, in spite of the close connection between
the equation (7.3) and the Dirac equation, so drastic difference arises
between the behavior of the particles obeying these two equations. By
comparing these two equations we have not touched yet the equations
for electromagnetic field, that follow from the action (7.1). The equation
(7.4) for the four-potential of the electromagnetic field A, differs from
that in the Dirac theory due to the difference in the current density four
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vector, the time and spatial components of which are

moc ot

plr,t) = -2 [__ (3‘1’\11 \I/‘N'> - q—(f@w} +ipV (Tal), (9.1)

i) = O{?(v@-w—@-vw)—@@Aw}+

c

+ cpg curl (TBV) — i,uo—a(zt (Ta®). (9.2)

9.1 Static fields

Let us write the equations for the strength of the electric and mag-
netic fields produced by the particle in the state ¥ (r,t) = ¥, (r) x
x exp (—iEnt/h). In the next chapter we shall consider the problem of
interaction of particles. Taking this in mind, it is convenient to label
the field potentials in the following way: the scalar potential produced
by particle a at a position of particle b is denoted as @, (rp).

The solutions of the steady-state equations (7.4) for the electromag-
netic field scalar and vector potentials are given by

_ qa ‘Ila (E — Qa¥b (ra)) \I’a q’aaarba\ya
@a (1) = o / o dVy — ilta T dVy,
(9.3)

1
MaC | Tha

Ay (rp) =

(5 (V- o= TV T) = ZTaAy (r0) V] Vot

+ i / Yo [Faria) Vo [z‘ﬂf”“] Yo qv,, (9.4)

Tha

where 1y, = 1}, — ro, and the field potentials A (r,) and ¢ (r,) are
produced by the charges external with respect to the considered particle.
The obtained equations have the very simple physical interpretation.
The first term in the equation (9.3) has the form of the scalar potential
produced by the space charge with the charge density

Pe (I‘a) \II (E — qaPb (ra)) T,

It is seen that the above equation coincides with the first term in
the equation (7.7). The second term in the equation (9.3) has the form
of the scalar potential produced by the space charge with the electric
polarization vector (or dipole moment density) defined by the following
equation

P = —iugTol. (9.5)
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The first term in the equation (9.4) is the vector potential originated
from the orbital motion of the particle. The second term in the equa-
tion (9.4) has the form of the vector potential produced by the space
charge with the magnetic polarization vector (or magnetization) defined
by the following equation

M = poUST. (9.6)

The equations (9.3), (9.4) provide the following equations for the
strength of the electric and magnetic fields

(a) — P
E,(ry) = / Teope (o) gy, 4 / (Brse (P“rbg) Peria) gy, (9.7

Tba Tba

. 2
H, (ry) = [ e () 2 M) gy,

Tba

a 1 .h T T
! /—{% ([rbava] \Ija ¥, - \I’a ' [rbav@] \I/a) -

Ml rg’a

- q?a\lja [rbaAb (I‘a)] \Ija} dVa’ (98)

The physical meaning of the last equations is quite obvious, and these
equations do not require the further discussion.

It is seen from the equation (9.5) that, in standard representation of
the Dirac matrices, the electric polarization vector P is non-zero only
in those states of the particle when both spinors of the bispinor wave
function are non-zero. The equation (9.7) demonstrates explicitly the
significant difference between the Dirac equation and equation (7.3).
Indeed, according to equation (9.7), the particle of zero charge g9 = 0
and non-zero magnetic moment 9 # 0 can produce the electric field due
to presence of non-zero electric polarization vector.

Along with the electric (9.5) and magnetic (9.6) polarization vectors
we can introduce the electric d and magnetic m dipole moments:

d:/PdV:—z’ug/\Tla‘I!dV, m:/MdV:uo/\T!E\I!dV.

(9.9)
Tt is seen from the definition of d and m, that the non-zero value of the
electric and magnetic polarization vectors does not necessarily result in
the non-zero value of the dipole and magnetic moments.

9.2 Symmetric form of the filed equations

The equations (9.3), (9.4) can be easily generalized for the case
of the transient electromagnetic field. However, the interpretation of
the equations (7.3)-(7.5) becomes more obvious if we write down the
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equations for the electric and magnetic fields, i.e. the set of the Maxwell
equations. It is seen from the equations (9.1), (9.2) that the charge
and current densities consist of the two terms. The first terms in these
equations are proportional to the charge gg and do not include the spin
operators:

_ @ [ ih (¥ 29T\ gz
pe (r,t) = oo [ 5 <_6t v \Il—at> - \Ifgo\I/] , (9.10)
; B CCRR VA AR E R A (R
je(r,) =2 [ (VT U - VY) C\IJA\I/]. (9.11)

There are a number of reasons to assume, that these parts of the
charge density and current density are associated with the electric charge
density and electric current density. Firstly, these terms are propor-
tional to the electric charge ¢y, while the rest terms are proportional
to magneton pg. Secondly, the rest terms of the equations (9.1), (9.2)
are proportional to the derivatives of the bilinear combinations of the
wave functions, hence, they will not contribute to the integral charge and
current in the steady-state case. Thirdly, these terms do not depend on
the spin operators, while the rest terms depend on them. Fourthly, the
charge and current densities defined by the equations (9.10) and (9.11),
respectively, obey the continuity equation

0pe
at

With the help of the standard definition of the electric and magnetic
fields

+div je = 0.

10A
E—~ZW_VSO’ B =curl A, (9.12)
we can rewrite the equations (7.4) in the following form
curl (B - 4rM) = %% (E + 47P) + 4?”3 (9.13)
div (E + 47P) = 4mp,, (9.14)

where the vectors P and M are detined by the equations (9.5) and (9.6),
respectively.

To form the Maxwell set of equations, the equations (9.13), (9.14) are
supplied by the following two equations

divB = 0, (9.15)
10B
curl E = _EW’ (916)

which follow directly from the definitions given by (9.12).
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In the previous subsection we have shown that in the case of static
fields the vectors P and M play the role of the electric and magnetic
polarization vectors. It is seen from the equations (9.13), (9.14) that
this interpretation is still true in transient case, too. Therefore we can
introduce the electric displacement D and magnetic field strength H
vectors

D=E+47P, H=B —4rM, (9.17)

then the set of equations (9.13)-(9.16) takes the following form

div D = 47w p.,
divH = 4w pm,
16D | 4r, (9.18)

curl H = EE + 7367

10H 4n«,
curl D = _‘EW - ?Jm,

where _
pm (r,t) = —po div (‘IJE\I’) )

- - 9.19
Jm (v, t) = po % (V) —ic curl (Tal)|. (8:19)

Thus, one can see that the use of definitions (9.17), which are similar to
the definitions of the classical electrodynamics, results in the symmetric
form of the Maxwell equations, where p. and j. play the role of the
electric charge density and electric current density, and py, and j,, play
the role of the magnetic charge density and magnetic current density.
It should be noted that the magnetic charge and current densities obey
the continuity equation as well

Apm -
% +div j = 0. (9.20)

In classical electrodynamics the following equations are used for the
induced charge and current densities

opP
ot

where the vectors P, and M, are associated with the internal medium
fields (the applied external fields break the uniform charge distribution
of the initially disordered macroscopic medium). There is a close analogy
between these equations and equations (9.19), which can be written in
the following form

pe(r,t) = —divPe, je(r,t) = —== 4 curl M,

pm (5, 8) = —div M, jm (r,8) = 20 + cutl P,
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There is some difference between the electric and magnetic charge
density, as it is seen from the equation (9.19). The magnetic charge
density is identically equal to zero for the free particle, because the
square modulus of the free-particle wave function does not depend on
the coordinate. However, in the presence of the magnetic field the
particle wave function changes, and the magnetic charge density becomes
non-zero (see section 8.3). However, the magnetic charge, i.e. the
spatial integral over the magnetic charge density [ pm (r,t)dV, is still
identically equal to zero. ,

As already mentioned, when particle moves in the static magnetic
field we can always assume that one of the spinors of the bispinor wave
function is equal to zero. This is due to the diagonal form of the matrix ¥
in the standard representation. In this case, according to definition (9.5),
the electric polarization vector P is identically equal to zero. However,
in the presence of the electric field, both spinors of the wave function
become non-zero. We shall see later that it is the non-zero electric
polarization vector that results in the appearance of the Lamb shift.

In the section 7.3 we have shown that the operator ¥ is the generator
of the three-dimensional rotation transformation, as a result the opera-
tor ¥ is associated with the intrinsic angular momentum of a particle.
The equation (9.6) establishes the linear relation between the magnetic
polarization vector and spin. On the other hand, the operator o is the
generator of the four-dimensional rotation transformation, hence, the
electric polarization vector is non-zero in a such motion of a particle,
when not only the direction but the magnitude of the particle velocity is
changed. The scalar wave function of the Klein—-Gordon—Fock equation
is invariant with respect to the three- and four-dimensional rotations,
as a result the electric and magnetic polarization vectors are equal
to zero in any state of the KGF particle. Therefore, we can assume
that the operators of the electric and magnetic polarization vectors of
an arbitrary spin particle are the generators of the three- and four-
dimensional rotations of the appropriate equations.

9.3 Lamb shift

In this section we shall show how the Lamb shift can be interpreted.
The solutions obtained in the section 8.2 enable us to write the explicit
equations for the electric P and magnetic M polarization vectors for
electron interacting with the Coulomb field. For the convenience pur-
poses, let us label the wave functions (8.48) in the following way

gE) — gl=x1/2) (r)

njm

{l

Ujim
Chj ! F(- , (921
nj (iilcarujlm) (—n, Vs, T) ( )
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where i, is one of the spinors (8.36) and we have used the relation
od = —ig,4)
Flm

jlm’
tion (9.5), we get

By substituting the equation (9.21) into the equa~

P = b Eap®) = ierglﬂ‘i’i(g@(i)w(i). (9.22)

Thus, the term in the Hamiltonian of the equation (8.35), describing the
interaction of the electric polarization vector with the intra-atomic field
E, = e, (e/r?), takes the form

ARl=EL) _ / PEE, gy — 4 2koel¢ / TEYHgr  (9.23)
PE o 1-¢?

Hence, at a given j, the energy is higher for the state with the smaller
value of orbital angular momentum I. Particularly, the nSy/; level lies
above the nP; level.

The equation for the magnetic polarization vector M is

M = 0| [e; (1 = ¢%) i 0rtiim + €6 (14 %) h00tjim| X
X C,%ﬂFz(—n, ve,r). (9.24)
For example, the magnetic moments at the 151/, and 2P/, states are

M (151/2,’)’” - :l:l/Q) -
= ¥l§l:_§| [er cosf — egsin® — ¢(%(e, cosf + e sinB)] 012’1/270F2(—1, Vi, T),
M (2Pyj5,m = £1/2) =

= :FI—Z%‘ le, cosf + egsinf — (*(e, cosf — e sin6)] 022’1/271F2(—2, v_,T).

It is seen, that the z projection of the magnetic polarization vector at
the 157, state, along with the permanent component, has the additional

81/ nPyy

E p E=er/r E p E=er/s

Figure 9.1. The mutual orientation of the intra-atomic electric field E = er/r® and
the electric polarization vector P for the nS)/; and nPy/; states
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component proportional to a?, which varies as cos (26) with the angle 6.
In the 2P/, state the main component varies with the angle 6 and-
the additional small component is permanent. The interaction of the
magnetic polarization vector with the intra-atomic magnetic field results
in the well known Zeeman structure of atomic levels.

Thus, the splitting of the nS;/; and nPj/; states of electron in
the Coulomb field is completely due to the interaction of the electric
polarization vector with the intra-atomic electric field. Fig. 9.1 shows
schematically the mutual orientation of the intra-atomic electric field
E = er/r? and the electric polarization vector P for the n.S; /2 and nPy /o
states.

9.4 Neutron interaction with the static electric
field

As we have discussed in section 1.3, the interest to the experiments on
search of the electric dipole moment of elementary particles is enhanced
significantly in the last time. The most of the experimental researches
are devoted to the study of mechanism based on the violation of the CP
invariance.

The analysis given above has shown that, on one hand, the equa-
tion (7.3) is the CPT invariant, and, on the other hand, this equation
predicts the appearance of the induced electric polarization vector for
the particle interacting with the electric field. The definition of the
electric polarization vector given by the equation (9.5) does not violate
the P invariance, because the upper and lower spinors of the bispinor
wave function have the opposite parity. The vector P, defined by
equation (9.5), does not violate the T invariance, because the operator
a is the generator of the Lorentz transformation.

Hence, it can be anticipated that the interaction of the neutron with
the electric field will be drastically different in the case when we accept
the definition (9.5) and in the case when we accept the definition given
in the section 1.3. One can see that there are a number of motivations
to study the interaction of neutron with the electric and magnetic fields,
because the results of this study can play the significant role both for
the general theory of the spin-1/2 particles and atomic spectroscopy,
especially for the theory of the Lamb shift.

9.4.1 Neutron reflection by the static electric field

Let us consider the problem on the neutron interaction with the static
electric field of the following spatial profile E = eE (z), where e is the
arbitrary unit vector. This problem is of the general theoretical interest,
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because, on one hand, it enables us to reveal the mechanism of the
neutron scattering by the electric field. On the other hand, this is an
example of the exactly integrable scattering problem.

As we have repeatedly mentioned, in the case of the free particle or
particle moving in the static magnetic field, the bispinor wave function
is really spinor wave function, because if one of the spinors is equal
zero in the initial state, it remains zero at any other stages of the
particle evolution. The wave function normalization condition enables
us to define the particle and antiparticle states on the basis of sign of
the charge: [pdV = qo for particle states and [ pdV = —qo for the
antiparticle states. As far as the equations for upper and lower spinors of
the bispinor wave function are independent in the absence of the electric
field, then the particle interaction with the static magnetic field will not
result in the appearance of antiparticles, and vise versa.

The situation is drastically changed when particle interacts with the
electric field. In this case

1

= owav = [t @) (E-U ) @av-

12/k+uﬂE—U@»xuMV (9.25)

mocC

It is seen from the equation (7.3) that the ratio between the upper
and lower spinors is varied with the variation of U (r). Therefore, to
preserve the charge conservation law (9.25) the ratio between the particle
and antiparticle currents should be different at different spatial points.
Thus, it can be assumed that the analysis of the problem on the neutron
scattering by the spatial inhomogeneous static electric field can give us
the further insight into the inerpretation of the particle and antiparticle
solutions.

In the case of the neutral particle interacting with the electrostatic
field E (r), the equation (7.3) takes the form

[A+ k%) 0 (r) = 2'2“2;”0 (aE) ¥ (r), (9.26)
where
E? —m2c
Let the spatial profile of the static electric field be
B(z)= —20 (9.28)

cosh® {8z)
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The Hamiltonian of the equation (9.26) commutes with the operator
Y g = (ngX), where ng = Eg/Ey is the unit vector. Hence, we can take *
the wave function in the following form

v = (fr)

where the spinor ¢ is the eigenfunction of the equation
(ngo)us = oug,

and x = (ngo) ¢.

The Hamiltonian of the equation (9.26) commutes also with the
operator of the momentum projection on the plane perpendicular to the
z axis, therefore we can assume ¥ (z).

By introducing the new variable

1
~ 1+exp(282)°

and the new unknown functions

f(2)=p(2)cosh™ (B2), g(2) =q(2)cosh™ (82),

we can transform the equations for the functions f (z) and g (z) to the
hypergeometric type equations

n(1=mp" + (1 +ik)(1-2n)p' —ik(1+ik)p = —ag,
n(L—n)q" + (1 +ik) (1 -2n)q — ik (1+ik)q = ap,

where

Ui

(9.29)

K2 2upmo E
K = 7 = i%z,ﬁ‘;—o. (9.30)
The solutions of the obtained set of equations can be easily found with
the help of the solution of the following equation

n(l—nQ"+(1+ik)(1-2n)Q —ik(1+k)Q+bQ =0. (9.31)

We require, that the solution of the one-dimensional scattering problem
should have the following asymptotical form

f(z>={ toexplinz), = - oo,

9.32
exp (ikz) + - exp (—ikz), z— —o00. (9:32)

The solution of the equation (9.31), having the required asymptotical
form, is

Q(n) =n *F(1+5(VI=8~1),~5 (VI 46— 1), hik,n), (9.33)
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where F («, (3,7, z) is the hypergeometric function. Therefore, the un-
known functions p{n) and ¢ (n) can be taken as

p(mM=A4Q(m), q(n)=BQx)),

where A and B are the constants. The unknown parameter b of the
function (9.33) is determined by the condition of the existence of the
non-trivial solutions of the algebraic set of equations for the coefficients
A and B. With the help of this condition we obtain the following two
possible values of b:

b1 2 = tia.

Thus, the general positive energy solution of the equation (9.26), satis-
fying the boundary conditions (9.32), is

U (z) = Ay (;’i) G (s,k,z) + Ag (‘(pX) G(s*,k,2), (9.34)
where A; » are the constants,
s=;(Vitia-1), (9.35)

and the function G (s, k, 2) is defined by

G(s,k,2)=F (1 +s,—s,1—ik )> exp (ikz).  (9.36)

1
"1+ exp (282
The function G (s, k, 2) has the following asymptotical form. At z — oo,
the asymptotical form follows directly from the equation (9.36):

G (s,k,2)| = exp (ikz). (9.37)

Z—0Q
To find the asymptotical form at z — oo, it is convenient to use the
following transformation of the hypergeometric function

F(a,b,c,z) = II:—E—Z)TFé;—I_‘(ac:—ZiF

L = (12 Fe—ac-betl-a-bl-2).

(a,bya+b+1—¢,1—2)+
_I._

With the help of the last equation we get

G(s,k2)] oo =
 T(-ik)T(—ik) .
= Tk ST ik o) O (R +

(1 - ik) D(ik)
T{+s)T(—s)

exp (~ikz).

(9.38)
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9.4.2 Symmetry properties of wave function

As we have mentioned above, it is convenient to assume that the basis
spinors are the eigenfunctions of the equation

(ngo) wlo=%1) = (£1) wio=+1),

Hence, the bispinors, appearing in the solution (9.34), are

() () () (@)
(g-) % . w (o) __ @ _ w
T (x(”)) - (Uw(")>’ E (—x“’)) - (—Uw("’>' (539

The charge conjugation transformation is defined by the equa-
tion (7.91)

Ve (r,t) = CU (r,t) = —idc1¥* (r,t).

The solutions, charge conjugated to the two items of the general solu-
tion (9.34),

(1,2) _ (1.2 Bt
vi (r,t) = 0 (2) exp (i)
are

{o'=F1)
gl ] w * JEt
C\IJ(E’)UZ:’:I - —7})\0 (o.lw(t]/::f:])) G (SJ k) z) eXp ('Z——h—-) y

e (9.40)

; ) * (¥ Et
CU sy =irc <—a'w<a’=¢1>> G* (s*,k, z) exp (,7) '

It is seen that, at the charge conjugation, the spinor u(la) is transformed

into the spinor u{” =), The same occurs in the case of the free particle.
Let us assume that the coefficients A, in the equation (9.34) are

equal to A1 2 = C1 £ Cy, then the equation (9.34) takes the form

w(a)G+ (S k Z) w(U)G_ (S k Z)
U, (2)=C . C B (941
- 1<aw(f’)G_ (s,k, 2) e ow @Gy (s, k, 2) -

where

Gy (s,k,2) = G(s,k,2) £ G (s*,k,z2). (9.42)

At the three-dimensional space inversion transformation (P3f (r) =
= f(-r)) the polar vector E changes its direction. It means that, at
the three-dimensional space inversion transformation, the parameter a,
defined by the equation (9.30), changes its sign. In its turn, it means that
the three-dimensional space inversion results in the following replace-
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ment s — s*. The latter follows from the definition of the parameter s
(see (9.35)). Hence, in accordance with the definition (9.42), we get

P3Gy (8,k,2) = £G4 (8, k, —2),

as a result the solutions, at the coefficients C'y and C3 of the equa-
tion (9.41), are transformed under the three-dimensional space inversion
with the opposite signs:

wl9Gy (s, k, 2 A wEICL (s, k, -2
YaPs| " £(8k2) ) o) + ) (9.43)
ow'\”Gx (s, k, z) ow'=Gx (s, k,—2)

The plane wave, associated with the incident particle, is a superposition
of the even and odd states (with respect to the space inversion). How-
ever, as far as the Hamiltonian of the equation (9.26) commutes with the
relativistic parity operator, the equation (9.43) shows explicitly that the
general solution (9.41) provides the possibility to choose appropriately
the parity of the incident particle state.

9.4.3 Reflection and transmission coefficients
Let the wave function of the incident particle be

To(z)= 3 a (w((;)) exp (ikz) (9.44)

o==%1

where |or1]? + |a_1|> = 1. Then, the wave functions of the reflected ¥,
and transmitted ¥, particles are

wr; exp (—ikz
)= Zaa( p( )>,

9y exp (—ikz)

0y (2) = Z a ( w(®t] exp (ikz) >

(9.45)

ow Pty exp (ikz)

To find the coefficients r; and ¢; in the equations (9.45), we should
use the asymptotical form of the function G (s, k, z) at 2 — foo. It is
convenient to transform initially the function G (s, k, z) to asymptotical
form given by the equation (9.32). Thus, according to the equations
(9.37) and (9.38), we have for the coefficients  and ¢ of the asymptotical
form of the function G (s, k, z) the following equations

(14 s—ik) T (—s — k) T (ik)

FQ1+s)C(—s)T(~k) '

T'(1—ik+s)T(~ik — s)
T'(1—ik)T(—ik)

r(k,s) =
(9.46)

t(k,s) =
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and, similarly, for the function G (s*, k, z):

I'(1+s* —ik)T(—s* —ik) (k)
LA+ s)T(=s*)T(—ik)

T (1 - ik + s*) T (=ik — 5%)
T (1— k)T (—ik)

Hence, the asymptotical forms of the functions G+ (s, k, z) are:
G+ (8,k, 2) = 2exp(ikz) + (r (k,s) + r (k, s)) exp (—ikz),
G_(s,k,z) = (r(k,s) —r(k,s*))exp (—ikz).

It can be easily seen from the last equations, that, to satisfy the initial
state (9.44), we should assume Cy = 0 in the general solution (9.41).
Hence, the coefficients ry 2 and ty,2 in the equation (9.45) are given by

_ 1"(Ic,s)+r(k,s*)7 ry = r(k,s) —r(k,s*)

r(k,s%) =

t(k,s*) =

2 2 ’
t(k,s) +t(k,s") t(k,s) —t(k,s") (947)
e

As we have discussed in the previous chapter, the equations for the
energy reflection R and transmission T coefficients follow from the

continuity equation
/ jdS + / 5dS = 0.

Z—00 200

The equations for these coefficients were given in the subsection 8.4.1.
Using the wave functions (9.44) and (9.45), we get

V\f/ ‘I’T—\if V\I’T) e_ 2 2

R= ( T r — _

(V‘I’O.\IIQ—\IIO-V\IIO)GZ lTll ‘Tzl ’
U, -0, -0, -V

T = (v t t Y t)ez :‘t1I2"|t2|2-

(V‘i’o . \I’o - \ilg’- V\I’Q) e,

If the equations (9.46) and (9.47) are applied to the last equations, the
reflection R and transmission T coefficients become

2 9 1 sin®(ms) sin?(ms*)
= 17‘1' - |T2| == T 9 T 12 ]
2 | sin?(ms) +sinh?(wk) ~ sin®(ms*) + sinh?(

sinh? (k) smh2 k) ]
(9.

1
= |t1]° —|¢ =
‘ 1| I 2| ) [Sln (Trs) +sinh2(7rk) sin (71; )-i—s.mh2 wk
48
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It is seen, that
R+T=1. (9.49

The obtained equations enable us to make a number of the general
conclusions on the dependency of the reflection and transmission coefli-
cients on the incident particle state:

3 -
|7"1‘2 LI2 j
o ] () LU )
2_
1 4
1
0 : : : , 0 . : , .
0 1 2 3 4 0 4
k k
[yl [t 5]
21 (e (d)
2
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1 4
0 ‘ : : . 0 : : : .
0 1 2 3 4 0 1 2 3 4
k k
1.0 1.0i
R (e T 05}
0.5- 0.5
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0 1 2 3 4 0 1 2 3 4
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Figure 9.2. Energy spectra of the reflection |r1|? (a), |r2|? (¢), R (e) and transmission
[t11% (), |t2)® (d), T (f) coefficients, and electric polarization vector projections P; (g),
P, (h) at a = 2. The parameters are defined by the following equations: k by (9.27)
and (9.30); 71,2 and t12 by (9.47); R and T by (9.48); P.,y by (9.54)
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(1) The equations (9.48) do not depend on the coefficients «,. Hence,
the energy reflection and transmission coefficients do not depend on the
polarization state of the incident particle.

(2) It follows from the equations (9.48) that the boundary of the
reflection region is determined by the condition k = kg = Im (s). Hence,

for kg, we have
\/ 2
ko =34" = %1 / j%?___l_ (9.50)

(3) It follows from the last eqﬁation, that the boundary energy of
reflection is defined by

. 2N1 h2ﬁ2 2 2_712,62

Thus, the boundary energy of reflection depends on the ratio of the
energy of the electric dipole interaction poEy to the energy h232%/(2myg)
that determines the change in kinetic energy for the particle scattered
by a potential barrier of the spatial width d = 1.

The Fig. 9.2 shows the coefficients |r1|? (a), |t1|? (1), |r2|* (¢), [t2]? (d),
R (e), T (f) as functions of the wavenumber & for a = 2. In this case,
the boundary value kg is ko = 0.94. It is seen from the graphs that
the drastic increase in the coefficients |r;|> and |t;|?, and the sharp drop
in the reflection coefficient R occur when the magnitude of the wave
vector k approaches to its boundary value k = kg. It should be noted
that the further increase in the value of the parameter a results in more
pronounced increase in the coefficients |r;|* and [t;|* at k = ko, and in
more sharp drop of the reflection coeflicient R.

9.4.4  Electric and magnetic polarization vectors of neutron
scattered by electric field

One can see from the equation (9.51), that, in the case of the wide
potential barrier (8 — 0), the boundary energy of reflection is the
product poEp. According to the definition of the electric polarization
vector P, this product is the energy of the electric dipole interaction
— f PEydV = —dEy of a particle with the uniform electric field. How-
ever, it should be noted, that, in the case of the spatially inhomogeneous
electric field, the interaction, described by — [PEdV, is not purely
electric dipole interaction. Indeed, if, for example, the function P (r)
has the maximum at some spatial point r = rg, then the expansion
of the integral — [ PEdV around the point r = ro includes the all
space derivatives of the electric field strength. Thus, it should be more
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precisely to call the above interaction by the interaction of the induced
polarization vector of a particle with the electric field.
Let us study the evolution of the electric and magnetic polarization
vectors,
P=—ipPa¥l, M= puIXV¥,

in the process of the neutron scattering.
Using the wave function (9.44), we get for the electric and magnetic
polarization vectors of the incident particle the following expressions:

Py =0, (9.52)

My = e; (o —|a-|?)+tes (et atora® )—eyi(efa_~ara*). (9.53)

Using the wave function (9.45), we get for the electric and magnetic
polarization vectors of the reflected particle

P, = e,(r3r1 — rir2) + egi(afon — ayal)(rirg + rirg)+
+ey(afa- +apal )(rirg +riry), (9.54)

M, = e;(|a+ [ — |- )R + eg(a@h oz + apal ) (Ir]? + [r2f?) —
—eyi(afa —apar)(jr|* + |ref?). (9.55)

For shortness, we have omitted in the equations (9.52)-(9.55) the mag-
neton uo.

The obtained equations enable us to make a number of the general
conclusions concerning the electric and magnetic polarization vectors of
the reflected particle:

(1) Independently of the polarization state of the incident particle,
the state of the reflected particle is always characterized by the non-
zero electric polarization vector directed along the direction of scattering
electric field. Notice, that, as already mentioned above, the space
inversion transformation results in the following substitution r; — 7y
and ro — —rg. Thus, at the space inversion transformation, the electric
polarization vector P changes its sign, and the magnetic polarization
vector M remains invariable.

(2) The projection of the magnetic polarization vector on the direction
of the scattering electric field is equal to the product of the magnetization
vector of the incident wave and reflection coefficient: M,., = My, R.

(3) If the incident particle is polarized along the direction of the scat-
tering electric field (for example oy = 1, a— = 0), then the projections
of the reflected wave electric P, and magnetic M, polarization vectors
on the plane perpendicular to the direction of-the electric field is equal
to zero.
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(4) If the incident particle is polarized in the plane perpendicular to
the direction of the scattering electric field (for example ay = a_ =-
= 1/4/2, hence My = e;), then, along with the non-zero longitudinal
projection of the electric polarization vector P,, there are the non-
zero mutually perpendicular transversal projections of the vectors P,
and M,.:

P, = (riro+rr3), My = (|1‘1|2 + |r2[2).

The Fig. 9.2 shows the components P, (curve (g)) and P, (curve (f))
as functions of the wavenumber &k at @ = 2.

It should be mentioned in conclusion of this subsection, that the
electric P; and magnetic M, polarization vectors of the transmitted wave
are determined by the equations (9.54), (9.55), where the coefficients r;
should be replaced by the coefficients ¢;.

9.4.5 Bound states of neutron and antineutron
in the electric field

The equations (9.48) can be applied to almost all region of variation
of the incoming parameters. There is only one exception, when the
parameter s’ is the positive integer Indeed, at

s=n (9.56)
the equations (9.48) take the form:
R= sinh?(ms")
sinh (7 (k — §”)) sinh (7 (k + §"))’ (9.57)
sinh?(7k)

" sinh(x (k — s”))sinh (7 (k + s7))

It is seen from the equations (9.57) that the sum of the reflection and
transmission coefficients is still equal to unity, R+ T = 1. At the same
time, the signs of the coefficients R and T are opposite. It can be easily
understood that the negative values of the reflection and transmission
coefficients correspond to the appearance of the antiparticles in the
reflected or transmitted wave.

At

k=ko=s" (9.58)
the equations (9.57) have the singularity. We can also see this singularity
in the asymptotical form of the function G (s*, k, z) at z — —oc:

_ T(1-ik)T (—ik)
2==00 " T(1—ik+s)I (—thk—s")
(1 - ik) T(ik)
T+ (—5)

G (s* k,2)|

exp (ikz) +

+ exp (—ikz). (9.59)
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It can be easily seen, that if the conditions (9.56) and (9.58) hold,
then the first item in the equation (9.59) turns to zero. To illustrate
what happens in this case, Fig. 9.3 shows the spatial profile of the
function |G (s*,k,2)|°> at n =1 (c), 2 (f), 3 (4) and k = s”. It is seen
that, in this case, the above function describes the state consisting of
the equal number of neutrons and antineutrons uniformly distributed
in whole space with the exception of region of the non-zero electric
field. The second row in the Fig. 9.3 shows the profile of the function
|t (k,s) G (s,k, 2) — Ginc (2)[* for the same values of parameters, this
function is the difference between the function (9.36), normalized to the
unit current of incident particles, and the wave function of the incident
particles Ginc (2) = (1 —tanh(8z/2))exp (ikz) /2. Thus, the wave,
corresponding to the solution G (s, k, z), has the maximal amplitude in
the region of the non-zero electric field. The solution

U (2) = (“ (t(k,s)G (s,k,2)+ G(s*,k,z)))

v (t(k,s)G (s,k,2) — G (s*,k,2)) (9.60)

includes the incident wave of the following type

To(z) = (";) exp (ikz) = (’g) exp (i) + (2) exp (irz),  (9.61)

i.e. the incident wave is the coherent superposition of the “pure” neutron
and antineutron states. The upper row in fig. 9.3 shows the spatial
profile of the function ¥gr (2) Yrr (2), where

1 — tanh (82)
—

It is seen that, in the case when the conditions (9.56) and (9.58) hold, the
coherent superposition (9.61) has the probability to decay into the neu-
tron and antineutron propagating in the opposite directions. However,
with the increase of n, the energy of the incident wave (9.61) is mainly
spent to excite the density oscillations of the neutron-antineutron pairs
in the region of the non-zero electric field. It is seen from the lower row
of graphics, that in the absence of the incident wave the density of the
neutron-antineutron pairs was minimum in the region of the non-zero
electric field. Thus, in the specifi¢ case of s = n and k = ko = §”, the
scattering ceases to be elastic in the general sense, because the scattering
of the neutron results in the appearance of antineutron in the reflected
wave.

It should be noted that the linear independent solutions G (s, k, z)
or G (s*,k, z) can separately produce the coherent supérposition of the

Upr(2) =¥ (2) — ¥y (z)
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type (9.61) at any s’ and k # s”. However, these states are not scattered
by the electric field, because, in this case, we have ¥ (2) ¥ (2) = 0 at
any z.

Notice also that the wave function (9.60) is applied only to the special
case when ' = n and s = k. The case of s = n and k # s” is not
required the special care, we can still use the equations obtained in the
previous subsections. As we have mentioned above the specificity of this
case is in the fact that the reflection and transmission coeflicients are not
restricted now by the conditions 0 < R<1and 0<T < 1. If |R| > 1
and |T'| > 1 it means that the total number of scattered particle exceeds
the number of incident particles therefore one can say that scattering
is inelastic in this case. However — and it is imperative — the energy
conservation law still holds because the sum of the reflection and trans-
mission coefficients is identically equal to unity, R+ T = 1, as it follows
from the equations (9.57). In complete analogy with the case considered
in subsection 9.4.3 the amplitudes of waves increase significantly when
k is approached to kg = s”. The above given discussion enables us now
to explain this increase by the excitation of neutron-antineutron pairs
accumulated in the region of the non-zero electric field.

It should be noted finally, that the phenomena, considered here, are
in close similarity with the phenomena occurring under the electromag-
netic waves propagation in the spatial inhomogeneous media, such, for
example, as the excitation of the plasma oscillations and waves.

9.5 Neutron motion in superposition of electric
and magnetic fields
Let us consider the neutron motion in the superposition of the static

electric and magnetic fields. In this case the equation (7.3) takes the
form

(A+r2) ¥ ()= [ 200 (SB) + 1'2";2“0 @B)] ). (062

We take the wave function in the general form
uf (r)

¥(r) = ) 9.63

0= (40) (953)

where u is the arbitrary spinor, satisfying the normalization condition

utu = 1, and w = onu, here o = (no), and n is the arbitrary unit

vector. By substituting the equation (9.63) into the equation (9.62), we
get

(A+ &2 uf (1) — a () opuf (1) = —ib () opoaug (1),

(A + k*) wg (r) — a(r) opwg (r) = —ib (r) opowf (r), (9.64)
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where
F? —mict 2mg|p 2m
=TTl o= el ey, () = 2l p (),
o = (npo), g = (ngo), and npg g are the unit vectors of the directions
of the electric and magnetic fields. In derivation of the equation (9.64)
we have used the following formula

(Ao) (Bo) = (AB) + ic[AB],
where A and B are the arbitrary vectors. This formula yields also the
following equalities: o0, = 1, and

(ngo) (ne) = (ngn) + ic[ngnj.

In the case when the electric field is parallel or antiparallel to the
magnetic field, i.e. np = tnpg, it is convenient to assume n = ng, then
we get

opo, = opop = £1.

Thus, in the case of the parallel or antiparallel electric and magnetic
fields, the set of equations (9.64) takes the form

(A4 () on)uf (1) = Tib (1) ug o),
(A +K? —a(r)o) wg (r) = Fib(r)wf (r).

Assume the spinor u is the eigenfunction of the equation

(9.65)

OBUg = OlUg,
then the spinor w = ogu is defined by
Wy = OBUy = Oy

In the case of the perpendicular electric and magnetic fields, i.e
nglng, it is convenient to take the vector n in the following form

n = [ngng|.

In this case we have
OECn = 10B,

and the set of equations (9.64) takes the form
A+ —a()op)if () =b@Eowus, oo
(A + K% — a (r) on) wg (x) = b () o f (x), |

where
Wy = Opllg = 100RUg.
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9.5.1 Parallel fields

As already mentioned, it is more realistic to assume that the electric
and magnetic fields are non-zero in half-space than in whole space.
Therefore, the electric and magnetic fields are

{ggzg} N {gg} H&m (9.67)

and the equations (9.65) at ng = ng become

d? ) b
7 T k? - _’> fo(2) = —ie—7—=80 (%),
( (f; 1+ e;q;( .1 + ex;) (—2) (9.68)
<d2+k 1+exp(—z)>gg(z)z_zl+exp(—z)fa(z)’

where we have used the dimensionless coordinate z’ = Sz (in the last
equation the primes have been omitted), and

K 2mo|uo| Bo 2mo|po| Eo
e T TRE TR
By introducing the new variable
é- = —€Xp (—Z) ’

the equations (9.68) can be transformed to the following form

(1"5) +§(1_ )fé"'":?(l"’ )fa_ao'fa:"‘ibgay
E1-gl+61—-8g +r (1 —-¢) g —aogs, = —ibf,.

The general solution of the equation (9.69) is

\If(z):A1< >G1(V1,Z)+A2< )Gl(l’% z)+

+B1< )GZ(VI» )+B2< )G2(V2, z) (9.70)

(9.69)

where
G1(v, z) = ty exp (ivz) F (—ik — v, ik — iv,1 — i2v, —exp (—2)),
Ga(v, 2) = taexp (—ivz) F (—ik + iv, ik + iv, 1 + 12, —exp (—2)) .

and

=+vk? —ao —ib, o= k?- ac +ib. (9.71)
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It follows from the equations (9.71) that the function ¥ (z) is finite at
z — oo only in the case when the following conditions hold

A1 =0, By=0.

By taking into account this conditions, we can write the general solution
in the following form

¥ (2) = Oy (u (Gi(v, 2) + Ga(v*, z))) + Gy (u (Gi(v, 2) — Ga(v*, z))) 7
7.U(G1(I/, Z) '—GQ(V*vz)) ZU(Gl(V,Z)+G2(V*,Z))
(9.72)
where, in accordance with the equations (9.71), we have introduced the
following notations: v = vg, v* = 1.
The functions G o have the following asymptotical form

G1(v,2) :{

exp(ikz) + ryexp (—ikz), z— —oo,
trexp (ivz), 2z -— 00,

exp(ikz) + roexp (—ikz), 2z — —oo,
tyexp (—iv*z), z— oo,

Go (V' 2) = {

where
py _ Dlzik = i)D(U ik —)D(ik)  _ T(k = )T =ik~ iv)
I'(ik — ww)(1 + ik — ) (—2ik)’ (1 —i20)0(-2k) °
ry = Dtk )0 — ik i )D(@k) Dk iy )0 — ik + i)
L(ik + w*)L(1 + ik + w*)[(—2ik)’ 1+ zZu*)F(—2zl(c€)) 3

In complete analogy with the equation (9.41), the first term in the
solution (9.72) corresponds to the incident particle, and the second term
corresponds to the incident antiparticle. Therefore, the wave function
of the incident neutron is

To(2) = (g) exp(ikz).

In accordance with the equation (2.72), the wave function of the reflected
neutron is defined by

V()= 1 (“(” + ’"2)> excp (—ikz).

w (T‘1 — Tg)

The definition of the energy refloction coefficient was given in sub-
section 9.4.3. By using the equations (9.73) for the energy reflection
coefficient we obtain

R= i [(r147r2)" (r1+72) = (r1—re)* (1 —ra)] = 1.
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Thus, there is the total reflection of the neutron incident on the
semi-infinite parallel electric and magnetic fields. Notice, that the total
reflection is completely due to the electric field. Indeed, we have seen in
the previous chapter that the neutron of the energy, above the boundary
energy of reflection, penetrates entirely into the magnetic field.

The characteristic length of the neutron penetration into the electric
field is determined by the imaginary part of v. At the condition k2 > b
(ie. E?2 —m2c* > eEphc = epohic/d, where ¢y is the voltage between
the condenser disks placed at the distance d one from another, and we
have assumed, for simplicity, that the neutron magneton is equal to the
nuclear magneton), we obtain the following formula for the penetration
depth

E?2 —mict
[ = dU—o’ (9.74)
where Up = epg. At the energy of the incident neutron about a few MeV
and for the reasonable value of the voltage, the penetration depth is
about 100 m.

In the subsection 8.4.1 the spacial frequency of the spin precession
in the uniform magnetic field has been calculated. It follows from the
equation (9.71) that the spacial frequency of the spin precession in
the parallel electric and magnetic fields is determined by the following
expression

Av =Re(Vk? — a + ib) — Re(Vk? 4+ a + ib).

At k% > b we get

b? 1 1
Av =~ Ay + — - 9.75
. ((kZ —a)" +a>3”) .

where Avg = Vk? —a — Vk? + a is the spacial frequency of the spin
precession in the uniform magnetic field. Thus, it is seen that the
correction to the spin precession frequency vy due to the presence of the
non-zero parallel electric field is about

3
Av— Ay = (I”—O|2> E2Bok.

E —mge

By taking into account the equation for vp:

B

E —mye
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for the relative correction we get the following equation

Av—Ayy |0 Eo 2
Al/() = (E—m002> '

Thus, the above analysis enables us to make the following very impor-
tant conclusions. Firstly, in contrast to the equations of the section 1.3,
the obtained correction to the spin precession frequency due to the non-
zero parallel electric field is proportional to the square of the applied
electric field, but not to the filed strength as it is prescribed by the
mechanism based on the violation of C' P invariance. Secondly, as well as
the correction is proportional to the square of the applied electric field,
then the reversion of the direction of the applied electric field does not
result in the change of the spin precession frequency.

9.5.2 Crossed fields

In the case of the crossed electric and magnetic fields the equations
for the radial wave functions (9.63) take the form of (9.66). By substi-
tuting the equation (9.67) for the electric and magnetic fields into the
equation (9.66) and introducing the new variable £ = —exp(—z), we
finally get

EA-Of+EQ-8) fr+r(1~¢€) fo —aofs =bogs,
EA-8egl+61-8)gr+ K (1-¢) g +aogs = —bo f,

where we have taken into account the following relationships

(9.76)

OBW, = OOBOpORUy = —0Wy.

The general solution of the equations (9.76) is

¥ (Z) = Ay (_gw> Gy (l/l, Z) + B (—;U) G, (I/Q, Z) +
+ Ag (_?w> Gs (1/1, Z) + By <-1f)u> Gy (1/2, Z) ,
where the functions G1 2 (z) have been defined in the previous subsection,

and we have introduced the following notations

b
Va2 —1? +a’ (9.77)
v =\ k?—ova? -0, wr=\k2+o\a2-12.

¢ =
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It can be easily seen that in the case a < b (i.e. By < Ep) the coeffi-
cients v; o are the complex numbers. Hence, the equations (9.76) can be
treated in a way similar to that used in the previous subsection. There is
only one important difference: it follows from the above equations that
the spin precession frequency is equal to zero.

Therefore, let us study the case of a > b. 'To satisfy the boundary
conditions at z — oo we should assume

A2 =0, Bp=0.

It should be noted, that the case of the crossed fields differs qualitatively
from the all above considered configurations. This difference is due
to the commutation relation for the Hamiltonian and operator of spin
projection on the direction of the magnetic field. In previous cases this
projection of spin was the conservative variable. As a result the spinors
U4, were the eigenfunctions of the conservative spin projection. In the
case of the crossed fields the spin projection operator (ngX) does not
commute with the Hamiltonian of the equation (9.62), therefore the
general solution of the equations (9.62) will be always the superposition
of the spinors u,

Y=Y lA(, <_?fug) (11, 2) + By (_;ZG> Gl(ugv)yz)],

o==1
(9.78)
where, in accordance with the equations (9.77), we have

SN L (9.79)
l/i—) = y§+) = ]{,‘2 + \/52*—1)2

As far as the parameter ¢ < 1 at a > b, hence, the first term in the
equation (9.78) corresponds to the particle solution, because

- 2
Tl = 'AaGl(u§">,z)’ (1-¢2) >0
and the second term corresponds to the antiparticle solution, because
_ 2
U = |B,Gi (v, 2)] (- 1) <.
The asymptotical form of the function G1(v, 2) was given in the previ-

ous subsection, with the help of this equation we get again the equa-
tions (9.73) for the reflection 712 and transmission ¢; 3 coefficients.
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The principle difference of the wave function (9.78) from the solutions
of other one-dimensional scattering problems is in the fact, that the inci-
dent particle with the given projection on the direction of the magnetic
field corresponds the wave function of the following form

To(2) = \/1_1__? (_Z;g) exp(ikz).

It is seen that, in contrast to the previous cases, both upper and lower
spinors of the bispinor wave function are non-zero. Of course, we can
always choose the wave function in the form corresponding to the “pure”
particle state. Indeed, by assuming B, = ¢A, in the equation (9.78), we
get

o) = () exslit).

Hence, the wave function ¥q can be interpreted as a function describing
the superposition of the 'pure’ particle and antiparticle states.
The spacial frequency of the spin precession is defined by the expres-

sion
Au—\/k2+\/ — b2 — \/k2 —b2

If the energy of the incident neutron exceeds significantly the boundary
energy of reflection, we get the following formula for the precession
frequency

a2 — b2

Ay = -

It is seen that the precession frequency is quadratically depend on the
applied electric field strength, therefore the reversion in the direction of
the electric field will not result in the change of the precession frequency.

9.6 Geonium atom

The problem on the geonium atom has been treated in the previous
chapter. However, we have not taken into account the presence of the
electric field of the Penning trap. In the light of the previous discussion
it looks useful to account it. The electrostatic potential of the Penning
trap is described by the following equation

2 2
— 2
@ (r) = po—P 1= df / , (9.80)
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where the z axis is directed along the direction of the trap magnetic
field. In this case the equation (7.3) takes the following form

|e| Bo @ (630)2 2 2EU(pz) | U(p,2)
Atk he B¢ 2hc R2c? + h2c? v=

B .U
= 5_; (Ieiicﬂgz +i Fod® (2za, — pap)) U, (9.81)

where Uy = epg > 0, and pg is magnitude of the electron magneton.

Similar to the case of the neutron motion in the crossed electric and
magnetic fields, the account of the electric field projection E, results in
the loss of conservation of the spin projection on the direction of the
magnetic field. The non-zero projection E, results in the magnetron
motion of electron in the trap. In this case, the electron orbit takes the
epicycle form. However, the electric field strength of the Penning trap is
much smaller than the magnetic field strength, therefore we can neglect
this projection of the electric field in the zero-order approximation.
Assume additionally, that Uy < mgc?, then the equation (9.81) is
simplified significantly. Due to the symmetry of the problem, the wave
function of the equation (9.81) is

g fo (p, 2) ) 4
U(r)= < exp (tmey) . (9.82)
1=\ g (0.2 )

where the spinors u, are the eigenfunctions of the equation o u, = ou,.
By substituting the wave function (9.82) into the equation (9.81), for
the radial wave functions we get the following equations

82 10 m2 2 2 82 2EU022
Gt om e e e
2 Ho o 2Ug
+ K —ZV(m_J—EU)]f:Z/:;WZUg’
9.83
? 10 m? 82 2EU, 22 ( )
Grt e A e e
Ho 2Up
+t = 2w(m+ (Bo)|g =itk s,

where v = |e|Bp/(2hc). The general solution of the equations (9.83) is

oo 40 (G (p,2) + G5 (p,2))
Lo (r) =G ( o (Go (p,2) ~ G5 (. 2) ) *

Go (p, 2 —Gz‘, , 2
+Cz(uUEG E ,zg-{—G;((g’zgg ), (9.84)
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where C)o are the normalization constants. The function G, (p, 2),
satisfying the required boundary conditions, is

2 2 2
o nm/2 _vpm 1 [2EUyd” z . Mo Up 2
Go (p,2) = (vP7) eXp( 2 N EE & “\aEd)”

B2\ Y2 U, \Y*
x L™ (vp?) Hy, (( h2c02 ) (—i+wl’j—;<W‘1&5) . (9.85)

where L%m) (2) is the generalized Laguerre polynomial, Hy (z) is the
Hermite polynomial, n, and n, are the non-negative integers. The
energy spectrum depends on the quantum numbers n,, m, o, n;, and to
find the explicit expression for it we should solve the following equation

E? —mict e| B 2le| B 1+m
hzc20 :lILLcO m+5_120 + lfi'co(np+ 2 >+

2
2 2EUO 1 MO U()
+ 2R (et g) (,UB) 2 (980)

2

By assuming, that E — moc? < mgoc?, we can write the approximate
solution of the last equation in the following form

1
E = {mgc‘1 + 2mgc? (th (np +m+4+ 5) + poBoo+

[212U, 1 1w\ HU, 1V/2
TV el ("Z+§))+(;TB Imed® | (9.87)

It is seen that the approximate solution of the equation (9.86) includes
the two additional terms in comparison with the spectrum obtained in
the section 8.3. However, the exact solution of the equation (9.86) will
include the infinite series of the additional terms. The accuracy of the
measurements of the fundamental constants in the experiments with
the Penning trap is so high that-.it could be necessary to account this
difference.

The wave function (9.84), (9.85) differs also from the wave function
obtained in section 8.3. The particle solution is given by the first
term in the equation (9.84). Its upper and lower spinors are the real
and imaginary parts of the function G (p,z), respectively. It is seen
from the equation (9.85) that at Uy < moc? the imaginary part of the
function G (p, z) is small, therefore the magnitude of the upper spinor
is always greater than the magnitude of the lower spinor. Nevertheless
the difference between the wave function (9.84) and the wave function
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of electron interacting with the uniform magnetic field results in the
essential difference in the magnitude of the observable variables. Firstly,
the non-zero value of the lower spinor results in the non-zero value of
the electric polarization vector. Indeed, according to the definition of
the electric polarization vector, we get

P = —ipgVal = —ie,pgo ((p}fxg - waX}L) )

hence,

IP| ~ Re (G) Im (G).

Secondly, the magnetic polarization vector is also changed

M = poUZB¥ = e.p00 (03 0o ~ XFXo) »

hence,

M| ~ (Re (G))* — (Im(G))*.

It is this difference in the magnitudes of the electric and magnetic
polarization vectors, that results in the difference of the spectrum (9.87)
from the spectrum of electron in the uniform magnetic field.

9.7 Hyperfine structure of hydrogenic spectra:
comparison with the experimental data

In the previous chapter we have shown that the energy spectrum of
electron in the Coulomb field includes the splitting of the states with the
same value of the total angular momentum j and different values of the
orbital angular momentum [. This is the principle difference between the
Dirac equation and equation (7.3). However, we have already discussed
that the problem on the electron motion in the Coulomb field is not
equivalent to the hydrogen atom problem, because the latter problem is
the two-particle problem. The analysis of the different approximations
of the two-particle problem, given in the previous chapters, has shown
that the shift of the states with [ = 0 exceeds the shift of the states with
[ > 0, and the magnitude of the shift decreases with the increase of [.
Hence, the experimentally measured frequencies of transitions between
the initial [; = 0 and final [; > O states will be most strongly differ from
those calculated for electron in the Coulomb field. On the other hand,
the frequencies of transitions between the levels I; > 0 and [y > 0 may
be much closer to the spectrum of the one-particle problem.

The analysis of the two-particle problem for the equation (7.3) will
be given in the next chapter. Here, we compare the spectra obtained
from the solution of the Dirac equation and equation (7.3) for the
problem on the electron motion in the Coulomb field. Let us denote
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AE = Efll]) — E,j, where ET(LIJ) is defined by the equation (8.49) and E; is
defined by the equation (6.132). It is convenient to express the shift AE"
in terms of the power series in the fine structure constant. The shifts in
the energy of nSy/3, nPy/s, and nP3y states are given by

AF (TLSl/z)

2
Ye — 1 4
m002 - €2n3 (Za) +

2-—
+ 7‘;”51 [(7T—2)n*+3(3—~2)n—6] (Za)® + ...,

AE (nPl/g) o _’yz -1
moc? - 6n°

2 —
B gieng (194 1192) n® + 9(5 +42) n — 54] (Za)® + ..., (9.88)

(Za)* ~

AFE (7’LP3/2) _ ’yz -1
moc? 1208
2
N 15 [(37 +592) n? + 18(7 — 72) n — 216 (Za)® + ...,
1728n
where n = n, + 1 is the principle quantum number for the S states, and
n = n, + 2 is the principle quantum number for the P states.

It follows from the equations (9.88) that the first non-vanishing cor-
rection in the expansions is proportional to a*(y2—1). By taking
into account the relation mgc?a® = 2Ry, we can see that the first
non-vanishing correction is proportional to Z4a?/n3, this is the typical
dependency of the hyperfine shifts on the nucleus charge Z, principle
quantum number n, and fine structure constant «. The nS;/; and
nPs;y levels move up and the nPy; level moves down with respect to
their position in the frames of the Dirac theory. This is in qualitative
agreement with the experimental spectra. Notice, that in the next
chapter, we shall see that the account for the reduced electron mass
results in the upwards shift of all these levels.

For the Lamb shift we obtain

(Za)* +

3(v2—-1
AEL (nSyjs —nPy) = %mOEZ‘Ia‘l.

Accounting that the experimentally measured value of the electron
magneton is satisfactory approximated by the formula ve = pe/pup =
~ (1+ a/27), we get

_ 3moc?Z4ad

2rn
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The level shift due to the lowest order radiative corrections is given

by [9]:

Za)

( ) = {A40 + Aq1ln (ZOA)—2 + Ao Za+

++ (Zoz)2 [Aaz In%(Za)"2 + Ag1 In (Za)"Q] T } (9.90)

where the coeflicients A,,, of the expansion in series on the powers
of (Za)"In™ (Za)™? are the sums of the electron self-energy, vacuum
polarization, and anomalous magnetic moment contributions.

It is seen that the equation (9.89) differs from the equation (9.90) only
in the value of the coeflicients.

Fig. 9.4, a shows the Lamb shift, calculated with the help of equa-
tion (8.49), for the 2s;/5 — 2py/ (curve 1) and 3ps/y — 3d3/o (curve 2)
levels, and the product AEn® (curve 3) as functions of the principle

10°3 3
10°3
AE 1071:
(a)
1063
10° 3
103
10° 3 1
1021 2
T T T T T T
0 20 20 60 80 100
;
1,000000
gy 0999995 2
o ]
0,999990 | )
0,999985 -
0,999980 e
0 20 40 60 80 100

Figure 9.4. (a) The Lamb shift, calculated with the help of equation (8.49), for the
25172 — 2p12 (curve 1) and 3ps/; — 3ds/e (curve 2) levels, and the product AEn?
(curve 8) as functions of the principle quantum number n. (b) The product AEn®
as function of n
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quantum number n. In Fig. 9.4, b the product AEn? as function of n is

shown in the magnified scale. It is seen that the leading term, in lowest*
order in Za, in the expansions (9.88) makes the main contribution,

because the product AEn? differs from unity on the value about 41076

for the shift of the 3ps/o — 3d3/9 levels and about 2- 1077 for the shift of

the 2sy/9 — 2py /5 levels.

The agreement of the experimental and calculated data can be illus-
trated with the help the results of the precision measurements [10] of
the frequencies of the 8ds/y — 8d3/p and 12d5/, — 12d3/, transitions in
hydrogen and deuterium.

To simplify the theoretical calculations, it is convenient to rewrite the
equation (8.49) in the following form

AE’r(llj:j:Fl/2) = moc? — E,(fj:j:Fl/Q) —
_ mpctZ%a? 1
(n+ ui)2 ARG 7202 '
{(n+wvy) (n+vy)

By taking into account that

Mec?0? = 4nhReoC,
for the position of the level in the frequency units we get

(1=jF1/2) _ 2RoocZ® m, 1
nl o (n+yi)2 My + Me Z2a2 Z2a2 ’
Lo S 1+ ———
(n+vy) ( (n+wvy) )
(9.91)

where we have accounted the correction associated with the finite nucleus
mass my,. This correction results in the replacement of the electron
mass m, by the reduced mass m, = memy/ (me + my). The correction
due to the finite nucleus mass has been calculated in the Chapter 3 for
the case of the Schrodinger equation. The structure of the equation
(8.35) is similar to the structure of the Schrédinger equation, therefore,
it could be anticipated, that this specific correction will be the same.
The detailed analysis of the corrections associated with nucleus motion
will be given in the next chapter.

Table 9.1 and Table 9.2 give the results of the experimental mea-
surements, made by de Beauvoir, et al. [10], for the frequencies of
the 8(12)D,-28, transitions in hydrogen and deuterium. These mea-
surements enables us to determine the frequencies of the 8(12)Ds o~
8(12)D3/y transitions. These figures are shown in bold face. The
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Table 9.1. The frequency of 8D — 281/, trasitions in hydrogen and deuterium {10]
and comparison of experimental and theoretical data for 8D5;2 — 8D/ transitions

Experiment [10]

Hydrogen, MHz Deuterium, MHz
Vo 770649000 770859000
v(8Dgs2 — 281 /2) — vo 504.4500(83) 195.7018(63)
v(8D5/9 — 281/2) —vo 561.5842(64) 252.8495(59)
v(8D5,2 — 8D3/2) ’ 57.1342 57.1477
Theory
v(8Ds 2 ~ 8D3)2) 57.1293 57.14487

Table 9.2. The frequency of 12D — 251, transitions in hydrogen and deuterium {10]
and comparison of experimental and theoretical data for 12D5,5 — 12D3/, transitions

Experiment {10

Hydrogen, MHz Deuterium, MHz
b2 799191000 799409000
v(12D3/5 — 281/2) — 1o 710.4727(93) 168.0380(86)
v(12D5 /5 ~ 25172) — 1o 727.4037(70) 184.9668(68)
v(12Ds )3 — 12D35) 16.931 16.9288
Theory
v(12Ds)2 — 12D3)2) 16.9272 16.9318

theoretical values of the transition frequencies are calculated with the
help of the equation (9.91), where we have used the following values of
the fundamental constants [9]: Reoc = 3.289841960368 - 10'° Hz, o =
0.007297352533285885, m,/me. = 1836.152667, v. = 1.0011596521884.
The results of the theoretical calculations are shown in the lower rows
of the tables.

It is seen that there is the difference between the experimentally mea-
sured and theoretically calculated (with the help of the formula (9.91))
frequencies of transitions. However, the difference is about a few kHz,
which is smaller than the uncertainty of the measurements.



Chapter 10

HYDROGEN ATOM

10.1  Action principle

The action is the additive function, therefore the action of an ensemble
of particles is the sum of the actions (7.1) for the individual particles,
where we should take into account that the field, that acts on each
individual particle, is produced -by all other particles of ensemble

2
1 18A B 2 _

- > Qma/[(za; )( Zaa zqa%(ra)‘l’>

(o)
(mv\pa ~Bpy (r) \i/) (—ihV\I!a ~ %A (ra) \Ifa) +

+ m§c2\fla\11a} AV, dt+
= |, 10A, (I‘a)
+ Z ua/\Pa [Zaa <E 5t + Vo (ra)> +
a,b
(ath) + S, curl Ay (ra)]\lla dVydt (10.1)

The variation of action (10.1) with respect to ¥, results in the equation,
which is similar to the wave equation for an individual particle interact-
ing with the external electromagnetic field:

> {3 (5w ) = [ (o oot
+mZc® + 2mapiq (100 B (ra) — TaBy (ra))]}wa =0. (10.2)
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The variation of action with respect to the field potentials results in the
equations for the electromagnetic field potentials, in which the current -
density four vector is the sum of the current density four vectors of the
individual particles:

1 9%A 4 .
- ?8? = Y zJa (r,t), (10-3)
a

Ap — 1P = ——47er,1 (r,t). (10.4)
¢t ot? - ’

We have used the Lorentz gauge in derivation of the field equa-
tions (10.3), (10.4):

- %f +divA =0. (10.5)

The components of the current density four vector, appearing in the
equations (10.3), (10.4), are defined by the following equations

Ja(r, ) = 2o %(v@a-ma—@awa ——Z\I/Abrt +

Ma
b(#a)

+ cpq curl (\TJQEG\IIQ) - iua% (Paoa ), (10.6)

ih (0 = U, "
Pa (¥, )—mc % ((%\Iia—— > r qu“@b r,t) To| +
b(séa)
+ iV (Yaaa¥a) . (10.7)
The generalized momenta canonically conjugate to the fields A, ¥
and ¥ are given by the variational derivatives of the Lagrangian function

L with respect to A, U and ¥, which we can read off from (10.1) as

0L 1 [10A Ha
_—___——<c a0 +ch)+zz VooV,

dA 4w

_ oL B (RO¥, g, =
- 9L 0% _ ,9a 10.8

I, 9. = Imc (E, o <p\Ila), (10.8)

9L _ R ROV, | .qa
Ha—a_\f;a_?mac<z ot P a>-

The Hamiltonian function is given by the sum of all canonical momenta,
times the time-derivatives of the corresponding fields, minus the La-
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grangian function

H= HA‘I'Z (ﬁa\pa + \ijana)'—L = 3= [

1 [#20%,09, ¢ o=
+ Z QmQLQ o ot grvelet

e + (th\Tla - %Ab@a) (—mwa - q—“Ab\I/a> + mgcQ\Tla\Pa} -
C C
= > 10 (1000 Vi¥a + T BBy o). (10.9)

a,b
(a#b)

Thus, the energy of ensemble of particles coupled by the electromagnetic
field is given by

1
E=o / (E*+ B?) dV+
1 L 0%, ‘ - oY,
+ Z 2ma62 / (—Zhﬁ—_QaQPb(I‘a)\I/a> ('Lhw—qawb(ra)\l]a) d‘/a+
a,b
(ab) o .
+ Z 2ma/ [ —ihV — ?Ab (ra)) +mgce ] U, dV,—
(o) )
> Ha / U0 8aBy (ra) TadVa. (10.10)
a,b
(astb)

To derive the equation (10.10) we have used the following vectorial
equalities

(Ve)? = —pAp +div (pV), (10.11)
OA _10A 10A _i i
—d1v< 8t> = Vp+ - gaatd VA= -S2Vp- 5oL (1012)

It is seen that the equation (10.10) has the structure similar to that of
equation (4.51) for the non-relativistic spin-1/2 particle. The difference
between these equations is in the additional terms in (10.10):

/ (2”;“"’ ,1I ) dv.

The appearance of the generalized momentum I1, in the equation (10.10)
is quite natural, because the action (10.1) is the gtadratic form of
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the time derivative operator. In the steady-state case these additional
terms are
LI [(E — gap)? +m204} T dV,
Imact a a — Ga®p a alVg.
As the result, the equation (10.10) takes the relativistic invariant form,
in contrast to the equation (4.51).

10.2  Steady-state case

The ensemble of the primary interest for us is the hydrogen atom,
therefore, we assume that the ensemble consists of the two particles. In
steady-state case the wave functions of particles are

U, (r,t) = ¥, (r)exp (—z’Egt) .

According to the variational principle the energy functional has ex-
tremum at the eigenstates of the particles of ensemble. Therefore, the
main goal of our treatment is to find the extremal values of the energy
functional (10.10). The energy of the ensemble is the sum of the kinetic
energy of particles, the energy of the electromagnetic field produced by
them, and the energy of their interaction. As we have discussed in the
previous chapters, it is convenient to exclude the electromagnetic field
variables from the energy functional, and then vary it with respect to
the wave functions of particles. The field variables are excluded with
the help of the solutions of the equations for the electromagnetic field
potentials (10.3) and (10.4). The field energy is the sum of energies
of the electromagnetic fields produced by each particle, and the energy
of their interaction, which depends on the mutual position of particles.
Notice, that the energy of the field produced by a particle is accounted
in its rest energy, therefore for the field energy in the stead-state case
we get

Ef= -81; / (E? + BY) aV = %/ ((w)2 + (curl A)Q) dv =
1

-1 / [on (re) e () + S A (1) e (1) Vet

% / [‘Pe (rn) pn (tn) + %Ae (rn)jn (rn)] AV, (10'13),

where ¢y (ry) and Ay (r,) are the field potentials produced by the
particle b = (n,e) at the position of particle a = (e,n). To derive the
equation (10.13) we have used the equation (10.11) and the following
formula

+

curl A - curl A = div[A curl A] + A curl curtA.
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By substituting the equations (10.6), (10.7) into the equation (10.13) we
get for Ey the following equation

By =t / T (Eo — qon (te)) o (ve) Ve dVit

2mec

b / T (B — nipe (tn)) e (va) U Vs

2myc

Z,Ue / eaeVeLPn (re) V. dV, — Z'un \—I-lnanvn(,oe (rn) Y, dVp—

9
-5 / T Appele dV, + = / T Aepy Uy dVy—
_d: / T A2T, dV, — A - / U, A20,dV,+
2mec? 2mpcC

“e U 2By, (re) VodVe + 22 [ U,8,B. (r,) U, dVy. (10.14)

Thus, the total energy of the atom is

Ee 9/‘11 (E "%‘Pn)\p dV+

2mec”

1 -
t om /‘I’e (p% + mic?)

[

E_

/@n (En - Qn(Pe) U, dVi+

nC

Uy (P2 + m2ic?) UpdVi—

— 2m / T Anpel, dV, — Qm / TpApn¥p dV,—
- % Totte Vepn Ve dV, — “2“1 T 0n Ve U dVi—
T.3.B,V,dV, — 2 T,5,.B. U, dV,. (10.15)

The total energy of the atom is the sum of the energies of the electron
and nucleus E = E, + Ey, therefore we can rewrite the equation (10.15)
in the following form

= 1 9 mic —E2 E,
/\I!e{%: (pe + o2 ) + 27TLEC2 dePn (I‘e) -

Te Ap (re) pe — Lo Vepy (Te) — %EEEBn (re) }\Ife dV,+

 2mee 2
= 1 9  mict —E2 E,
‘I‘/‘I/n{% (pn + 2 ) + 2mn62 dnPe (rn) -
I Ae(rn)pn — “‘"%vw(r)— (r) $¥, dV, =0.
2mnc € n 2 nye n e n n n

(10.16)
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By comparing the last equation with the equation (4.55), we can see
that the equation (10.16) has the relativistic invariant form and include
additional terms describing the interaction of the electron and nucleus
electric polarization vectors with the electric field produced by the
particle of the opposite charge

—% [ / P.E, (r.)dV, + / P,E. (rn)an] :

_ The variation of the equation (10.16) with respect to the functions
U, and ¥, results in the set of the equations for the wave functions ¥,
and V¥,. The solution of these equations together with the equations

for the field potentials enable us to determine the energy eigenvalues
(1)

Eé% and eigenfunctions \I/e n. For example, in the limit of free particles
|re — rp| — 00, we get Ey = /h2k2c¢2 + mZct. However, in the case of
interacting particles we must take into account that the field potentials
are the functionals of the wave functions of particles. These functionals
are defined by the equations (9.3) and (9.4). As already mentioned, it
is more convenient to exclude the field potentials from the functional
(10.16) and then vary the obtained functional over the product of the
wave functions of the electron and nucleus. By substituting the equations
(9.3) and (9.4) into the equation (10.16), we get

. E,h? E 1 ~E2 E
/\116\1}"{— Bo= 2 py ot

2Mmempc? ¢ 2memaC 2me My C
1 m C - E2 E, + E. By qeqn _ ngn ES + E’rgl _1_+
2mnc2 Mec®  Mmempc® T 2mempct \ mec? mpc® | 2
. E'I‘L Oelen . E onr n qqu 1 pli pTL
+ tleln e Tse - ZNnQe_meZQ 7;36 - 2027_; <Vn—; + Ve*m—n -
. Gepinft Bnle Qn/leh Yeln + 3(aeren) (anren) - aean""2 _
mee 10 mpc 1o Helt ro
3(Beren) (Bpren) — B 8,72
— thefin ( ) ( "rs )~ % +Hh}\Ife\Iln =0, (10.17)
where 7 = |rep|, and, similar to section 4.3, vy is defined by
1 th|r, — 1 1
= = - 10.1
vy = <Pb PAL (1) - 5 Vblra—rbl ; (10.18)

The variation of the equation (10.17) with respect to the function
V.U, results in the equation for the wave function ¥, the Hamilto-
nian of which coincides with the expression in the braces of (10.17). Let
us discuss the physical meaning of each term in the Hamiltonian.
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(1) It is well known that the binding energy in hydrogen atom is much
smaller than the rest energy of electron and proton. In its turn, mec? <
<« mpc®. Hence, E, < E, and E, ~ my,c?. By taking into account
these inequalities, the first six terms of the equation (10.17), in the limit
of the infinitely heavy nucleus, can be transformed to the following form

B, k2 E 1? m2c* - EZ E
Ho=———5A.— ——An + 2 ~
2MmempcC 2memy,C 2meC My C
mac' =By B | FeBu dn _ 424 Be | Ba\ 1,
anc2 MeC? m,imnc4 r 2memnc4 Mec®  MyC° 2
h? mzc4“E2 + E. qegn _ 1 ngi _
Imec®  © 2m.c? Mec® T 2m.c? r?
1 2
= 53 [P+ mic' = (B — qepn (r2))’] . (10.19)
MeC

Thus, the first six terms of the Hamiltonian are the kinetic energy of
the electron and nucleus and the potential energy of their Coulomb
interaction. In the limit of the infinitely heavy nucleus these terms
coincide with the spin independent part of the Hamiltonian for electron
moving in the Coulomb field.

(2) The next two terms
oneren . E. anren

- ane 3 (1020)

, E
Hpp = ijtegn—
mnc

T

describe the interaction of the electric polarlzatlon vector of a particle
with the electric field produced by the particle of the opposite charge.
(3) In the section 4.3 we have already met the following term

Qeqn 1
262 T < + mn)

With the help of transformation

- 2my,

1 1 h?
VnPe = 35— {[renvn] [renpe] + (renvn) (renpe) + nll— (renve) + } )

1 1 h?
VePn = —5— {[renve] [renpn] + (renve) (renpn) - :_n‘ (renvn) + ‘é‘m—} )

en

and gauge condition

diva Ay (r0) =~ 2 [ D% gy, < o

ab

this term is transformed to the following form
eqnf® L, + 1,1, — 1
Hy = 2t i , (10.21)

2mMeMmapC T
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where
hle = [renpe] , Rl = [rnepn] . (10.22)
The last item in the equation (10.21) is due to the fact that the operators
l. and 1,, are the non-commutative operators (as we mentioned in the
section 4.3). The Hamiltonian (10.21) describes the interaction of the
orbital angular momenta of the particles.
(4) The next two terms

Gelinhi zngle . gniteht Zegn ) (1023)

meC 7 MpC 7

Hls:_

describe the spin-orbital interaction.
(5) The term
3(aeren) (anre'n) - (lea"T2

Hpp = pepin Z (10.24)

r

and 3(2 X RN

Hyn = —pepin Zerenl | n:gn) = (10.25)
describe the interaction of the electric and magnetic polarization vectors
of particles.

It is seen that the interactions, appearing in the Hamiltonian Ho and
Hpg, depend on the distance as 1/r and 1/r2. The rest interactions
depend on the distance as 1/r%. In the Chapter 4 we have shown that
the corrections, contributed by the interactions proportional to 1/r3, are
about Ry - a®me/ma.

We have not discussed the terms contributing the corrections of the
highest order in «. In the equation (10.17) these terms are denoted
as Hy. They are

Hy = —In¥e n) (rn) (p2c® + m2c! - E2) - TePn (rel (pac® + mac' — E2) +

Qmemnc4 2mempc

Eeq% Q_f:((p N E. 92) _ Enqe q_n( _ B, @)
2memnc4 r € mec2 T 2memnc4 r n mpc® T

Qe ne anPe (rn) +4 ApLen qs‘Pn (re) .

e 5 My c? " 9m?
2 2
_ an A, [rneze] _ qe A, [renzn]
He 2mpc ro Hn 2mee o ’ (10'26)

10.3  Integrals of motion

By varying the equation (10.17) with respect to Ue (re) Uy, (ry) we get
the following equation

(He + Hpg + Hy + His + Hpp + Hpapr) We (re) ¥y (ry) = 0, (10.27)

where we have omitted Hp,.
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It is convenient to introduce the relative position radius vector r and
the center-of-mass radius vector R

r=re—r, R= E%% (10.28)
In this case, the orbital angular momentum operator is
AL = [repe] + [rnPn] = [rp] + [RP], (10.29)
where P 9
p= —iha, P= —iha—R.
The total angular momentum operator
J=L+8 (10.30)
is the sum of the orbital momentum operator and spin
S =1 (Se+3n). (10.31)
By using the definitions (10.28), we obtain
rrinc2 21107%6 mb;zz 21;371 - _Qmizzrfn& (AT + ngn AR) ’ (10.32)

In the section 4.3 we have shown that the total angular momentum
operator commutes with part of the terms of the Hamiltonian of equa-
tion (10.27). This part is Ho + Hy + His + Hya. It can be easily shown
that the rest two terms of the Hamiltonian of equation (10.27) commute
also with the operator J. Indeed, it was shown above that the operator

[rp] + gEa commutes with the product a,E (r). Hence,
[J,Hpg| = 0.

By taking into account the commutation relations for the operators ¥
and o
[Zi, Otj] = 2ieijkak,

we get

[(Be + Bn); , cetn] = 2ie5k (ate)y (“fn)] + 2iegk (ae)j (on)g = 0.

Thus, the operators of the orbital momentum L and spin S do not
separately commute with the Hamiltonian of the equation (10.27). The
conservative variable is the total angular momentum:

(3,(Ho + Hpg + Hy + Hys + Hpp + Hy)) =0. (10.33)
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The Hamiltonian of the equation (10.27) depends only on the radius
vector r = re — ry, hence, the operator of the total momentum of atom,
P = p¢ + pn, commutes with the Hamiltonian

[P,(Ho+ Hpg + Hu+ His + Hpp + Huum)] = 0. (10.34)

Hence, the atomic wave functions are the eigenfunctions of the atomic
total momentum, total angular momentum, and its projection.

10.4  Angular dependency of hydrogen atom wave
functions

In the case of the motionless atom the equation (10.27) takes the form

(Ho + Hpg + Hyr + Hpp) ¥V, =0, (10.35)
where
2 2
Hp = — hEzA— EeEn4Z_e_
2mempc MeMpC T
B 1 E? + E? Z2e4+ 2AE, + mictE, EEE
2memnct \ mec® mncr TR 2memnct
(10.36)
. Zeh nr
Hpp = —z% (En%‘i;’ﬁ _ Ee%“—s) , (10.37)
MMy C T r

4 2
HHF - _ /'LTB;LN 12 /J'BHN (’Yez + 'Ynz )1+

+ @ﬂ:gi (3(Zee) (Tne) — Zc2n), (10.38)

Hpp =~ (3(0,0) (ane) — aetn), (10.39)

where we have used the definitions introduced in the section 4:

fe = —7VelB, Hn = YnlN, (10.40)

Ye(r) i the gyromagnetic ratio of the electron (nucleus), the Bohr
magneton up and nuclear magneton py are defined by the well known
equations:

geh _ lelh _ . _ Zlelh

- ) N = - .
2mec  2mec 2myc 2m,c

pB = =

We have divided the Hamiltonian of the equation (10.35) into the
four items. The Hamiltonian H¢ is the operator of the kinetic energy



Angular dependency of hydrogen atom wave functions 257

and the potential energy of the Coulomb interaction. The Hamiltonian
Hpg describes the interaction of the electric polarization vectors of
particles with the electric field produced by the second particle. The
Hamiltonian Hy g describes the hyperfine interactions appropriate to the
non-relativistic spin-1/2 particle. These interactions were investigated
in the Chapter 4. The Hamiltonian Hpp describes the interaction of
the electric polarization vectors of particles. As already mentioned, the
first two terms in the equation (10.35) include the interaction depending
on the distance as 1/r and 1/r2, the second two terms include the
interaction depending on distance as 1/r3. The Hamiltonian He does
not depend on the spin operators. The Hamiltonian Hgr depends on

the diagonal spin operator ¥, = %a' c?) The Hamiltonians Hpg
a

and Hpp depend on the antidiagonal operator o, = Q_‘; %‘l . These
a
specific features explain the convenience of dividing the Hamiltonian into

the four groups.
The wave function of the equation (10.35) is the direct product of the
bispinor wave functions

wq PePn
wa Xe¥n

¥ = =9V, = . 10.41
w3 enn PeXn ( )
W4 XeXn

The Hamiltonian of the equation (10.35) depends only on the radius
vector r, hence, in complete analogy with the equation (4.87), for the
products of spinors we have

+1
wn (1) = fu (VO 00)+ Y g™ )l (6,0),
J

o=-1

where the second order spinors Q;Z)n are defined by the equations (4.84)-
(4.88).

The matrix of the space inversion transformation is Sp = Apys (see
Chapter 7). Hence, the atomic wave function is transformed under space
inversion in the following way

w1 w1
s || x| -
Waq w4y

Thus, by taking into account the parity properties of the spinors o

jlm>?
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the general solution of equation (9.33) has the following form
0
wi(r) = A QG (6,0) + 8 ()AL, (6,9),

I') = Z g§2) ’I' 5',1!)=j—a,m (0,(,0),
o==+1

=Y g () (6,0),
o==%1

mmzhu¢1WWwH%Wﬂ¢Lm@m,

In complete analogy with the discussion given in section 8.2, the second
linear independent solution is

(10.42)

/ / / /
'LUl = W2, U)2 = Wi, 'LU3:’IU4, 'LU4:UJ3.

In the Chapter 4 the angular matrix elements were obtained for all
items of the Hamiltonian Hyp. By using the equations (4.84) and (4.88),

we can easily calculate the matrix elements of the Hamiltonian Hpg.
The non-zero matrix elements are

B
/QEIIHJ 1,m (O ne) Q msinfdidp = — 23

s

Y
+
—_

/ lel)jﬁ-l m Ge ne) QJ l)_j m sin @ df dgo =

“. ‘3'
+ .
=

(H+ (0 )
/le_~J 1m (0e€) U/, sinfdfdp =i TENE
1 (10.43)
jt+
/Q]l—]+1m( ee)Q _Jmsm¢9d9d<p—z TESE
D+ _ J
/Qj (=i 1,m (On€) le_]msmﬁdega TENY
b+ (one) Q( ) msinfdfdp = — J t 1

The matrix elements (10.43) and matrix elements obtained in the Chap-

ter 4 enable us to write down now the equations for the radial wave
functions f(™ (r) and g(™ ().

10.5 Equations for radial wave functions
It is convenient to introduce the operator L:
h’E

2mem"c2

Substituting the equations (10.42) into the equation (10.35) and using

H=-
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the angular matrix elements, we get the following equations for the radial
wave functions

Lowy + Lgf)Ewg + Lg%ws = —Lypwy — Lppws,
Lows + LsszEuh + LES’};W = —Lypws — Lppws, (10.44)
Lews + Lgf,)ngx + Lg%m = —Lyrws — Lppws,

Lows + Lgfj)gwg + Lg%wz = —-Lygrws — Lppw;.

The labeled operators L, appearing in the equation (10.44), are

2F.E, Zao  Z%0*? 1 [ E? E2
Lo=A+ Ehc 1 2 E (mec2 + mnc? )
mzc4En + m?lc“lEe - EE.FE
— o , (10.45)
iZa (E E
Lpg = L% + Lg% = %;— (f"fyecee — —Ee'yncne) , (10.46)

Za? mrc2 eVYn
LHF = T—S EaB (212 — ’}/eo'el - 'Ynanl it % (3(Oee) (O'ne) - O'eo'n)> )
(10.47)
202 mpc® Yefn
Lpp = —’:3-—- (3(0'39) (Gne) - c’eo'n) ) (10-48)

EaB 2
where o, are the Pauli matrices.

The energy parameters in the equations (10.44)—(10.48) are defined
by the conventional equations: E = E, + E, and E, = mec? — AE,,
E, = m,c? — AE,, where AE, is the binding energy. In the case of the
motionless atom, pe + pr = 0, we have AE,/AE, ~ m¢/m, < 1. It
can be easily shown, with the help of the last relationship, that

EeEn 7 p 1<E§ + E,%)Nl

E me O E\me?  mnc
m2c'Ey + mic'E, + E.E,E
E
where m, = memy/ (Me + my) is the reduced electron mass.

Let us start with the zero order approximation. In the zero order
approximation we neglect the interactions depending on the distance
as 1/r3. As we have seen in the previous chapters, in the zero order
approximation, in principle, it is possible to find the exact solution of
the equations. The equations (10.44) are the coupled set of equations
for the eight radial functions fi 4, 351’4), g(ﬁfs), g(fl’s) . We write down
the equations for the radial functions of the spinors w; and wg, because
the remaining equations have the same structure. By substituting the

(10.49)

2.4 _ 2
mzc* — EZ,
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equations (10.42) into the equations (10.44) and accounting for the
approximations (10.49), we get

& 2d 2Bm.Z Z%a? —j(j+1
( mr_a+ a g(]+)_n2>f1+

dr? = rdr heme T r

ggv_n_r( i+l @

Zme \\ 2511 %5 +1
Zam, [ [7+1 (3 i@ _
T3 mn< 711 Ty g8+ ) =0 (10.50)

dar: | rdr hem. 7 r?
Za my 7 2) i+l (2
e e ( 95 +15-1 95 + 15+1
. Za my 7 (3) _ J+1 3\
Tn 7"2 T ( 2] + 1g—1 2] + 1g+]_ - 07 (1051)

— + )

dr? ' rdr ficme T r

_ o Zame [ [j+1 ) _
e T, (\/2j+1f1+\/2j+1g0

Z‘””’( gl ] d g(4)>:0, (10.52)

(d_Z 2d | 2BE.m, Za Z22—(j'+1)(j+2)_,{2> @_

r? my,

d2 2d 2E.m,Za  Z%a*—j(j-1) 2\ (2@
(572 var T Them, v 2 YA
j

_yfame (] G o [itl ) _
e e (\/2j+1f1 \/2j+1g0 >
_dame ] § i @Y _
o2 mn< 2j+1f4+\/2j+1g0 =0. (10.53)

It becomes clear, if we compare the obtained equations with the equa-
tions (8.37), (8.38), that the solution of the above eight coupled equa-
tions should be taken in the form

fi(r) = fiGwyr), &9 (r) =gla(w,7), (10.54)
where
— v—1 EemTZa'
G (v,r) = exp (=rr) T F (v - 2 2k, (10.55)
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here F(p,q,z) is the confluent hypergeometric function. The condi-
tion of the existence of the non-trivial solutions of the set of algebraie

equations for the constants fy;, g(gf,) provides the equation for the free
parameter v.

10.6  Perturbation theory

Up to now, we have taken into account the interactions, that decrease
with the distance not faster than 1/72. The contributions of the terms
of the Hamiltonian, depending on the distance as 1/r3, are relatively
small. Indeed, for the ratio of the mean value of the kinetic energy,
(K) = ((h%/(2m,)) A), to the mean value of (Hyr + Hpp), we get

(Hurp + Hpp)  Ze* _ , 2mr
(K) EaB mn'

Hence, to account the interactions, depending on the distance as 1/r3,
we can use the perturbation theory.

The general principles of constructing of the perturbation theory series
for the equation (7.3) are the same as for any other quantum mechanical
equation. Let we know the solution of the eigenvalue problem

Ho(En) ¥, (r) =0, (10.56)

where Hp is the Hamiltonian of the equation (7.3) or the Hamiltonian
He + Hpg of the equation (10.35). We would like to calculate the
approximated wave functions and energy eigenvalues of the equation

(Ho(E) + 6H) ¥ (r) = 0. (10.57)

Let us express the wave function of the equation (10.57) in terms of the
eigenfunctions of the equation (10.56)

U(r)=> caln(r). (10.58)

By substituting the wave function (10.58) into the equation (10.57), we
get

Z Cm E:LO;ZE (E +2Em -U (r)) U, (r) + Z emSHT,, (1) = 0.
m m

(10.59)

By varying the energy functional of the equation (10.57) in the space
of the wave functions (10.58), we can, in principle, to get the solutions
of the equation (10.57) at any arbitrary ratio of Hp and §H. However,
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when the corrections are small, i.e. |F — Ep| < Ej, then, by applying
the normalization condition (8.20), we get

(En—E)en+ Y 0Humem =0, (10.60)
m

where 0 Hpm = [ U, 6HY,, dV. If the diagonal elements of the Hamilto-
nian 6 H are only non-zero, § Hpy, = 6 Hppnbpm, then the corrected energy
eigenvalue EJ, is determined by

E! = Ey+ 6Hpy,. (10.61)

If the non-diagonal elements of the Hamiltonian § H are non-zero, then,
according to (10.60), we obtain the set of the coupled equations. For
example, if the Hamiltonian  H couples the two neighboring levels, i.e.
dH, 1 # 0, the energy distance between which is comparable with the
mean value of §H, then the set of equations (10.60) is

(En + 6Hpy — E) Cn + 5Hn,n+lcn+1 =0,

10.62
(En+1 + 5£[n+1,n+1 - E) Cnt1 + 6Hn+1,ncn =0. ( )
The solutions of these equations are
E(1,2) — En + En+1 + 5Hnn + 6Hn+1,n+1 +
2
2
En _En +6Hnn '_5Hn L

+ \/ ( 1 5 +, +1> + 0Hpy1,00Hy ny1. (10.63)

If the corrections due to the Hamiltonian §H are small in comparison
with the energy distance between the coupling levels, i.e. [0Hnn| <
& |En — En41], then we can use the following approximated form of the
solutions (10.63)

EW = By + 0y ~ By + §Hyn + 2nttn0 e,
En - En+1
SHpt1 n0Hy
En - En+1

It is seen, that the corrections, due to the cross-interaction of the two
levels, move the levels in the opposite sides. The state of the corrected
energy E(Y) is the superposition of $he non-perturbed states n and n+1.
According to the equations (10.62), for the amplitude of the impurity
state n 4+ 1 we get

5Hn+1,n c ns - 5Hn+1,n
E(l) — En+1 - 5Hn+1yﬂ+1 " En - Enq-l "

Cn4l1 =
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Thus, if the non-diagonal elements of the Hamiltonian §H are small in
comparison with the energy distance between the coupling levels, then
the amplitude of the impurity state is small.

Due to the cumbersome form of appropriate equations, it is impossible
here to write down the corrections, associated with the Hamiltonian
Hyr + Hpp. Nevertheless, the numerical calculations, based on the
application of the above discussed algorithm, result in the hydrogenic
spectra, which are in the reasonable good coincidence with the experi-
mental data.

10.7 The caseof j =0
In the case of j = 0 the number of the equations (10.50)-(10.53) is

halved, because instead of the four linear independent spinors Qgﬁn we
have only two. In this case, the equations (10.42) become

wi = [0, we =0, ws =0k, wi = £l
(10.64)
The second linear independent solution is

wy =g, wa = fa g, ws = £, wa =gl
(10.65)
If the wave function is given by the equation (10.64), then the param-
eter v in the equation (10.55) is

1
v = 5(1 + /1 4v), (10.66)

where

2

e Mn
2
72:—1+Z2a2+\/1—Z2a2('ye&— nm—’”> ,

Me My
2

m, m
73:—1—|—Z2a2—\fl—Z2a2(’ye~m—e—|-’yn—7ﬁ> ,
2

= — 2,2 _ 7202 T ﬁ)

Y4 14+ Z%a \/1 AL (’yeme fynmn

The radial wave functions (10.54), (10.55) satisfy the boundary con-
ditions at r = 0 and r — oo, if the following condition holds
E.Zam,

vy — —— = —n,
' hemer ’
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where n, is the non-negative integer, which is called by the radial
quantum number. The last equation results in the following equation
for the energy spectrum

E(i;la..,4) _ mec® (ne + v5) . (10.67)
n,j=
J \/(nr +11)? + (Zam,/me)?

Hence, the electron energy spectrum, AE = mec? — E,, is defined by

(i=1,.,4) _
AE 57 = \
i mec? < Zam, >
Ly [ Zeme NP ] Zam, \*\ \(rFvime)
+ ((nr + Vi)me> ( YLt ((nr + I/i)me> )
(10.68)
The eigenfunctions, related to the eigenvalues (10.67), are
0 0
3
vy = | "0 G, Ta) = | 200 |Gl ), (10.69)
_q%OlO _§28010
Q(()0)0 Q00)0
ClQ(()%aj §2Q§)%3)
_Q(l) Q(l)
Usi(r) = 0 | Gus,r), Wa(r) = D | Glva,r), (10.70)
—9030 Q0100
St <2260

where G (v;,7) is defined by the equation (10.55), and

m. m.
Za (’Ye_r +n T)
o Me My
1= 27
- m m
1+ 4/1- 2202 yo— .
+ @ (’Yeﬂle +7nmn
m. m.
Za ('76—T _’)’n_r‘>
‘me "mg
m. m 2'
144/1— Z2a2 ('ye—r - 'yn—r>
Me M,

If the wave function is given by the equation (10.65), then we again
obtain the equation (10.67) for the energy spectrum, and explicit form

Co =
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of the wave functions is

§1Q(%;0 QQ(%)O
Q -0
Us(r) = _Q?g)o G(v,r), Yg(r)= Q(S)OO G, 7). (10.71)
??)0 000
SIA =810
1 1
-
Uy (r) = —Clﬂ(()g)o G(vs,r), Wg(r)= §2QO(()8) G(vg, 7). (10.72)
_§1S})000 _Q(?)OOO
Q10 Q10

Similar to the solutions of the problem on the electron motion in the
Coulomb field, the solutions (10.69)-(10.72) are twice degenerated with
the respect to the pairs of the particles and antiparticles.

10.8 Internal parity

The Dirac adjoint function to the wave function (10.41) is ¥ =
= (wf, —wd,—wj,wf), then, by taking into account the inequalities
G2 K 1, we get \111278‘1’1278 > 0 and \If3456‘~1/3456 < 0. In the case
of the electron motion in the Coulomb field, the solutions, corresponding
to the electron, have been chosen on the basis of the normalization
condition, it reads for electron solutions as YW > 0. The solutions
of the two-particle problem (10.44) with U¥ > 0 correspond to the
pair of particles or antiparticles. If YW < 0, then the two-particle
wave function is the product of the one-particle wave functions, one of
which is particle wave function and another is antiparticle ones(. : The
e

transformation "particle-antiparticle’ is realized by the matrices 5’ and

'yé"). The action of these matrices on the two-particle wave function is
defined by

wi wy wh w3
(e) | W2 | _ w1 (n) | W2 ] _ Wy
Vo | e | = T =~

3 Wy w3 w1

W4 w3 W4 wy

It is seen, that there are the following relationships between the wave
functions, corresponding to the same energy eigenvalue,

()\I’1 s, ’Vé)‘h s, ()\1/3 Yz, 7§)\I’3—\I’7,

5]

’Yée)‘l’z = —Ws, Wén)% =Us, ATy = s, "Yén)‘h = Us.
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Thus, the matrices 'yée) and ’yé") transform the wave functions (10.69),
(10.70) to the same final wave functions, however, the sign of the final
wave functions is the same for the wave functions of the odd indexes,
and sign is opposite for the wave functions of the even indexes.

Let us introduce the operator of the internal parity

Ts = %74, (10.73)
This operator transforms each particle wave function into the antipar-

ticle wave function. The action of this operator on the wave func-
tion (10.41) is defined by

w W4
(e) (n) fW2 ] _ | w3
Y5 Vs ws Wy
w4 w1

By applying this operator to the wave functions (10.69)-(10.72), we get
PsUis57="1357, I's¥246s=—TV246s. (10.74)

It should be noted, that the operators 'yée) and 75(,") commute separately
with the Hamiltonian of the two-particle problem. The operator I's
commutes with the two-particle Hamiltonian, too. Hence, the obtained
symmetry properties remain invariable, even in the presence of the ex-
ternal electromagnetic field. This is an extremely important statement.
Indeed, it is seen from the equations (10.66), (10.67), that the energy
spectra of the two-particle systems, having the different internal symme-
try, are different. However, the external electromagnetic field could not
change the internal symmetry of the two-particle system, therefore these
two different energy spectra correspond to the two different physical
objects.

We have shown in the Chapter 7, that the matrix «y; is the matrix
of the CPT-transformation, hence, the internal symmetry defines the
parity with respect to the CPT-transformation. The difference in the
internal structure of the two-particle system of the different internal
parity can be illustrated by the following way. Let us determine the
radial projections of the electric polarization vectors

PO = —ip, W0l

in the states, described by the wave functions (10.69) and (10.72). They



Internal parity 267

are

dlt) = / ePMaV = —dpupres, dY) = / ePdV = —4punns,
) = / PV = —dppyes, dP) = / ePPdV = duyynss,
i) = / ePPdV = dupress, dY = / ePYdV = dpyyncy,

i) = / ePWdV = dppyesy, dY) = / ePYdV = —4punns,

where e = r/r. In the two-particle states of the even internal parity the
directions of the electric polarization vectors of the constituent particles
coincide, and in the states of the odd internal parity the directions of
the electric polarization vectors of the constituent particles are opposite.

It is seen that the solutions (10.69) and (10.71) correspond to the nS
states, and solutions (10.70) and (10.72) correspond to the nP states
of the two-particle problem. In the nS states the vector d. is directed
oppositely to the direction of the intra-atomic field, in the nP states it is
directed along the intra-atomic field. In the atomic systems of the even
internal parity the vector d,, isparallel to the vector d., in the atomic
systems of the odd internal parity the vector d, is antiparallel to the
vector d.. In the two-particle systems, for which |pue| > |ptn| (like in
hydrogen atom), the nS states move upward, and the nP states move
downward. The difference in the value of shift of the nS states for the
atomic systems of the different internal parity in given by

AE(nS) _ (ny +11) _ (ne +12)

mec g ) + (Zame/me) \[(ng + 1) + (Zam, /m,)?

2%% mr 4 2¥eYn My
TL (Z ) ns AI
2 my \ 2
X |:4n2+6n—3— ((’Ye‘a) + ('Yern) )n(n+3)] (ZO[)6+
(10.75)

X

for the nP states we have
AE(nP) _ (ny + vs) _ (ny + v4)

meC2 \/(nr + ’/3)2 + (Zarn'r/"ne)2 \/(nr + V4)2 + (Zamr/mﬁ)z

275771 my ( )4 276'7n mr
3 M 25 M

x[4n2+18n—27—|—<( ) ( )) 11n+9)}( Q)b+,

(10.76)
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where M = me+my, n = n,+1 is the principle quantum number for the
nS states, and n = n, + 2 is the principle quantum number for the nP -
states. By taking into account, that m.c?a? = 2Ry, it can be easily seen,
that the leading term of expansion, lowest order in «, is proportional to
(Z%*a*m,/(n3M)) Ry.

The position of the energy levels, defined by the equation (10.68), de-
pends on the ratio me/m,. Let us estimate the shifts of the levels (10.68)
with respect to the Dirac’s spectrum (6.133) in the limit of the infinitely
heavy nucleus m,, — oo. For the even atomic systems we get

2
(’Ve+%::7i) —1} + ...,

AEeven(nS)  Z%!

Mec? 2n3
B [(V b)) 1]+
For the odd atomic systems we have
AE;jng) = 22;%4 [(% —%Zi)Q 1 +...,
s 22[(o )

Taking in mind that the nucleus magnetic moment is equal to pu, =
= YN, the ratio me/my was kept non-zero only in the terms propor-
tional to petpy,. Comparing the last equations with the equations (9.88),
we can see that the account for the nucleus spin results, in the lowest
order approximation, in the replacement of the electron magnetic mo-
ment by the summary magnetic moment |ue| + |pn| for the even atomic
systems, and by the difference magnetic moment |ue| — |un| for the odd
atomic systems. :

Thus, the analysis presented here has shown that the choice between
the two wave functions, corresponding the same energy eigenvalue, is
determined by the internal structure of the atomic system, whether it
consists of the two particles or particle-antiparticle pair. The choice of
the appropriate spectral series, among two alternative, is unambiguously
prescribed by the internal parity of the atomic system.
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